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In this lab, you will design two finite-state-machine (FSM) cache microarchitectures, which we will
eventually compose with the processor designs you developed in the previous lab. The baseline
design is a direct-mapped, write-back, write-allocate cache, and the alternative design is a two-way
set associative cache that should reduce the miss rate by avoiding conflict misses. You are required to
implement the baseline and alternative designs, verify the designs using an effective testing strategy,
and perform an evaluation comparing the two implementations. As with all lab assignments, the
majority of your grade will be determined by the lab report. You should consult the course lab
assignment assessment rubric for more information about the expectations for all lab assignments
and how they will be assessed.

This lab is designed to give you experience with:

• basic memory system design;
• complex finite-state-machine cache controllers;
• microarchitectural techniques for implementing cache associativity;
• abstraction levels including functional- and register-transfer-level modeling;
• design principles including modularity, hierarchy, and encapsulation;
• design patterns including message interfaces, control/datapath split, and FSM control;
• agile design methodologies including incremental development and test-driven development.

This handout assumes that you have read and understand the course tutorials and the lab assessment
rubric. To get started, you should access the ECE computing resources and you have should have
used the ece4750-lab-admin script to create or join a GitHub group. If you have not do so already,
source the setup script and clone your lab group’s remote repository from GitHub:

% source setup-ece4750.sh
% mkdir -p ${HOME}/ece4750
% cd ${HOME}/ece4750
% git clone git@github.com:cornell-ece4750/lab-groupXX

where XX is your group number. You should never fork your lab group’s remote repository! If you
need to work in isolation then use a branch within your lab group’s remote repository. If you have
already cloned your lab group’s remote repository, then use git pull to ensure you have any recent
updates before running all of the tests.You can run all of the tests in the lab like this:

% cd ${HOME}/ece4750/lab-groupXX
% git pull --rebase
% mkdir -p sim/build
% cd sim/build
% py.test ../lab3_mem
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All of the tests for the provided functional-level model should pass, while the tests for the baseline
and alternative cache designs should fail. For this lab, you will be working in the lab3-mem subproject
which includes the following files:

• BlockingCacheFL.py – FL cache
• BlockingCacheFL_test.py – FL cache unit tests

• BlockingCacheBasePRTL.py – PyMTL blocking direct-mapped cache
• BlockingCacheBaseCtrlPRTL.py – PyMTL blocking direct-mapped cache’s control unit
• BlockingCacheBaseDpathPRTL.py – PyMTL blocking direct-mapped cache’s datapath
• BlockingCacheBaseVRTL.py – PyMTL wrapper around Verilog RTL
• BlockingCacheBaseVRTL.v – Verilog blocking direct-mapped cache
• BlockingCacheBaseCtrlVRTL.v – Verilog blocking direct-mapped cache’s control unit
• BlockingCacheBaseDpathVRTL.v – Verilog blocking direct-mapped cache’s datapath
• BlockingCacheBaseRTL.py – Wrapper to choose which RTL language
• BlockingCacheBaseRTL_test.py – Unit tests for direct-mapped cache

• BlockingCacheAltPRTL.py – PyMTL blocking set-associative cache
• BlockingCacheAltCtrlPRTL.py – PyMTL blocking set-associative cache’s control unit
• BlockingCacheAltDpathPRTL.py – PyMTL blocking set-associative cache’s datapath
• BlockingCacheAltVRTL.py – PyMTL wrapper around Verilog RTL
• BlockingCacheAltVRTL.v – Verilog blocking set-associative cache
• BlockingCacheAltCtrlVRTL.v – Verilog blocking set-associative cache’s control unit
• BlockingCacheAltDpathVRTL.v – Verilog blocking set-associative cache’s datapath
• BlockingCacheAltRTL.py – Wrapper to choose which RTL language
• BlockingCacheAltRTL_test.py – Unit tests for set-associative cache

