ECE 4750 Computer Architecture, Fall 2015
Lab 5: Multicore Processor

School of Electrical and Computer Engineering
Cornell University

revision: 2015-11-14-18-15

In this lab, you will be composing the components you have designed throughout the year to create a
multicore system composed of processors, networks and caches. You will get the chance to program
scalar and parallel programs in C, and see the compiled and assembled code, and it running on your
processor system.

You will work up to the final design by using an incremental design process by composing first
a single core design and then the multicore processor. We will evaluate the completed multicore
processor using the provided multithreaded benchmarks.

Unlike the earlier labs, this lab also has a software focus and you will write a scalar quicksort algo-
rithm and a parallel sorting algorithm of your choosing and show the performance difference.

As with all lab assignments, the majority of your grade will be determined by the lab report.
You should consult the course lab assignment assessment rubric for more information about the
expectations for all lab assignments and how they will be assessed.

This lab is unique in its focus on structural composition of elements that you have already built and
on software, This lab is designed to give you experience with:

* compose a single core processor system using processors and caches previously built
* compose a multicore system which is a significantly more complicated design
* write software for both a single threaded and multi-threaded programs

The PyMTL simulation speed is not quite fast enough. While we are actively improving PyMTL
simulation speed, for this lab we will be only using Verilog as our RTL language. If you use
Verilog in your previous labs, you are strongly encouraged to use your code in this lab. If you
used PyMTL in previous labs, please send an email to the course staff and we will give you
Verilog solutions.

You should send emails to ece4750-staff@csl.cornell.edu, do not send emails directly to the course
instructor or individual TAs.

This handout assumes that you have read and understand the course tutorials and the lab assessment
rubric. To get started, you should access the ECE computing resources and you have should have
used the ece4750-1ab-admin script to create or join a GitHub group. If you have not do so already,
source the setup script and clone your lab group’s remote repository from GitHub:

% source setup-ece4750.sh

% mkdir -p ${HOME}/ece4750

% cd ${HOME}/ece4750

% git clone git@github.com:cornell-ece4750/1lab-groupXX.git

where XX is your group number. You should never fork your lab group’s remote repository! If you
need to work in isolation then use a branch within your lab group’s remote repository. If you have

ECE 4750 Computer Architecture, Fall 2015 Lab 5: Multicore Processor

already cloned your lab group’s remote repository, then use git pull to ensure you have any recent
updates.

1. Introduction

Ever since the transistor scaling have stopped delivering exponential growth in performance and
shrinkage in area while still within a constant power budget, computer architects have tried different
ways to scale the performance of processors into the future. Usually the idea is parallelism, and
different processor designs exploit different amounts of data-level parallelism (DLP), instruction-
level parallelism (ILP) or thread-level parallelism (TLP).

Multicore processors have been popular in the mainstream in the last decade. This design duplicates
the processor core and enables different program threads to run at the same time on a different
processor, exploiting TLP. Ideally, if you can parallelize an application to take advantage of four
processors, you can get speedups very close to 4X.

However, multicore designs also have their drawbacks. First of all, it is not possible to fully par-
allelize most applications, and previously non-significant non-parallelizable parts of the code start
to dominate in terms of execution time. In addition, to ensure correct execution, you will need to
look into coherency, consistency and synchronization, most of which have a trade off of performance
gains through aggressive mechanisms and ease of programming. Lastly, the multicore design has
hardware complexity and more hardware overall to enable this scheme.

In this lab, you will get the chance to explore the trade offs of using a single core, relatively straight-
forward machine, and a quad-core system with a banked data cache, and private instruction caches.
The multicore system is significantly more complicated, and you will have a chance to build your
own quad-core system. Then you will analyze the performance gains, if any, that you get from each
configuration running benchmarks, including one that you wrote.

