
ECE 4750 Computer Architecture, Fall 2015
Lab 4: Ring Network

School of Electrical and Computer Engineering
Cornell University

revision: 2015-11-08-12-36

In this lab you will implement an eight-node bidirectional ring network with elastic-buffer flow-
control and round-robin arbitration and explore two different routing algorithms: a greedy routing
scheme for the baseline design and an adaptive routing scheme for the alternative design. You will
eventually compose your network with the processor designs you developed in Lab 2. All packets in
the network will be a single flit and each flit will be composed of a single phit. You will implement
a bubble flow-control scheme for deadlock avoidance in the ring network in both directions. To
evaluate the performance of the network you will be driving the simulator with different traffic
patterns and analyzing the resulting latency-bandwidth plots. As with all lab assignments, the
majority of your grade will be determined by the lab report. You should consult the course lab
assignment assessment rubric for more information about the expectations for all lab assignments
and how they will be assessed.

This lab is designed to give you experience with:

• basic network design;
• single-cycle controllers with adaptive control logic;
• microarchitectural techniques for implementing a ring network;
• abstraction levels including functional- and register-transfer-level modeling;
• design principles including modularity, hierarchy, encapsulation, and regularity;
• design patterns including message interfaces and control/datapath split;

This handout assumes that you have read and understand the course tutorials and the lab assessment
rubric. To get started, you should access the ECE computing resources and you have should have
used the ece4750-lab-admin script to create or join a GitHub group. If you have not do so already,
source the setup script and clone your lab group’s remote repository from GitHub:

% source setup-ece4750.sh
% mkdir -p ${HOME}/ece4750
% cd ${HOME}/ece4750
% git clone git@github.com:cornell-ece4750/lab-groupXX

where XX is your group number. You should never fork your lab group’s remote repository! If you
need to work in isolation then use a branch within your lab group’s remote repository. If you have
already cloned your lab group’s remote repository, then use git pull to ensure you have any recent
updates before running all of the tests. You can run all of the tests in the lab like this:

% cd ${HOME}/ece4750/lab-groupXX
% git pull --rebase
% mkdir -p sim/build
% cd sim/build
% py.test ../lab4_net --verbose

1

ECE 4750 Computer Architecture, Fall 2015 Lab 4: Ring Network

All of the tests for the provided functional-level model should pass, while the tests for the base-
line and alternative network designs should fail. For this lab you will be working in the lab4_net
subproject which includes the following files:

• RingNetFL.py – Functional-level 8-port network implemented as a global crossbar
• RingNetFL_test.py – Unit tests for the functional-level network

• RouterBasePRTL.py – PyMTL RTL router with greedy routing
• RouterBaseVRTL.v – Verilog RTL router with greedy routing
• RouterBaseVRTL.py – PyMTL wrapper around Verilog RTL
• RouterBaseRTL.py – Wrapper to choose which RTL language
• RouterBaseRTL_test.py – Unit tests for router with greedy routing

• RouterAltPRTL.py – PyMTL RTL router with adaptive routing
• RouterAltVRTL.v – Verilog RTL router with adaptive routing
• RouterAltVRTL.py – PyMTL wrapper around Verilog RTL
• RouterAltRTL.py – Wrapper to choose which RTL language
• RouterAltRTL_test.py – Unit tests for router with adaptive routing

• RingNetBasePRTL.py – PyMTL RTL eight-port ring network with greedy routing
• RingNetBaseVRTL.v – Verilog RTL eight-port ring network with greedy routing
• RingNetBaseVRTL.py – PyMTL wrapper around Verilog RTL
• RingNetBaseRTL.py – Wrapper to choose which RTL language
• RingNetBaseRTL_test.py – Unit tests for ring network with greedy routing

• RingNetAltPRTL.py – PyMTL RTL eight-port ring network with adaptive routing
• RingNetAltVRTL.v – Verilog RTL eight-port ring network with adaptive routing
• RingNetAltVRTL.py – PyMTL wrapper around Verilog RTL
• RingNetAltRTL.py – Wrapper to choose which RTL language
• RingNetAltRTL_test.py – Unit tests for ring network with adaptive routing