• TestCacheSink.py – Custom test sink for cache

• __init__.py – Package setup

1. Introduction

Accessing main memory can require hundreds of cycles, but cache memories can significantly reduce
the average memory access latency for well-structured address patterns. Caches are faster than main
memory because they are smaller and are located close to the processor; but because a cache can
only hold a subset of all memory locations at any one time, we must carefully manage what data we
keep in the cache. A cache hit occurs when the data we are requesting is already in the cache, while
a cache miss occurs when the data we are requesting is not in the cache and thus requires accessing
main memory. Caches exploit spatial and temporal locality to increase the number of cache hits. In an
address pattern with significant spatial locality, if we access a given address then in the near future,
we are likely to access an address close to the first address. In an address pattern with significant
temporal locality, if we access a given address then in the near future, we are likely to access that
same address again. In this lab, you will implement and evaluate two cache microarchitectures that
organize cache lines in two different ways: (1) direct-mapped where every cache line can only be
placed in a single location in the cache, and (2) two-way set-associative where every cache line can
be placed in one of two locations in the cache. Both caches will use a write-back, write-allocate policy
for handling write misses.

We have provided you with a functional-level model of a cache, which essentially just passes all
cache requests through to the memory interface, and passes all memory responses through to the
cache response interface. While this might not seem useful, the functional-level model will enable us
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Figure 1: Memory System – The cache is integrated with a test source, test sink, and test memory for
testing and evaluation.

76 74 73 66 65 34 33 32 31 0
cachreq +-------+---------------+------------------+-----+------------------+
Message Format | type | opaque | addr | len | data |

+-------+---------------+------------------+-----+------------------+

46 44 43 36 35 34 33 32 31 0
cacheresp +-------+---------------+------+-----+------------------+
Message Format | type | opaque | test | len | data |

+-------+---------------+------+-----+------------------+

174 172 171 164 163 132 131 128 127 0
memreq +-------+---------------+------------------+-------+------------------+
Message Format | type | opaque | addr | len | data |

+-------+---------------+------------------+-------+------------------+

144 142 141 134 133 132 131 128 127 0
memresp +-------+---------------+-------+-------+------------------+
Message Format | type | opaque | test | len | data |

+-------+---------------+-------+-------+------------------+

Figure 2: Memory Request/Response Message Formats – Memory request messages are sent from
the test source/sink to the cache and from the cache to/from the test memory.

to develop many of our test cases with the test memory before attempting to use these tests with the
baseline and alternative designs.

Figure 1 shows a block-level diagram illustrating how the functional-level, baseline, and alternative
designs are integrated with a test source, test sink, and test memory for testing and evaluation. We
will load data into the test memory before resetting the cache. Once we start the execution, the
test source will send memory requests into the cache, and eventually the cache will send memory
responses to the test sink. If the cache needs to access main memory, then the cache will send memory
requests to the test memory, and eventually the test memory will send memory responses back to the
cache. We make extensive use of the latency insensitive val/rdy microprotocol in the cache interface.
There are four different val/rdy channels.

• cachereq : from test source (processor) to cache
• cachresp : from cache to test sink (processor)
• memreq : from cache to test memory
• memresp : from test memory to cache
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The message format for memory requests and responses are shown in Figure 2. Corresponding
PyMTL BitStructs are defined in pclib here:

• https://github.com/cornell-brg/pymtl/blob/ece4750/pclib/ifcs/MemMsg.py

There are equivalent helper macros for Verilog located in vc/mem-msgs.v. The message format for
the memory requests and responses are defined in vc/mem-msgs.v and shown in Figure 2. Memory
requests use fields to encode the type (e.g., read, write, init), the address, the length of data in bytes,
and the data. Memory responses use fields to encode the type (e.g., read, write), the length of data
in bytes, and the data. The opaque field can be used for implementation defined behavior. You
should always ensure the opaque field is correctly preserved in the response. Note that the memory
messages used for the cachereq and cacheresp interfaces are for a single word (i.e., 32-bit data field
and 2-bit length field), while the memory messages used for the memreq and memresp interfaces are
for an entire cache line (i.e., 128-bit data field and 16-bit length field). If the length field is one then
only the least significant byte of the data field (i.e., bits 7-0) is valid. If the length field is two then
only the least significant two bytes of the data field (i.e., bits 15-0) are valid. If the length field is zero
then all bytes are valid. We add a two-bit test field to each cacheresp and memresp message. We use
the test field in cacheresp for testing. If a cachereq ends up with a cache miss, we should set the
corresponding cacheresp message’s test field to be 2’b0. If a cachereq turns out to be a cache hit,
we should set the corresponding cacheresp message’s test field to be 2’b1. By using the test field in
the test harness can verify whether a cache transaction is a hit or a miss.