Unlike previous labs, this lab has significant portion of software. We provide you all assembly
tests of PARCv1 and PARCv2 ISA, and also multi-core version of assembly tests. We organize files
in the following way: lab-groupXX is the top level lab repo you have been using in this course,
lab-groupXX/sim contains PyMTL or Verilog designs and unit tests. lab-groupXX/test contains
assembly tests and a build system for assembly test, and lab-groupXX/app is the micro benchmark
directory you will be working in for the software side of this lab. We talk about assembly tests in
Section 4. Because some tests use compiled code, we also need to compile the assembly tests and the
benchmarks. Note the --host=maven flag for configure. This uses the "maven" compiler installed in
amdpool, which compiles for the PARC ISA. Here is how we build assembly tests for the PARC ISA:

% cd ${HOME}/ece4750/1lab-groupXX
% cd test

% mkdir build

% cd build/

% ../configure --host=maven

% make

Similarly, we build apps by:

% cd ${HOME}/ece4750/lab-groupXX
% cd app

% mkdir build

% cd build/

ECE 4750 Computer Architecture, Fall 2015 Lab 5: Multicore Processor

% ../configure --host=maven
% make

Note that you might see a warning sayingmv: rename *.d to dep/*.d: No such file or directory.
It is safe to ignore this warning. Once you have the apps compiled, you can go on as usual:

The file structure for 1ab-groupXX/sim/lab5_mcore directory looks similar to before, except that we
do not have PyMTL test harnesses and we do not use py . test to drive the tests:

* lab5-mcore-ProcCacheNetBase.v Baseline single core composition

¢ lab5-mcore-ProcCacheNetAlt.v Alternative quad-core composition

* lab5-mcore-mem-net-adapters.v Adapters to translate memory messages to network mes-
sages for the data cache banks and vice versa

* lab5-mcore-MemNet.v Memory request/response network

® lab5-mcore-sim-harness.v Simulation harness for all of

¢ lab5-mcore-sim-base.v Baseline simulator

e lab5-mcore-sim-alt.v Alternative simulator

® mcore-sim-isa.py ISA simulator

® mcore-sim.py Script to build baseline and alternative simulator and run

assembly tests and apps.

2. Baseline design

For the baseline design, we are going to compose the bypassing processor from Lab 2 and two caches
from Lab 3, one as the instruction cache, the other as the data cache. This will give you a simple yet
realistic single-core system.

We compose these components in lab5-mcore-ProcCacheNetBase.v, which is given to you. Note
that despite the naming, this design does not need a network. Although we give this file to you, you
need to look into this and understand how it works. We strongly recommand you to use your code
from the lab 2 and the lab 3. Both the cache and the processor had some modifications to be able to
compose them and run C programs on them. Since the baseline design composition is given to you,
all you need to do is modify your processor and cache to support running C programs on it. If you
want to use the solution from course’s staff, you will still need to make those changes.

The processor now supports more instructions, which are required from compiled programs. The
processor also supports a special "stats" bit to tell the manager that stats should be enabled. The
reason we need this stats bit is because a typical compiled program includes a lot of code to bootstrap,
manage the stack, various library calls etc. So the code that we are interested in running might be
masked out by the uninteresting parts of this boilerplate code, so we only enable stats when we are
actually in the function of interest. The cache had changes to allow it being used in a multi-banked
setting, but because the baseline design simply uses the caches single banked, these changes are not
required for the baseline design.

The new instructions we want to add is:

* mtcO $x, $21 — If general-purpose register $x is zero, unset the stats bit, otherwise
set the stats bit.

* mfcO $x, $16 — Store number of cores to the general-purpose register $x.

* mfcO $x, $17 — Store core ID to the general-purpose register $x.

e jalr r_ret, r_targ — Jump to address and place return address in GPR.