• __init__.py – Package setup

1. Introduction

Monolithic integration using a standard CMOS process provides a tremendous cost incentive for in-
cluding more and more components on a single die. On-chip interconnection networks play an im-
portant role in connecting these components and in providing communication between the various
sub-systems. The performance of the network depends on many design choices, including the topol-
ogy of the network, the routing algorithm, and the flow-control algorithm. In this lab, you will design
an eight-node bidirectional ring network with elastic-buffer flow-control and round-robin arbitra-
tion. You will explore two different routing algorithms: (1) a greedy routing scheme that determin-
istically routes packets to destinations, and (2) an adaptive routing scheme that non-deterministically
routes packets to avoid network congestion. Both networks will use only single-flit/phit packets.

The message format for network messages are shown in Figure 1. The number of routers and the pay-
load bitwidth together determine the network packet size. We have provided you with NetMsg.py in
the pclib/ifcs library for PyMTL or vc/net-msgs.v for Verilog, which provides useful macros and
pack/unpack modules for network packets. Figure 1 shows how each network packet contains the
packet’s destination/source, an opaque field for meta information, and the payload.

We have provided you with a functional-level model of a eight-port network, which essentially just
passes network messages through a eight-port crossbar from the source to the destination of each
network message. While this might not seem useful, the functional-level model will enable us to

2

ECE 4750 Computer Architecture, Fall 2015 Lab 4: Ring Network

21 19 18 16 15 8 7 0
netreq +------+------+-----------------+-----------------+
Message Format | dest | src | opaque | payload |

+------+------+-----------------+-----------------+

Figure 1: Network Message Format – Network messages are sent from different test sources to
the network and from the network to different test sinks. An example message is shown for
payload_nbits = 8, srcdest_nbits = 3, and opaque_nbits = 8.

develop many of our test cases before attempting to use these tests with the baseline and alternative
designs. Figure 2 shows a block diagram of the FL model.

2. Baseline Design

The baseline design is an eight-node bidirectional ring network with elastic-buffer flow-control,
greedy routing, round-robin arbitration, and bubble flow-control for deadlock avoidance. If we need
to send a packet half-way around the ring such that there are two minimal paths, then always choose
the clockwise direction. Figure 3 shows a block diagram of the network. Note that the ring network
has eight routers and each router can use channels to send messages in both directions – east and
west – as well as to its own terminal. All packets in the network are a single flit and each flit is
composed of a single phit.

Your design should implement elastic-buffer flow-control: a simple flow-control algorithm that exploits
the implicit elastic buffer present in the channels of the network to reduce the amount of storage
required to design a network-on-chip, thereby simplifying router microarchitecture and reducing
router area and power consumption. Elastic-buffer flow-control works by re-using the channels
between routers as buffers to hold messages. In this lab, we pipeline the channels by using two-
entry queues, making elastic-buffer flow-control easy to understand. For example, consider a single
router and the channels connecting the router in the east and west directions. When a packet is
injected into the network from the input terminal port, the router will decide which way to send the
packet. Suppose the packet is routed east; the router will then set the network message and raise
the output valid signal on the eastward channel. If the downstream router is not ready to receive
the packet from the channel, the packet will be held in the channel queue or input queue of the
downstream router. If the downstream router is ready to receive the packet, the val-rdy transaction
will take place, and the packet will be accepted by the next node. Notice that queueing creates the
elasticity in the network.

Figure 4 and Figure 5 shows the method-based interface for the simple two-element queues that we
have provided for you to model pipelined channels. The NormalQueues (PyMTL) or vc_Queue (Ver-
ilog) module has a method-based interface that cleanly expresses enqueue- and dequeue- message
operations. Both operations use a val-rdy handshake to complete the transactions. In this lab, we will
use normal queues (i.e., in Verilog, p_type of ‘VC_QUEUE_NORMAL; in PyMTL, NormalQueue module)
for both router input queues and channel queues. The remaining parameters, dtype (PyMTL) or
p_msg_nbits (Verilog), and dtype (PyMTL) or p_num_msgs (Verilog), configure the bitwidth of the
message and the number of messages the queue can hold, respectively. Internally, the queue imple-
mentation tracks elements using head and tail pointers. To enqueue a message, set enq_msg to the
message to be enqueued and complete the val-rdy handshake. To dequeue a message, read deq_msg
and complete the val-rdy handshake. The queue also provides an output port with the number of
free entries in the queue. Use the corresponding unit test to further understand the queue operations.
You can find the definition of PyMTL queues in pclib here:

3

ECE 4750 Computer Architecture, Fall 2015 Lab 4: Ring Network

xbar

in5_msg
in5_val
in5_rdy

Port 5 (input)

in4_msg
in4_val
in4_rdy

Port 4 (input)

in2_msg
in2_val
in2_rdy

Port 2 (input)

in3_msg
in3_val
in3_rdy

Port 3 (input)

in1_msg
in1_val
in1_rdy

Port 1 (input)

in0_msg
in0_val
in0_rdy

Port 0 (input)

in7_msg
in7_val
in7_rdy

Port 7 (input)

in6_msg
in6_val
in6_rdy

Port 6 (input)

out0_msg
out0_val
out0_rdy

Port 0 (output)

out1_msg
out1_val
out1_rdy

Port 1 (output)

out2_msg
out2_val
out2_rdy

Port 2 (output)

out3_msg
out3_val
out3_rdy

Port 3 (output)

out4_msg
out4_val
out4_rdy

Port 4 (output)

out5_msg
out5_val
out5_rdy

Port 5 (output)

out6_msg
out6_val
out6_rdy

Port 6 (output)

out7_msg
out7_val
out7_rdy

Port 7 (output)

Figure 2: FL Model of the eight-port network – Functional-level model of a eight-port network,
which passes network messages through a eight-port crossbar from the source to the destination of
each network message.

• https://github.com/cornell-brg/pymtl/blob/ece4750/pclib/rtl/queues.py

The equivalent Verilog component is located in vc/queues.v.

For this lab, you are required to use the following mappings for the three bidirectional ports. These
mappings are arbitary but help keep all of the designs in the class consistent:

• Port 0: connects to the west-side port
• Port 1: connects to the input/output terminal
• Port 2: connects to the east-side port

The datapath for the single-cycle router is shown in Figure 6. Three input queues, corresponding to
the three ports, should each have four entries. The messages are dequeued and passed into a 3×3
global crossbar. Make sure the global crossbar has the bitwidth of a network message. To imple-

4

ECE 4750 Computer Architecture, Fall 2015 Lab 4: Ring Network

Router
1

Router
2

Router
0

Router
3

Router
5

Router
6

Router
4

Router
7

Input / Output Terminals

Figure 3: Eight-Node Ring Network Block Diagram – An eight-node ring network is composed
of eight routers (boxes) and eight terminals (circles), connected by bidirectional channels (arrows).
Note that channels are modeled as two-entry queues.

1

2 #---
3 # NormalQueue
4 #---
5

6 class NormalQueue(Model):
7

8 def __init__(s, num_entries, dtype):
9

10 s.enq = InValRdyBundle (dtype)
11 s.deq = OutValRdyBundle(dtype)
12 s.num_free_entries = OutPort(get_nbits(num_entries))

Figure 4: PyMTL Queue Interface – PyMTL queues in pymtl/pclib/rtl/queues.py use a method-
based interface. A val-rdy protocol is used to enqueue messages into and dequeue messages from
the queue.

ment the global crossbar, you can use the modules available in pclib/rtl/Crossbar.py (PyMTL) or
vc/crossbars.v (Verilog). You can take a look at the PyMTL crossbars here:

• https://github.com/cornell-brg/pymtl/blob/ece4750/pclib/rtl/Crossbar.py

The control for the single-cycle router is fairly complex. In Figure 6, blue signals indicate control
signals. Figure 7 illustrates our overall sturcture of the control module for the router. Note that we
are not implementing the control unit structurally and you are not required to implement the control
module structurally either. You can implement the control unit as a flat module. In Figure 7, the
dest fields are bitsliced from the messages dequeued from the input queues in Figure 6. The dest
fields should be inputs to your deterministic greedy routing algorithm for route computation. You
can implement the logic for the greedy routing algorithm in a separate module or directly inside
your control unit, whichever makes your design cleaner. The greedy routing computation calculates
the number of hops it takes to reach the destination in the east and west directions. Then it picks
the direction with the least number of hops. When the number of hops are equal in either direction,
arbitrarily pick one way, e.g. always east. Route computation generates a one-hot request bit-vector
for the output ports, where each bit in the bit-vector represents an output port. In Figure 7, these bit-
vectors are labeled: in_reqs0, in_reqs1, and in_reqs2. All of the requests for the same output port
are gathered into bit-vectors labeled: out_reqs0, out_reqs1, and out_reqs2. A round-robin arbiter
decides which request is granted the output port, and grant signals are propagated back to the router

5

ECE 4750 Computer Architecture, Fall 2015 Lab 4: Ring Network

1 //--
2 // Queue
3 //--
4

5 module vc_Queue
6 #(
7 parameter p_type = `VC_QUEUE_NORMAL,
8 parameter p_msg_nbits = 1,
9 parameter p_num_msgs = 2,

10

11 // parameters not meant to be set outside this module
12 parameter c_addr_nbits = $clog2(p_num_msgs)
13)(
14 input clk,
15 input reset,
16

17 input enq_val,
18 output enq_rdy,
19 input [p_msg_nbits-1:0] enq_msg,
20

21 output deq_val,
22 input deq_rdy,
23 output [p_msg_nbits-1:0] deq_msg,
24

25 output [c_addr_nbits:0] num_free_entries
26);

Figure 5: Verilog Queue Interface – Verilog queues in vc/queues.v use a method-based interface.
A val-rdy protocol is used to enqueue messages into and dequeue messages from the queue.

in0_msg
in0_val
in0_rdy

in1_msg
in1_val
in1_rdy

in2_msg
in2_val
in2_rdy

out0_msg
out0_val
out0_rdy

in0_deq_val
in0_deq_rdy

in1_deq_val
in1_deq_rdy

in2_deq_val
in2_deq_rdy

out0_val
out0_rdy

out1_msg
out1_val
out1_rdy

out1_val
out1_rdy

out2_msg
out2_val
out2_rdy

out2_val
out2_rdy

num_free_west

num_free_east

xbar_
sel0

xbar_
sel1

xbar_
sel2

dest0size: 4

size: 4

size: 4

in0_queue

in1_queue

in2_queue

in0_deq_msg

in1_deq_msg

in2_deq_msg

xbar

dest1

dest2

Port 0 (input) Port 0 (output)

Port 1 (input)

Port 2 (input)

Port 1 (output)

Port 2 (output)

Figure 6: Baseline Design Router Datapath

input control to be used in val-rdy logic. Arbiters are provided for you in pclib/rtl/arbiters.py
(PyMTL) or vc/arbiters.v (Verilog). You can take a look at the PyMTL arbiters here:

• https://github.com/cornell-brg/pymtl/blob/ece4750/pclib/rtl/arbiters.py

6

ECE 4750 Computer Architecture, Fall 2015 Lab 4: Ring Network

in_
reqs0

in_
grants0

in_
reqs1

in_
grants1

in_
reqs2

in_
grants2

out_
reqs0

out_
grants0

out_
reqs1

out_
grants1

out_
reqs2

out_
grants2

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

in1_deq_val

in1_deq_rdy

dest1

in2_deq_val

in2_deq_rdy

dest2

out0_val
out0_rdy

xbar_sel0

out1_val
out1_rdy

xbar_sel1

out2_val
out2_rdy

xbar_sel2

in0_deq_val

in0_deq_rdy

dest0 Router input
control and route

computation

Arbiter

Router input
control and route

computation

Router input
control and route

computation

Router output
control

Arbiter

Router output
control

Arbiter

Router output
control

Figure 7: Incremental Baseline Design – Router control unit with no deadlock avoidance

Based on the arbiter’s decision, the control module sets the select bits for the global crossbar in the
datapath to determine which messages are routed to each output port; for example, the xbar_sel0
signal determines whether in0_deq_msg, in1_deq_msg, or in2_deq_msg is passed through to out0_msg.
All val-rdy signals are propagated to the correct input and output ports.