2. Baseline Design

The baseline design for this lab is a direct-mapped, write-back, write-allocate cache with a total
capacity of 256 bytes, 16 cache lines, and 16 bytes per cache line. As with the earlier labs, we will
be decomposing the baseline design into two separate modules: the datapath which has paths for
moving data through various arithmetic blocks, muxes, and registers; and the control unit which is
in charge of managing the movement of data through the datapath. As in the first lab, the control
unit will use an FSM. Because the cache design is significantly more complicated than the first lab,
we have decided to place the datapath module, control unit module, and the parent module that
connects the datapath and control unit together in three different files.

The datapath for the baseline design is shown in Figure 3. The blue signals represent the control/s-
tatus signals for communicating between the datapath and the control unit. Your datapath module
should probably instantiate a child module for each of the blocks in the datapath diagram; in other
words, you should mostly use a structural design style in the datapath. Although you are free to
develop your own modules to use in the datapath, you can also use the ones provided for you in the
pclib (PyMTL) or VC library (Verilog). The repl block takes a 32b value and simply replicates it four
times to create a 128b value. The mkaddr block simply concatenates the tag and idx plus some zeros
like this: { tag, idx, 4’b0000 }. As we become more proficient, we can use our judgement about
what needs to be encapsulated in a child module. For example, the repl and mkaddr blocks can prob-
ably be done directly in the datapath without encapsulating them in a module. These operations are
just wiring and not really "logic". However, we strongly encourage students to use comments and a
temporary signal to clearly indicate where in the code you are doing this kind of wiring so that it is
still easy to connect your datapath diagram to your code. Notice that the simplify our design, we are
implementing the tag and data arrays using combinational SRAMs. We provide SRAMs as a pclib
component in PyMTL, see:

• https://github.com/cornell-brg/pymtl/blob/ece4750/pclib/rtl/SRAMs.py
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Figure 3: Baseline Design – Direct-mapped, write-back, write-allocate cache.

The equivalent Verilog component is located in vc/srams.v called vc_CombinationalSRAM_1rw. This
means that after setting the read address (raddr) signals, the read data (rdata) is available that same
cycle. More realistic designs would likely need to move to using synchronous SRAMs.

The FSM for the baseline design is shown in Figure 4. The control unit should also include additional
valid and dirty bits to track the state of each tag entry. You should not use SRAMs for the valid and
dirty bits. You should instead use standard register files. For PyMTL, register files are located in:

• https://github.com/cornell-brg/pymtl/blob/ece4750/pclib/rtl/RegisterFile.py

The equivalent Verilog register files are defined in vc/regfiles.v. The various FSM states are de-
scribed in more detail below:

• STATE_IDLE (I) – Receive the incoming cache request and place it in the input registers
• STATE_TAG_CHECK (TC) – Check tag, state transition based on hit/miss, valid/dirty
• STATE_INIT_DATA_ACCESS (IN) – Immediately write to appropriate cache line
• STATE_READ_DATA_ACCESS (RD) – Read from appropriate cache line
• STATE_WRITE_DATA_ACCESS (WD) – Write to appropriate cache line
• STATE_REFILL_REQUEST (RR) – Make a request to memory for refill cache line
• STATE_REFILL_WAIT (RW) – Wait for memory response
• STATE_REFILL_UPDATE (RU) – Write the response to the cache line
• STATE_EVICT_PREPARE (EP) – Read tag and data, and prepare eviction message
• STATE_EVICT_REQUEST (ER) – Make a request to memory to write the evicted cache line
• STATE_EVICT_WAIT (EW) – Wait for memory response
• STATE_WAIT (W) – Wait while the sink (processor) is busy