ECE 4750 Computer Architecture, Fall 2015 Lab 5: Multicore Processor

The jalr instruction’s sementics can be found in the PARC ISA manual:
® http://www.csl.cornell.edu/courses/ece4750/handouts/ece4750-parc-isa.txt

Note that the number of cores and core ID are module parameters which are set when we instantiate
the processor. For the baseline design the number of cores is one and core ID is zero. We have already
implemented the first three of them on the simple processor we released in lab 2. Due to merge
conflict, you may not get this as a staff-update. In that case, you can go to the ece4750-1abs-release
repo to see how we did it. Here are several places you may particularly want to look at:

® https://github.com/cornell-ece4750/ece4750-1labs-release/blob/master/sim/lab2_proc/
ProcBaseVRTL.v#L21-124

® https://github.com/cornell-ece4750/ece4750-1abs-release/blob/master/sim/lab2_proc/
ProcBaseCtrlVRTL.v#L369-1L378

® https://github.com/cornell-ece4750/ece4750-1abs-release/blob/master/sim/lab2_proc/
ProcBaseDpathVRTL.v#L209-L221

® https://github.com/cornell-ece4750/ece4750-1labs-release/blob/master/sim/lab2_proc/
ProcBaseDpathVRTL.v#L335-1346

The composition and the connections of the single core system will look like the Figure 1. The cache
request and response ports of the caches connect to the respective i/dcache ports of the processor,
while the mem request and response ports connect to outside facing memreq/sp0/1 ports as shown.
Note that the data bitwidth from processor to caches is 32 bits, while the data bitwidth from the
caches to the test memory is the full cache line, which is 128 bits in this design.

Once you have finished make those changes to your processor and cache, you should run self-
checking assembly tests on your design, We talk about assembly tests in Section 4.

In addition to composing these designs, you are also required to program quicksort as a scalar sorting
algorithm. You should implement your sorting algorithm in C in app/ubmark/ubmark-quicksort.c
in the quicksort_scalar() function. Currently, this function only has a template which copies the
source array to destination, and your task is to sort the src array using quicksort algorithm and write
the result to destination. This file also contains verification logic to ensure the correctness of your
algorithm (and single core composition). You are welcome to consult textbooks or online resources
to learn more about quicksort, but you should cite these resources. Copying code is not allowed; you
should write it on your own.

Instead of debugging your sorting algorithm on your processor, we recommend you do your debug-
ging by compiling natively. Compiling your program natively is very similar to compiling it for your
processor. The only difference is the flag you use for the configure flag. Also note that we create a
different build directory so that we don’t have conflicting binaries for two different ISAs:

% cd ${HOME}/ece4750/1lab-groupXX/app
% mkdir build-native

% cd build-native/

% ../configure

% make
% ./ubmark-vvadd # runs vvadd natively
% ./ubmark-quicksort # runs quicksort natively

When you run your binaries natively, it will tell you if it passed or failed the verification. If you need
further debugging, you can add printf statements, or use a debugger such as gdb. When you get

ECE 4750 Computer Architecture, Fall 2015 Lab 5: Multicore Processor

A |
memreq0 | | memrespO
——————————— 0--0-—--———————,
I
memreq | V memresp
.--0--0--.
| |
| icache |
| |
) __Q--0--"
cachereq A | cacheresp
I
imemreq | V imemresp
.--0--0--.
I I
| proc |
| |
Y _0--0-="

dmemreq | A dmemresp
[

O —— — — — — — e e — — — .
G e e e e —— —— —— —— — — — — — — — — — ——— — — — — —

cachereq V | cacheresp
.--0--0--.
| |
| dcache |
| |
Y _o--0--"
memreq | A memresp
I
___________ O=—O—m—mm e
memreql | | memrespl
Vo

Figure 1: Baseline single core configuration

your app working, make sure you remove any print statements because our architecture does not
support it.

After making sure your application works natively, you should run your app on the ISA simulator.
The ISA simulator is simlilar to the FL model in lab 2. It is important to debug your app on the ISA
simulator befor moving to RTL. Here is how to run your app on the ISA simulator:

% cd ${HOME}/ece4750/1lab-groupXX/app/build
% ${HOME}/ece4750/1lab-groupXX/sim/lab5_mcore/mcore-sim-isa ubmark-vvadd
% ${HOME}/ece4750/1lab-groupXX/sim/lab5_mcore/mcore-sim-isa ubmark-quicksort

You can use --trace command line option to turn on line tracing.