We have provided RingNetBasePRTL.py (PyMTL) and RingNetBaseVRTL.v (Verilog) to compose
many instances of the router you design into a ring network. Composing the routers otherwise
is a tedious task. Make sure you understand how this top level network composes the routers and
channel buffers and feel free to change the file if your baseline implementation is different than what
we have suggested.

We strongly encourage you to take an incremental design approach using the following steps:

• Implement a router with elastic-buffer, only routes network messages in clockwise, and without
deadlock avoidance.

• Ring with elastic-buffer flow-control, only routes in clockwise, and no deadlock avoidance.
• Implement a router with elastic-buffer, only routes network messages in clockwise, and with

deadlock avoidance.
• Ring with elastic-buffer flow-control, only routes in clockwise, and with deadlock avoidance.
• Add counter-clockwise routing to the router.
• Ring with elastic-buffer flow-control, can route in both directions, and bubble flow-control for

deadlock avoidance.

The next subsection explains bubble flow-control in more detail.

7

ECE 4750 Computer Architecture, Fall 2015 Lab 4: Ring Network

2.1. Deadlock Avoidance: Bubble Flow-Control

The ring network described does not guarantee deadlock avoidance. You will implement a ring
with bubble flow-control for deadlock avoidance as the final step in your baseline design. Before
beginning work on bubble flow-control, design the simplest possible test case that puts your network
into deadlock and observe the deadlock in your line tracing. Then, implement bubble flow-control
and test the network for deadlock avoidance. You will not need to modify the top-level ring network
as long as you maintain the interface of the router design.

Deadlock occurs when a group of packets are unable to make progress toward their destinations
because they are waiting on one another for resources. Once a network is deadlocked, it will remain
in this state indefinitely. Unless there is a deadlock-avoidance mechanism in place, ring networks are
easily deadlocked due to the cyclic dependency introduced by the wrap-around channel.

Bubble flow-control is a simple deadlock-avoidance mechanism for ring networks. Bubbles are free
packet buffers. In a unidirectional ring, the guaranteed existence of a bubble at each node is sufficient
to avoid deadlock. We can provide this guarantee by restricting the conditions under which a packet
may be forwarded from the buffer of an input terminal. Consider a packet we wish to route in the
east direction. The packet may be forwarded only if a bubble exists in the current router’s west input
queue – i.e., we are checking that there is a bubble in the ring network in the same direction that
we wish to route the new packet. Similarly, a packet we intend to route in the west direction may
be forwarded only if a bubble exists in the current router’s east input queue. A bubble exists in an
input queue if the number of free entries is greater than one. Please convince yourself that imposing
this restriction avoids deadlock. Note that bubble flow-control requires a minimum input buffer size
of two packets. Most of the control logic remain the same. The input terminal port control logic is
modified with extra inputs for the number of free entries in the input queues to the west and east in
order to implement the bubble guarantee.

3. Alternative Design

For the alternative design, you will implement an adaptive routing algorithm that senses the con-
gestion in the network and routes packets to balance load on the channels. The goal is to improve
the performance of the network. The only modification from the baseline design is in the route
computation. You will need to create a new module similar to RouterBasePRTL.py (PyMTL) or
RouterBaseVRTL.v (Verilog) that uses your adaptive routing algorithm instead of the greedy rout-
ing algorithm. Your router with adaptive routing algorithm should be named as RouterAltPRTL.py
(PyMTL) or RouterAltVRTL.v (Verilog).

You can sense congestion in the channels by observing output ready signals on the channels. You
could also sense congestion by looking at the number of free entries in the channel queues in either
direction. Note that using information from neighboring channel queues provides only non-global
congestion information. You could experiment with more global congestion information by looking
at channel queues further away. However, you may not be able to retrieve this congestion informa-
tion combinationally in a single cycle. You should pass this congestion information through registers
to simulate the latency in wires – an additional cycle of latency for each extra hop you make to
retrieve congestion information.