5



ECE 4750 Computer Architecture, Fall 2015 Lab 3: Blocking Cache

tag
check

read
data

access

wait

write
data

access

idle

evict
prepare

evict
request

refill
request

evict
wait

refill
update

refill
wait

read
hit

write
hit

write

read

!cacheresp_rdy

!cachereq_val

miss & dirty

!memreq_rdy

!memreq_rdy

!memresp_val

!memresp_val

miss & 
!dirty

init
data

access

init
transaction

memreq_rdy

memresp_val

memreq_rdy

m
em

re
sp

_v
al

Figure 4: Baseline FSM Control Unit

This FSM control unit differs from the basic FSM discussed in lecture. This is due to the need to han-
dle the various latency insensitive interfaces, the init transaction, and waiting for eviction responses.
The FSM cache microarchitectures used in this lab will have a hit latency of four cycles (e.g., I →
TC → RD → W). In the previous lab, the memory access time was usually a single cycle although
you also tested your processor with random delays on the memory interface. Assuming we correctly
implement the latency insensitive val/rdy microprotocol in both the processor and cache, then there
should be no problem composing these two subsystems. Later optimizations can reduce the cache
hit latency without the need to modify the processor.

We strongly encourage you to take an incremental design approach using the following steps:

• Implement the init transaction (I, TC, IN, W)
• Implement the read hit path (I, TC, RD, W)
• Implement the write hit path (I, TC, WD, W)
• Implement the refill path (I, TC, RR, RW, RU, RD/WD, W)
• Implement the evict path (I, TC, EP, ER, EW, RR, RW, RU, RD/WD, W)

The hit path is the simplest place to start, but in order to hit in the cache, we need valid data in the
cache. The init transaction (explained further in Section 4) allows you to write data into the cache
without doing a refill from main memory. This kind of transaction is an example of design-for-test
since this transaction is only meant to simplify testing and has no real use once we have a working
cache model. We recommend implementing the init transaction first, and then using this transaction
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to implement and test both hit paths. Once the hit paths are working, then you can move onto the
more complicated miss paths.

3. Alternative Design

The alternative design for this lab is a two-way set-associative, write-back, write-allocate cache with
the same capacity (256 bytes) and cache line size (16 bytes) as the baseline cache. The general FSM
for the alternative design will be very similar to that of the baseline design, except that the control
signals will likely be different. Note that you will need to split the valid bits into two parts, one for
each way and carefully keep track of them. You will need to AND the result of the tag match in each
way with the appropriate valid bit to determine if there is a hit or miss. The control unit should use a
least-recently-used (LRU) replacement policy to choose between the two ways during eviction. You
should track the LRU status with separate bits in the control unit.

4. Testing Strategy

We provide you with one very basic directed test that tests the read hit path for clean lines. Although
you will not need to write as many tests as in the previous lab, the tests for this lab may be more
challenging since you will need to carefully craft directed tests that exercise all paths in your datapath
and all states and state transitions in your FSM. As with the previous labs, you will want to initially
write tests using the functional-level model. Once these tests are working on the functional-level
model, you can move on to testing the baseline and alternative designs.

The following commands illustrate how to run all of tests for the entire project, how to run just the
tests for this lab, and how to run just the basic test we provide on the various designs.

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% py.test ..
% py.test ../lab3_mem
% py.test ../lab3_mem/BlockingCacheFL_test.py
% py.test ../lab3_mem/BlockingCacheBaseRTL_test.py
% py.test ../lab3_mem/BlockingCacheAltRTL_test.py

You will add your directed and random tests to BlockingCacheFL_test.py. Since this harness is
shared across the functional-level model, the baseline design, and the alternative design you can
write your tests once and reuse them to test all three models. You will be adding more test cases. Do
not just make the given test case larger. A key challenge in writing directed tests for cache memo-
ries, is that most of the miss path must be working before you can test the hit path. The miss path
is significantly more complicated than the hit path, so this lends itself more towards a monolithic
design process. Most of the cache must be implemented before we can run our first directed test.
We could potentially use white-box ad-hoc testing that directly initializes the tag and data arrays in
the cache before starting the test, but these ad-hoc tests are fragile and difficult to develop on the
functional-level model.

To address this challenge, we will use a design-for-test (DFT) approach. DFT involves adding fea-
tures to a design that are solely meant to facilitate test-driven development. In this specific design,
we will be adding a new init transaction to go along with our current read and write transactions.
The init transaction does the following:

• Writes (overwrites) the appropriate cache line based on the index bits of the address
• Never updates main memory
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• Sets the valid bit for that cache line to one
• Sets the dirty bit for that cache line to zero
• Sets the cacheresp’s test field to zero

Using an init transaction on a dirty cache line is undefined. Essentially, the init transaction is a special
transaction that directly initializes a word in a cache line.