% cd ${HOME}/ece4750/1lab-groupXX/app/build
% ${HOME}/ece4750/1lab-groupXX/sim/lab5_mcore/mcore-sim-isa ubmark-vvadd --trace

ECE 4750 Computer Architecture, Fall 2015 Lab 5: Multicore Processor

In your report, discuss why this is a good baseline design. Describe how you implemented the single
core configuration and the quicksort algorithm. Describe any changes you have made to the given
design.

3. Alternative Design

The alternative design is to implement the multicore system. The multicore system consists of four
processors, four instruction caches that are private to each processor, four data cache banks that are
shared among all four cores, and networks to allow multi-banked caches.

You need to make your ring network from lab 4 to be a four-node ring, instead of eight-node ring in
lab 4. If your ring network is already parametrized, this can be easily done by setting the number of
nodes to be four. You can also hard-code your ring network to be four-node.

We have provided you a memory request/response network in lab5-mcore-MemNet.v. Take a look
at this module. This module includes adapters to wrap memory messages coming to network mes-
sages, a request network, and a response network. In a multi-banked cache design, cache lines are
interleaved to different cache banks, so that consecutive cache lines correspond to a different bank.
The following is the addressing structure in our multi-banked data caches:

| 22b | 4b | 2b | 2b
| tag | index |bank idx| offset

2b |

The memory/network adapters extract this bank index from the memory request address of the
memory message to determine the destination of the network, which is the cache bank. In addition,
the memory response generated by a cache bank needs to be sent back to the correct processor. To
determine who had sent the memory request originally, we tag the memory messages with the re-
questing source id, i.e., processor id. We use the opaque field to store this information. We overwrite
the processor id to the high bits of the opaque field of the memory request message, and pack this
memory message in the payload field of a network message. The cache and the memory system is
supposed to keep the opaque field of the memory message. Using this, the response network extracts
the destination processor id to send the response back.

Another use case of the request/response network is to allow multiple requesters to arbitrate over
a single memory port. This is the case in the refill networks for the instruction and data caches,
where four instruction caches, and four banks of data caches arbitrate for memreq0/memresp0 and
memreql/memrespl respectively. We parameterize the MemNet to set the mode on how it is going to
be used. This parameter is called p_single_bank, and indicates it should be used as a single-bank
setting, i.e. for a refill network. So the refill networks should set this parameter to 1, while the dcache
network should set it to 0.

In addition to the network, more changes are necessary in the caches as well. As you might have
noticed, the memory addressing fields have changed, and there are bank index bits between the
index and the offset. Furthermore, there are fewer tag bits. You may want to parameterize the cache
to tell the number of banks in the system it is going to be used. The parameter is called p_num_banks,
and this should be set to 1 for instruction caches, and 4 for data caches.

Lastly, the memory request/response network has all of the ports concatenated together for better
parameterization. To get the bits for the actual port, we need to use the ‘ VC_PORT_PICK_FIELD macro.
This macro has two arguments, the first argument is how many bits is each port, the second is the
port index.

ECE 4750 Computer Architecture, Fall 2015 Lab 5: Multicore Processor

Software running on different cores need to differentiate themselves from the others. For instance, to
parallelize work on an array by dividing and assigning a part of this array to each core, the code can
use the core id and the number of cores to assign work. Similarly, to ensure only one of the processors
is executing a serial part of the code, software would compare the core id to 0, and only then execute
the given code block. To allow this, the processor uses the mfc0 instruction with the appropriate
coprocessor register specifier as we talked about in Section 2, which will copy the value of the core
id and the number of cores to the specified architectural register. To allow this, each processor needs
to know the number of cores in the system and the core id of this processor, using the parameters
p_num_cores and p_core_id respectively.

The layout of the components is shown in Figure 2 and in Figure 3. One thing to mention is the
manager interface ports are only connected to procO. This means all of the communication to the
outside world (other than the memory) needs to be done through proco0.