Once you have retrieved congestion information, you can implement a weighted routing scheme
that factors in the congestion to decide a better route for an outgoing packet.

8

ECE 4750 Computer Architecture, Fall 2015 Lab 4: Ring Network

4. Testing Strategy

As in the previous lab, the tests for this lab may be challenging since you will need to carefully craft
directed tests that exercise all paths in your datapath and control. In contrast with the previous lab,
testing your network relies heavily on unit testing sub-components of the design as well as on testing
the entire design. We provide you with one very basic test in each of the following sub-units:

• The entire router with greedy routing in RouterBaseRTL_test.py
• The ring network in RingNetBaseRTL_test.py

Note that if you choose to design the router in a different structure, you will need to provide unit
tests for your own modules. You will need to add many more test cases until you are sure each
subcomponent works. Note that rigorous unit-testing of the router sub-components and of the router
itself can help to avoid hard-to-find bugs at the top-level design.

You will write most of your tests for the top-level ring network. You can begin writing tests right
away using the functional-level model provided in RingNetFL_test.py, which contains a global
crossbar. You do not need to have a working router in order to write these tests. Once these tests
are working on the functional-level model, you can move on to testing the top-level baseline and
alternative ring network designs.

The following commands illustrate how to run all of tests for the entire project, how to run just the
tests for this lab, and how to run just the basic test we provide on the various designs.

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% py.test ..
% py.test ../lab4_net
% py.test ../lab4_net/RingNetFL_test.py
% py.test ../lab4_net/RingNetBaseRTL_test.py
% py.test ../lab4_net/RouterBaseRTL_test.py

You will add your directed and random tests for the ring network to RingNetFL_test.py. Since this
harness is shared across the functional-level model, the baseline design, and the alternative design
you can write your tests once and reuse them to test all three models. You will be adding more test
cases. Do not just make the given test case larger.

Figure 8 illustrates how we will be writing tests for a single router using various helper tasks which
are defined in the same test file. The mk_net_msg function will create a network request message
and write the messages into the corresponding test sources and sinks. For each test case we define a
Python function that returns a list of request-response message pairs. Note that there are three test
sources and three test sinks in the testing infrastructure. This specific example shows one network
request sent from a router (with ID #2) to itself. Port 1 corresponds to the router’s terminal. The
network message is injected from the terminal into the router, processed in the router, and then
passed back to the terminal. Once you create a new test case, you need to add it to the test case
table, as shown on lines 26–29 in Figure 8. A test case table has four columns. The first column is the
name of tests, the second one is the function that generates source/sink messages, the third one is
the source delay, and the fourth one is the sink delay.

Figure 9 illustrates how we will be writing tests for the ring network. Note that there are eight test
sources and sinks and the ring network itself in the test harness. We specify a different mk_net_msg
function that takes the source and destination router IDs, an opaque field for meta-information, and
the payload of the network message. In this specific example, a single source sends one packet to
each node. Similarly, you also need to add your new test cases to the test case table.

9

ECE 4750 Computer Architecture, Fall 2015 Lab 4: Ring Network

1 #---
2 # Test case: example messages
3 #---
4

5 def example_msgs():
6

7 src_msgs = [[] for x in xrange(3)]
8 sink_msgs = [[] for x in xrange(3)]
9

10 # mk_net_msg
11 def mk_net_msg(src_, sink, src, dest, opaque, payload):
12 msg = mk_msg(src, dest, opaque, payload)
13 src_msgs [src_].append(msg)
14 sink_msgs[sink].append(msg)
15

16 # in out
17 # port port src dest opaque payload
18 mk_net_msg(0x1, 0x1, 0x2, 0x2, 0x00, 0xce)
19

20 return [src_msgs, sink_msgs]
21

22 #---
23 # Test Case Table
24 #---
25

26 test_case_table = mk_test_case_table([
27 ("msgs src_delay sink_delay"),
28 ["example", example_msgs(), 0, 0],
29])

Figure 8: Directed Test Example for Router – Simple directed test for a router that uses the
mk_net_msg task to send one network request from a router (with ID #2) to itself. Port 1 corre-
sponds to the router’s terminal.