Figure 5 illustrates how we will be writing tests for this lab using various helper tasks which are de-
fined in BlockingCacheFL_test.py. The req and resp Python helper functions will create a memory
request message and the expected memory response message. We use the test field in response mes-
sages to test whether the memory request resulted in a hit or a miss. This specific example first uses
an init transaction to initialize one word in the first cache line, before using a read transaction to read
this same word. Note that the second transection should be a hit and we set the second cacheresp
message’s test field to be one. For each test case we define a Python function that returns a list of
request-response message pairs. The request messages and response messages will be passed to the
test source and the test sink respectively. In Figure 5, lines 6–11 and lines 17–22 illustrate two test
cases. We also provide you a helper function to load data into the test memory before running the
test. It will allow you to test the cache refill path (read miss path) without involving the cache evict
path. If you want to load data into the test memory before running the test, you can create a Python
function that returns a list of address-data pairs and then the test function we provide will load it
to the test memory before running the test. For example lines 26–31, load the test memory with two
words of data at addresses 0x00000000 and 0x00000004 before running the read_miss_1word_msg
test case.

Once you create a new test harness, you can add it to the test case table, as shown on lines 37–41 in
Figure 5. A test case table has seven columns. The first column is the name of tests, the second one
is the function that generates source/sink messages, and the third one is the function that generates
memory data to be loaded before running the test. If your test case does not need to load data to
the test memory, simply use None. The last four columns are for test memory’s stall probability, test
memory latency, source delay, and sink delay, respectively.

Ideally, we want to use same set of tests to test the FL, baseline RTL, and alternative RTL model.
We define all the test cases in BlockingCacheFL_test.py, test them on FL model to make sure
test cases themself are correct, and we import them in the BlockingCacheBaseRTL_test.py and
BlockingCacheAltRTL_test.py test scripts. We need to be careful about the test field, because the
same test may have different hit/miss behavior on different cache implementations. For example, in
an FL cache, every response is a miss because we simply pass cachereq and cacheresp to memory.
The alternative design will have less conflict misses than the baseline design, because the alternative
design is set-associative whereas the baseline design is direct-mapped. Therefore, we should expect
different values for the test field in the cacheresp messages passed to the sink from different cache
models even if we use the same source messages. To solve this issue, we provide you a custom
TestHarness model in BlockingCacheFL_test.py that can optionally skip checking the test field.
Lines 49–52 in Figure 5 show how to instantiate this TestHarness model. The first two parameters
(src_msgs and sink_msgs) are source and sink messages. The stall_prob, latency, src_delay,
and sink_delay parameters are the stalling probability of the test memory, latency (in cycles) of the
test memory, source delay, and source delay, respectively. CacheModel is the model we want to test.
check_test determines whether the test harness should check the test field in cacheresp messages
from the model under test to the test sink. When we run a test case on the FL model, we should set
check_test to False to make the harness skip checking the test field because the test field is always
zero for the FL model. Otherwise the test will fail. When we test the actual RTL models, we must
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1 #----------------------------------------------------------------------
2 # Test Case: read hit path
3 #----------------------------------------------------------------------
4 # The test field in the response message: 0 == MISS, 1 == HIT
5

6 def read_hit_1word_clean( base_addr ):
7 return [
8 # type opq addr len data type opq test len data
9 req( 'in', 0x0, base_addr, 0, 0xdeadbeef ), resp( 'in', 0x0, 0, 0, 0 ),

10 req( 'rd', 0x1, base_addr, 0, 0 ), resp( 'rd', 0x1, 1, 0, 0xdeadbeef ),
11 ]
12

13 #-------------------------------------------------------------------------
14 # Test Case: read miss path
15 #-------------------------------------------------------------------------
16

17 def read_miss_1word_msg( base_addr ):
18 return [
19 # type opq addr len data type opq test len data
20 req( 'rd', 0x00, 0x00000000, 0, 0 ), resp('rd', 0x00, 0, 0, 0xdeadbeef ), # read word 0x00000000
21 req( 'rd', 0x01, 0x00000004, 0, 0 ), resp('rd', 0x01, 1, 0, 0x00c0ffee ), # read word 0x00000004
22 ]
23