To ensure that the alternative design works, we use the multi-threaded assembly test suite located
in lab-groupXX/test/mt. These tests are very similar to the single threaded versions, except for
testing the correct computation in all of the cores. proc0 creates work for the other processors, and
it waits on all other processors to finish. Instead of directly sending the test outcome like in the
case of single threaded assembly tests, each processor writes this outcome to a global array at an
index dedicated for this core. Once all of the processors have executed their testing logic, proc0
checks the test outcomes of each processor. Because proc0 is the only processor that has its manager
ports connected to the test harness, it notifies the manager if any of the cores have failed the test.
If all of the cores have passed the test, it sends a pass to the manager. Note that running the single
threaded assembly tests would also work in most cases. This would cause all of the processors
execute the same code, but only procO will be communicating the pass or fail information back to
the manager. The rest of the processors would simply be ignored. So while this does test the single
threaded execution on the multicore, to test truly the multi-threaded execution, we need to run the
multi-threaded test cases.

In addition to composing the components, you also need to write a parallel sorting algorithm. You
are free to pick which sorting algorithm to write. Even though it is parallelizable, quicksort is not
the easiest sorting algorithm to parallelize. Instead, we recommend you implement a parallel merge
sort algorithm. Merge sort uses a divide-and-conquer approach to initially divide up work, and then
build up from there. The merge sort method contains two recursive calls to the merge sort for the
low and high halves of the input array. These recursive calls are performed until the arrays are a
single element long. Then, for each right and left arrays, which are internally sorted (single element
array is sorted), we call a merge function. The merge function simply copies the two sorted input
arrays to a combined and sorted destination array. At the exit of each merge sort function, there is a
call to the merge function, and the sorted array is returned. This causes these smaller individually
sorted arrays to be eventually to be combined into a globally sorted array.

We provide you a very light-weight threading library called bthread, which stands for bare thread.
We use thread and core in this lab interchangeably because each core has only one thread. We call core
0 the master core and others the worker cores. We have bthread_init () function which sets up the
libraray and must be called at the beginning of the main function. The master core can spawn a func-
tion to a worker core by using bthread_spawn(int thread_id, void (*start_routine) (voidx),
void* arg) to spawn a function to a given core, where the thread_id is the ID of the core (thread)
we want spawn to, the start_routine is the function pointer we want the worker core to execute and
the arg is a pointer to the argument. bthread_join(int thread_id) will wait for given worker
core. You may want to look at the implementation of each bthread function at

ECE 4750 Computer Architecture, Fall 2015 Lab 5: Multicore Processor

® https://github.com/cornell-ece4750/ece4750-1abs-release/blob/master/app/mtbmark/mtbmark.
h#L.140-L176

Merge sort is very amenable to parallelization. The input array can be statically divided into the
smaller arrays to be sorted. Then the master core would simply assign a piece of work to worker
cores by using bthread_spawnexecute the merge sort algorithm in their quarter of the array. The
master core would call bthread_join to wait for worker cores. Finally, these four individually sorted
sub-arrays need to be combined to the final sorted array. This reduction step needs to be done by the
master core, after the bthread_join call. We need to have three final calls to the merge function to
combine these four quarter arrays into the one final array.

When you finish your parallel sorting application, you should build and test your app natively, then
test it on the ISA simulator.

Building and running apps natively:

% cd ${HOME}/ece4750/1lab-groupXX/app
% mkdir build-native

% cd build-native/

% ../configure

% make

% ./mtbmark-vvadd

% ./mtbmark-sort

Running apps on the ISA simulator:

% cd ${HOME}/ece4750/lab-groupXX/app/build
% ${HOME}/ece4750/lab-groupXX/sim/lab5_mcore/mcore-sim-isa --mcore mtbmark-vvadd
% ${HOME}/ece4750/1lab-groupXX/sim/lab5_mcore/mcore-sim-isa --mcore mtbmark-sort

By default the ISA simulator is single-core. The --mcore command line option makes the ISA simu-
lator simulate a quad core.

In your lab report, explain how each component is connected and the additional complexities in-
volved when implementing the alternative design. Will the alternative design perform better on
single threaded loads? Will it perform better in multi-threaded loads? How do you thing this archi-
tecture perform with fewer or more cores? Do you think it is worth investing in the complexity?