Some suggestions for what you might want to test in the ring network are listed below. Each of these
would probably be a separate test case.

• One packet from some node A to itself
• One packet from node A to node B
• A packet from node A to node B and a packet from node B to node A
• A single source sending one packet to each node
• Each node sending one packet to a single destination
• One packet from each node to its neighbor
• Testing all or some of the above using random source and sink delays

You can then create directed test cases that capture longer strings of traffic patterns using for loops
with many iterations. Here are some suggestions:

• nearest neighbor: prolonged traffic to nearest neighbor
• hotspot: prolonged traffic to a single node
• tornado: prolonged traffic half-way around the ring

You are required to create at least one dedicated test case to force deadlock on your network with-
out bubble flow-control. This test should be as simple and as short as possible while still creating
deadlock. You are also required to create at least one dedicated test case to trigger adaptive non-
minimal routing on your alternative design.

10

ECE 4750 Computer Architecture, Fall 2015 Lab 4: Ring Network

1 #---
2 # Test case: single source
3 #---
4

5 def single_src_msgs():
6

7 src_msgs = [[] for x in xrange(8)]
8 sink_msgs = [[] for x in xrange(8)]
9

10 def mk_net_msg(src, dest, opaque, payload):
11 msg = mk_msg(src, dest, opaque, payload)
12 src_msgs [src].append(msg)
13 sink_msgs[dest].append(msg)
14

15 # src dest opaque payload
16 mk_net_msg(0, 0, 0x00, 0xce)
17 mk_net_msg(0, 1, 0x01, 0xff)
18 mk_net_msg(0, 2, 0x02, 0x80)
19 mk_net_msg(0, 3, 0x03, 0xc0)
20 mk_net_msg(0, 4, 0x04, 0x55)
21 mk_net_msg(0, 5, 0x05, 0x96)
22 mk_net_msg(0, 6, 0x06, 0x32)
23 mk_net_msg(0, 7, 0x07, 0x2e)
24

25 #---
26 # Test Case Table
27 #---
28

29 test_case_table = mk_test_case_table([
30 ("msgs src_delay sink_delay"),
31 ["single_src", single_src_msgs(), 0, 0],
32])

Figure 9: Directed Test Example for Ring Network – Simple directed test for the ring network that
uses a different mk_net_msg task than in Figure 8. In this example, a single source sends one packet
to each node.

Cycle Source Ports Router Ports Sink Ports
0 1 2 0 1 2 0 1 2

0: | | >>> (. |. |.) >>> . |. |.
1: |00:2>2| >>> (. |. |.) >>> . | |.
2: | | >>> (. |00:2>2|.) >>> . |00:2>2|.

Figure 10: Line Trace for Basic Router Test – The line trace shows one network request sent from
a router (with ID #2) to itself. Port 1 corresponds to the router’s terminal. The network message
is injected from the terminal into the router, processed in the router, and then passed back to the
terminal.

Once you have finished writing your directed tests you should move on to writing random tests for
your ring network. You can use the tests in the RingNetFL_test.py. We only gave you a very basic
traffic pattern. You may wish to generate other traffic patterns (e.g., tornado or uniform random),
and you can also draw inspiration from the traffic patterns used in the evaluation. Each of these
would probably be a separate test pattern, or potentially multiple test patterns with different random
parameters and random delays.

You will almost certainly want to use line tracing to visualize the execution of transactions on your
baseline and alternative designs. We have provided some line tracing code for you in the test har-
nesses which you can use to trace the network messages at the source/sink and router interfaces.
Figure 10 illustrates a line trace for the basic router test in Figure 8 executing on the baseline router

11

ECE 4750 Computer Architecture, Fall 2015 Lab 4: Ring Network

design with extra annotations to indicate what the columns mean. Each network message has the
format: (lowest bits of the opaque field) : (source) > (dest). The opaque field has no functionality but is
useful to differentiate messages from each other. The first three columns represent the three sources,
and they show when a message is injected into the router. The middle three columns show what is
happening in the router. The last three columns represent the three sinks, and they show both when
and on which port a network message is passed out of the router. Similar line tracing is available for
the ring network designs.