24 # Data to be loaded into memory before running the test
25

26 def read_miss_1word_mem( base_addr ):
27 return [
28 # addr data (in int)
29 0x00000000, 0xdeadbeef,
30 0x00000004, 0x00c0ffee,
31 ]
32

33 #-------------------------------------------------------------------------
34 # Test table for generic test
35 #-------------------------------------------------------------------------
36

37 test_case_table_generic = mk_test_case_table([
38 ( "msg_func mem_data_func stall lat src sink"),
39 [ "read_hit_1word", read_hit_1word, None, 0.0, 0, 0, 0 ],
40 [ "read_miss_1word", read_miss_1word_msg, read_miss_1word_mem, 0.0, 0, 0, 0 ],
41 ])
42

43 @pytest.mark.parametrize( **test_case_table_generic )
44 def test_generic( test_params, dump_vcd ):
45 msgs = test_params.msg_func( 0 )
46 if test_params.mem_data_func != None:
47 mem = test_params.mem_data_func( 0 )
48 # Instantiate testharness
49 harness = TestHarness( msgs[::2], msgs[1::2],
50 test_params.stall, test_params.lat,
51 test_params.src, test_params.sink,
52 BlockingCacheFL, False )
53 # Load memory before the test
54 if test_params.mem_data_func != None:
55 harness.load( mem[::2], mem[1::2] )
56 # Run the test
57 run_sim( harness, dump_vcd )

Figure 5: Writing Directed Tests – A portion of the BlockingCacheFL_test.py file. We create all test
cases in this file and use it to test both FL, baseline RTL and alternative RTL model.
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set check_test to True in order to inspect every cacheresp message’s test field to see verify if the
request correctly hit or missed in the cache.

As mentioned above, your baseline and alternative designs will have different hit/miss behav-
iors, so you may need to use different sink values even for the same sequence of source messages.
You should add tests designed specifically for your baseline or alternative design. For example,
you should have tests that only hit in a two-way set-associative cache to make sure your alterna-
tive design is indeed two-way set-associative. We group the test cases into three test case tables.
test_case_table_generic is shown on lines 37–41 in Figure 5 and is used to generically test both
the baseline and alternative designs (i.e., tests in this table should have the same expected behavior
for both the baseline and alternative design). test_case_table_set_assoc and
test_case_table_set_dir_mapped are used to test only one of the designs. We provide examples
which test for a very simple conflict miss in the baseline design and test for a hit with the same
sequence of source messages in the alternative design.

Some suggestions for what you might want to test are listed below. Each of these would probably be
a separate test case.

• Read hit path for clean lines
• Write hit path for clean lines
• Read hit path for dirty lines
• Write hit path for dirty lines
• Read miss with refill and no eviction
• Write miss with refill and no eviction
• Read miss with refill and eviction
• Write miss with refill and eviction
• Tests which stress entire cache, not just a few cache lines
• Conflict misses
• Capacity misses
• LRU replacement policy by filling up a way
• Tests specifically designed to trigger corner cases in your alternative design
• Testing all or some of the above using random source and sink delays and test memory delays

Once you have finished writing your directed tests you should move on to writing random tests.
You can use the same Python-based random test generation system we used in the first lab. Some
suggestions for what you might want to test are listed below. Each of these would probably be a
separate test pattern, or potentially multiple test patterns with different random parameters.

• Simple address patterns, single request type, with random data
• Simple address patterns, with random request types and data
• Random address patterns, request types, and data
• Unit stride with random data
• Strided with random data
• Unit stride (high spatial locality) mixed with shared (high temporal locality)

Writing random tests for memories can actually be quite challenging. With the first lab, the correct
output was trivial to calculate based on the random inputs, but with a memory system the correct
output (i.e., the data we expect in a memory read response) depends on the last write to the corre-
sponding address. To write random tests with random address patterns and/or types, you will need
to keep track of a “reference memory” in your Python script. This reference memory can just be an
array of words. Every time you generate a write request, you should update the reference memory
in addition to printing the appropriate write request. Every time you generate a read request, you
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cycle cachreq state memreq memresp cacheresp
2: (I ) (). .
3: in:00:00001000:deadbeef (I ) ().
4: # (TC) ().
5: # (IN) ().
6: # (W ) (). in:00:0:
7: rd:01:00001000: (I ) ().
8: . (TC) ().
9: . (RD) ().