4. Testing strategy

In this lab, we mainly use self-checking assembly tests for testing our designs. Self-checking assem-
bly tests are a different approach to the testing strategy you have used in Lab 2. In Lab 2, you have
used explicit test sources and sinks for inputs and outputs. The self-checking tests do testing in soft-
ware and only notify the manager in case of a failure or success, as opposed to sending every single
result back. The main drawback of using this approach is that it requires a lot more instructions to be
working before testing can work. For instance, it requires the software be able to compare a result to
an expected value, and branch to pass or fail labels in the code, and send this pass/fail information
back to the manager. In comparison, using explicit sources and sinks in Lab 2 only required the mtc0
and mf c0 instructions working.

Before running self-checking assembly tests, you should test your processor using src/sink test in
lab 2.

ECE 4750 Computer Architecture, Fall 2015 Lab 5: Multicore Processor

% mkdir -p ${HOME}/ece4750/lab-groupXX/sim/build
% cd ${HOME}/ece4750/1lab-groupXX/sim/build
% py.test ../lab2_proc/ --verbose

The self-checking assembly tests are in the lab-groupXX/test/ directory. Some of the simpler in-
structions are tested in 1ab-groupXX/test/parcvl/ and the others are in 1ab-groupXX/test/parcv2/.
In addition to the single threaded assembly tests, there are also multi-threaded assembly tests in the
lab-groupXX/test/mt/ directory. Because we need the processor to run compiled code, it needs to
implement more instructions than was required for Lab 2. To ensure we test the new instructions, we
use these self-checking assembly tests. Take a look at how these tests are implemented. It would also
be interesting to compare your additional tests you have implemented in Lab 2 to the self-checking
versions. As shown before, you can compile these assembly tests by going to its build directory and
running the following commands:

% mkdir -p ${HOME}/ece4750/lab-groupXX/test/build
% cd ${HOME}/ece4750/1lab-groupXX/test/build

% ../configurie --host=maven

% make

Before running assembly tests on your baseline design and alternative design, you should test it on
the ISA simulator and study their behavior. Here is how to run assembly tests on the ISA simulator:

% cd ${HOME}/ece4750/1lab-groupXX/test/build

% ${HOME}/ece4750/lab-groupXX/sim/labb_mcore/mcore-sim-isa --test --trace parcvl-addu
% ${HOME}/ece4750/1lab-groupXX/sim/lab5_mcore/mcore-sim-isa --mcore --test --trace \
% --trace-regs mt-addu

Note that if you run mt assembly tests, you should turn on --mcore option to run it on a quad-core.
In addition to the normal line tracing (--trace), you can also show the values in the registers each
instruction is reading and the result it is writing by using --trace-regs command line option.

You should run both types of the assembly tests to make sure your design works. We provide you a
script mcore-sim that can build the harness using iverilog, which is a Verilog interpreter functionlly
similar to Verilator but gives us much shorter compile time. You can choose baseline or alternative
by --impl command line option. This is how we build the harness:

% cd ${HOME}/ece4750/lab-groupXX/test/build
% ${HOME}/ece4750/1lab-groupXX/sim/lab5_mcore/mcore-sim --impl base --build
% ${HOME}/ece4750/1lab-groupXX/sim/lab5_mcore/mcore-sim --impl alt --build

After building the test harness, you can run each assembly tests by:

% cd ${HOME}/ece4750/1lab-groupXX/test/build
% ${HOME}/ece4750/1lab-groupXX/sim/lab5_mcore/mcore-sim --impl base --test parcv2-or
% ${HOME}/ece4750/lab-groupXX/sim/labb_mcore/mcore-sim --impl alt --test mt-and

Notice that --test option set the script to run assembly tests. --trace displays the line tracing.
--dump-vcd enables . ved waveform dumping.