5. Evaluation

Once you have verified the functionality of the baseline and alternative designs, you should then use
the provided simulator to evaluate your designs. You can run the simulator to see the performance
of each network implementation as follows:

% cd ${HOME}/ece4750/lab-groupXX
% git pull --rebase
% mkdir -p sim/build
% cd sim/build
% ../lab4_net/net-sim --impl base --pattern urandom --injection-rate 10

Use --impl option to choose your baseline or alternative design. The simulator supports a variety
of patterns. You can use --pattern option to choose one. For each one, we succinctly describe the
pattern using Verilog syntax.

• urandom -- dest = random % 8
• partition2 -- dest = (random & 3’b011) | (src & 3’b100)
• partition4 -- dest = (random & 3’b001) | (src & 3’b110)
• tornado -- dest = (src + 3) % 8
• neighbor -- dest = (src + 1) % 8
• complement -- dest = ~src

The simulator injects packets and measures the latency. You can specify the injection rate using
the --injection-rate option. The --stats option displays the zero-load latency at the injection
rate you specified. You should study the line traces (with the --trace option) and possibly the
waveforms (with the --dump-vcd option) to understand the reason why each design performs as it
does on the various patterns.

The simulator also supports a sweep mode which sweeps the injection rate. More specifically, the
simulator sweeps the injection rate and reports the average latency at each injection rate. As the
network approaches saturation, the simulator increases the injection rate to gather more data points.
We assume the network saturates when its average latency is larger than 100 cycles. To use the sweep
mode, set the --sweep option, for example:

% cd ${HOME}/ece4750/lab-groupXX
% git pull --rebase
% mkdir -p sim/build
% cd sim/build
% ../lab4_net/net-sim --impl alt --pattern urandom --sweep

The simulator will display a list of injection rates and average latencies. You can use it to plot the
latency-bandwidth curve. Here is an example of sweep mode output:

12

ECE 4750 Computer Architecture, Fall 2015 Lab 4: Ring Network

% ../lab4_net/net-sim --impl base --pattern urandom --sweep

Pattern: urandom

Injection rate (%) | Avg. Latency
5 | 5
15 | 5
25 | 5
35 | 5
45 | 6
55 | 51
56 | 54
57 | 83
58 | 181

Zero-load Latency = 5

If you use the sweep mode, simulations take significantly longer than in previous labs because of the
injection rate sweeps and the required warmup period for each injection rate.

6. PARCv3 Extensions

Each lab assignment includes additional extensions that would be required to transform the alterna-
tive design into a subsystem suitable for use in a full PARCv3 multicore. Students are free to work
on these extensions, although they must implement them in a separate lab3_mem_ext subdirectory.
Do not implement any design extensions in the main lab subdirectory! It is important that any work
on design extensions not cause the tests for your baseline and alternative designs to fail. Design
extensions will not be used to award extra credit, nor will they be factored into the grading of labs
1–4 in any way. However, design extensions can be factored into the grading for the baseline and
alternative design section of the final lab assignment.

For this network to be used in a reasonable PARCv3 multi-core processor, we might need to add
some of the following features:

• Four-node Ring Network – Try to implement a four-port network that can be used in the final lab
to connect four processors, four-banked L1 cache, and memory. You can also make your network
parametrizable so that you can configure it to have any number of nodes (routers).

• Bus Network – Try to implement a four-port bus. The ring network in this lab has multiple cycles
of latency, which is a little bit too high to connect L1 cache in a quad-core processor in lab 5. You
can try creating a simple single-cycle bus which would be more realistic than the ring network in
terms of the lab 5 composition.

Acknowledgments

This lab was created by Moyang Wang, Christopher Torng, Berkin Ilbeyi, Shreesha Srinath, Christo-
pher Batten, and Ji Kim as part of the course ECE 4750 Computer Architecture at Cornell University.

13