10: . (W ) (). rd:01:1:deadbeef

Figure 6: Line Trace for Basic Directed Test – The line trace shows two memory requests sent from
the test source to the cache, the four states each transaction goes through, and then the response
being sent from the cache back to the test sink.

cycle cachreq state memreq memresp cacheresp
2: (I ) (). .
3: rd:00:00000000: (I ) ().
4: # (TC) ().
5: # (RR) rd:00:00000000: ().
6: # (RW) ()rd:00:0:0...ba11ad0e5ca18d
7: # (RU) ().
8: # (RD) ().
9: # (W ) (). rd:00:0:0e5ca18d

10: rd:01:00000000: (I ) ().
11: # (TC) ().
12: # (RD) ().
13: # (W ) (). rd:01:1:0e5ca18d
14: rd:02:00000004: (I ) ().
15: # (TC) ().
16: # (RD) ().
17: # (W ) (). rd:02:1:00ba11ad
18: wr:03:00000100:00e1de57 (I ) ().
19: # (TC) ().
20: # (RR) rd:00:00000100: ().
21: # (RW) ()rd:00:0:0...00000000000000
22: # (RU) ().
23: # (WD) ().
24: # (W ) (). wr:03:0:
25: rd:04:00000100: (I ) ().
26: . (TC) ().
27: . (RD) ().
28: . (W ) (). rd:04:1:00e1de57

Figure 7: Line Trace for More Involved Directed Test – The line trace shows several memory re-
quests meant to trigger an eviction of a dirty line. Notice how the third request must go through a
total of 10 states as the FSM does tag check, eviction, and refill. Note, only a portion of the bits for
the data field for memory request/responses are shown for simplicity.

should consult your reference memory to determine what data we expect to be returned in a memory
read response.

You will almost certainly want to use line tracing to visualize the execution of transactions on your
baseline and alternative designs. We have provided some line tracing code for you in the test har-
ness which traces the cache request/response and memory request/response interfaces. Figure 6
illustrates a line trace for the basic test in Figure 5 executing on the baseline design with extra an-
notations to indicate what the columns mean. The first columns shows when memory request mes-
sages are sent from the test source into the cache, and the last column shows when memory response
messages are sent from the cache back to the test sink. The second column shows the state of the
processor. This column is critical to understanding the behavior of your cache, but it is not currently
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// loop-1d pattern // loop-2d pattern // loop-3d pattern
for ( i = 0; i < 100; i++ ) for ( i = 0; i < 5; i++ ) for ( i = 0; i < 5; i++ )

result += a[i]; for ( j = 0; j < 100; j++ ) for ( j = 0; j < 2; j++ )
result += a[j]; for ( k = 0; k < 8; k++ )

result += a[j*64 + k*4];

Figure 8: Evaluation Patterns – Three loops that correspond to the given evaluation patterns.

implemented in the lab harness. You will need to modify the line tracing code in your baseline and
alternative designs to append a string representing the current cache state. Use the short state names
as given in the state description list above (e.g., I for STATE_IDLE, TC for STATE_TAG_CHECK). The third
and fourth columns show the memory request and response messages to/from the test memory.

In addition to the tests for the entire cache, you must also add additional unit tests for any datapath
components you add or modify.

5. Evaluation

Once you have verified the functionality of the baseline and alternative designs, you should then use
the provided simulator to evaluate these two designs. The simulator delay all responses from the
test memory by 20 cycles to model a long main-memory latency. You can run the simulator to see the
performance of each cache implementation as follows:

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% ../lab3_mem/mem-sim --impl base --pattern loop-1d --stats
% ../lab3_mem/mem-sim --impl alt --pattern loop-1d --stats

We provide you with three input patterns that capture common access patterns in loops. The C
code for each loop that might generate the corresponding pattern is shown in Figure 8. The loop-1d
pattern simply iterates through an array. The loop-2d pattern iterates through the same array five
times. The loop-3d patterns uses a more interesting stride to iterate through an array multiple times.

The simulator will display a collection of statistics: number of cycles, number of memory and cache
accesses, number of misses, miss rate, and the average memory access latency (AMAL). You should
study the line traces (with the --trace option) and possibly the waveforms (with the --dump-vcd
option) to understand the reason why each design performs as it does on the various patterns.