The script also provides some other functions such as run all assembly tests in the default folder. You
can learn how to use those functions by

% ${HOME}/ece4750/1lab-groupXX/sim/lab5_mcore/mcore-sim --help

ECE 4750 Computer Architecture, Fall 2015 Lab 5: Multicore Processor

For the testing strategy, unlike the earlier labs, you do not need to come up with additional test cases.
Instead, discuss how do we make sure we test the single core and multicore designs effectively.
Discuss the different testing techniques you have learned in the labs so far, and how these came
together to ensure we have a very sophisticated working design that can execute multi-threaded
programs with realistic caches and networks. Discuss the different testing strategies involved to test
the single core processor and the multicore, and how do we ensure all four cores, eight caches and
three networks are tested both in isolation and together, and how do we know that we are using all
four cores for computation?

Also discuss the idea of self-checking assembly tests and how these can be used to test relatively
simple instructions such as arithmetic operations, to more complicated ones, such as jalr. The testing
strategy section in your lab report should briefly summarize the approach used in the testing the
baseline design before focusing in detail on testing the multicore. Describe how we test the more
difficult parts of the multicore design, such as making sure all four cores are being used, and if they
are actually work.

5. Evaluation

We provide you a single threaded micro-benchmark (vector-vector add) and you are required to
come up with a sorting microbenchmark. All of the single threaded microbenchmarks are in app/ubmark/
directory with their C source code and the dataset files. Take a look at all of the and familiarize what
each one does.

When you compile the benchmarks or assembly tests, the build system produces a vmbh file for each
app that can be loaded to the test memory and run on your processor. In addition, they also produce
an assembly dump in app/build/dump directory. This file contains the actual assembly instructions
the C program compiled into. You can search for the function name (e.g. vvadd_scalar) in the
dump file to see what the C code got translated to. Compare this compiler generated assembly to the
microbenchmarks we have used in Lab 2 which were hand assembled. Which code is more readable?
Which code would give better performance? Which code is more optimal in terms of static code size
and number of registers used?

In addjition to the single threaded benchmarks, we have provided multi-threaded benchmarks in the
app/mtbmark/ directory. We have the same microbenchmarks in the single threaded ubmark imple-
mented as multi-threaded. All of these multi-threaded microbenchmarks statically partition the in-
put for the number of cores (threads) that are available in the system. Depending on the benchmark,
some benchmarks require one final serial reduction step that need to be executed single threaded, us-
ing the outputs each core have produced, to produce the final answer. After this optional reduction
step, the output is verified, again single threaded.

To see how each of the microbenchmarks perform on both the single-core and multicore systems,
you can run the following command:

% cd ${HOME}/ece4750/1lab-groupXX/app/build
% ${HOME}/ece4750/1lab-groupXX/sim/lab5_mcore/mcore-sim --impl base --build
% ${HOME}/ece4750/lab-groupXX/sim/lab5_mcore/mcore-sim --impl alt --build

After building the test harness, you can run each assembly tests by:

% cd ${HOME}/ece4750/1lab-groupXX/app/build
% ${HOME}/ece4750/lab-groupXX/sim/lab5_mcore/mcore-sim --impl base --app ubmark-vvadd
% ${HOME}/ece4750/1lab-groupXX/sim/lab5_mcore/mcore-sim --impl alt --app mtbmark-sort

10

ECE 4750 Computer Architecture, Fall 2015 Lab 5: Multicore Processor

The --app option set the script to run applications. The --trace displays the line tracing. The
--dump-vcd enables . vcd waveform generation.

When you run a simulation, the simulator will also report whether the verification passed or failed.
Make sure all of the verifications pass. It will report the number of instructions (per core) and the
number of cycles. Assuming both designs have the same cycle time, we can use the number of cycles
as a proxy for the performance. Report these results in your lab report in a table.

You can also experiment with running single threaded benchmarks on the multicore and multi-
threaded benchmarks on the single core. These allow you to see the overheads in the software to
make a program multi-threaded. Note that when you run single threaded benchmarks on the mul-
ticore, some of the benchmarks might not pass the verification. This is because each core will try to
execute the same exact code over the same exact data. Depending if the benchmark is written in an
idempotent way or not, these additional cores might corrupt each others” data.

In your lab report, discuss how each benchmark performed in each configuration. Did all of the
benchmarks perform better on the multicore? Did they get the theoretical speedup of 4X over the
single core? If you ran multi-threaded benchmarks on the single core, how much are the overheads
to make applications multi-threaded? What are these overheads due to? How do the two versions
of sorting perform on these two architectures? Can the parallel sort get a speedup over the serial
version of sorting?

6. Extensions

In your single core design, your performance would be considerably worse than Lab 2 you have
implemented. The primary reason is that the caches we use have significant hit latency of four
cycles. We suggest you improve the hit latency which will directly improve your performance as an
extension. You are welcome to use the caches you have used in Lab 3 and improve them further to
give a performance boost to the single core processor system.

Another thing you can also improve on is the network. You can improve the performance of your
alternative design by using a crossbar network instead of a ring network, because it delivers packets
in single cycle. Other than the caches and network, you can also experiment with various changes
to the processor. You could implement a simple superscalar pipeline, basic multithreading or branch
prediction schemes.

Acknowledgments

This lab was created by Moyang Wang, Christopher Torng, Berkin Ilbeyi, Christopher Batten, and Ji
Kim as part of the course ECE 4750 Computer Architecture at Cornell University.

11

ECE 4750 Computer Architecture, Fall 2015

O —— e — — — — o e e e —— —— — .

Lab 5: Multicore Processor

A

memreq0 | | memrespO
----------------------------------- L e
[|

req_out | V resp_in
- 0-=0———————mmm e . |
| icache refill network | |
R 0--0-—==——————— - 0--0--—--—-- 0--0-=-—--—-- 0--0----- ’ |
req_in A | resp_out A A | A | |
(I (. ([(I |
memreq | V memresp | v |V | v |
.--0--0--. --0--0--. .--0--0--. --0--0--. |
| | | I [| |
| icacheO] | icachel| | icache2| | icache3| I
| | | [[| |
’--0--0--" ’-—0--0--’ ’--0--0--’ ’--0--0--’ |
cachereq A | cacheresp A | A | A | |
(I (. [(I |
imemreq | V imemresp | Vv | Vv | v |
.--0--0--. .--0--0--. .--0--0--. .--0--0--. |
| | | (I [| | | | | |
| proco | | proct | | proc2 | | proc3 | |
| | | (I (. | |
’--0--0--" ’--0--0--’ ’--0--0--’ ’--0--0--’ |
dmemreq | A dmemresp | A | A | A |
[[(. (I |
req_in V | resp_out v o v o v o |
R 0--0-——-=————=—————— 0--0-----—-- 0--0------—- 0--0----- . |
I dcache network I I
R 0-=0===mmm—mmm 0--0-======= 0--0-—==-——~ 0--0-----) |
req_out | A resp_in | A | A | A |
[[([(I |
cachereq V | cacheresp v o v o v o |
.--0--0--. .--0--0--. .--0--0--. --0--0--. |
| | | I [| | | | |
| dcacheO] | dcachel| | dcache2| | dcache3| |
| | | [[| |
’--0--0--" ’-—0--0--’ ’--0--0--’ ’--0--0--’ |
memreq | A memresp | A | A | A |
[[[[|
req_in V | resp_out v o v o v o |
e————- 0--0—————————————— 0--0----———~ 0--0-——--——~ 0--0----- . |
I dcache refill network | I
Y 0—=0=-————m——mmmm e ’ |
req_out | A resp_in I
[|
___________________________________ o Ty P |

memreql | | memrespl

v o

Figure 2: Alternative multicore configuration

12

ECE 4750 Computer Architecture, Fall 2015

Test Memory

vl

vt

|5

15

vl

vt

vt

P

vt

D$

Bank 1

D$

Bank 3

A

Test Memory

Figure 3: Alternative design block diagram — The alternative design consists of four processors, four
private I-caches, a four-banked shared D-cache, and several ring networks. We use ring networks to
route dmem request/response from the processors and the D-cache, and refilling both the I-cache
and the D-cache. Note that each ring network shown in the diagram is actually two ring networks:

one for request and the other for response.

13

Lab 5: Multicore Processor