You can run simulations for all given patterns like this:

% cd ${HOME}/ece4750/lab-groupXX/sim/build
% python ../lab3_mem/mem_sim_eval.py

You will almost certainly need to add additional evaluation patterns with different amounts of spa-
tial and temporal locality. We strongly recommend including some patterns that mix reads/writes
and random patterns. We recommend maybe six or more patterns for evaluation. Obviously, these
patterns need to be carefully chosen to highlight the differences between the baseline and alternative
designs. You will also need to add the name of the new dataset to the mem-sim simulator script.

Writing an access pattern for the simulator is similar to writing a test case. Basically for each pattern
you need to write a Python function that returns a list of source messages, a list of sink message, and
a list of memory address-data pairs that will be loaded to the test memory before the simulation. Fig-
ure 9 shows you loop-3d pattern. Please keep in mind that patterns you will write in the simulator
are not for testing. Instead, you need to fully test your designs using test cases and then use patterns
in the simulator script as a way to evaluate your designs.
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1 #-------------------------------------------------------------------------
2 # Pattern: loop-3d
3 #-------------------------------------------------------------------------
4

5 def loop_3d():
6 src_msgs = []
7 sink_msgs = []
8

9 mem_data = []
10 mem_word = Bits( 32 )
11

12 # Initialize memory
13 addr = 0
14 for i in xrange( 2 ):
15 for j in xrange( 8 ):
16 addr = i*256 + j*16
17 mem_word.value = i*64 + j*4
18 mem_data.append( addr )
19 mem_data.append( mem_word.uint() )
20 addr += 4
21

22 # Read from memory
23 for i in xrange( 5 ):
24 for j in xrange( 2 ):
25 for k in xrange( 8 ):
26 addr = j*256 + k*16
27 data = j*64 + k*4
28 src_msgs.append ( mk_req ( 0, addr, 0, 0 ) )
29 sink_msgs.append( mk_resp( 0, 0, data ) )
30

31 return [ src_msgs, sink_msgs, mem_data ]

Figure 9: loop-3d Pattern for the Simulator – A function that returns source messages, sink mes-
sages, and a memory section for loop-3d access pattern.

6. PARCv3 Extensions

Each lab assignment includes additional extensions that would be required to transform the alterna-
tive design into a subsystem suitable for use in a full PARCv3 multicore. Students are free to work
on these extensions, although they must implement them in a separate lab3_mem_ext subdirectory.
Do not implement any design extensions in the main lab subdirectory! It is important that any work
on design extensions not cause the tests for your baseline and alternative designs to fail. Design
extensions will not be used to award extra credit, nor will they be factored into the grading of labs
1–4 in any way. However, design extensions can be factored into the grading for the baseline and
alternative design section of the final lab assignment.

For this cache to be used in a reasonable PARCv3 processor, we might need to add some of the
following features:

• The FSM in your baseline and alternative design can be significantly optimized. Many states can
be collapsed together. Optimize the performance of your design by first focusing on collapsing
the states involved on the hit path to reduce the hit latency to just two cycles. Experiment with
collapsing states on the miss path as well.

• In the baseline and alternative design, we only support full word (4B) accesses. Add support
for byte, and half-word reads and writes. Carefully consider how you will handle either sign
extending or zero extending these subword accesses for read requests (i.e., to support lbu, lb,
lhu, and lh instructions).
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• In your baseline and alternative designs, you assume a fixed cache size of 256 bytes. Improve the
extensibility of your design by parameterizing both the capacity and line size.

• Implement a pipelined cache microarchitecture with a two-cycle pipelined hit path. Tag check
should be in the first stage and data access should be in the second stage. The miss path can still
use a FSM.

• Implement a parallel read, pipelined write cache microarchitecture. Carefully consider how to
resolve the structural hazard for accessing the data array.

• Add support for a simple atomic memory operation that would be suitable for implementing the
amo.add instruction. See the PARC instruction set manual for more information on the amo.add
instruction.

• Compose two of your cache designs in series to create a two-level cache hierarchy. Either param-
eterize your cache design, or duplicate the cache design so that the L2 cache can have a much
larger capacity.
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