ECE 4750 Computer Architecture, Fall 2015
TO05 Integrating Processors and Memories

School of Electrical and Computer Engineering
Cornell University

revision: 2015-10-14-14-11
1 Processor and L1 Cache Interface
2 Analyzing Processor + Cache Performance

3 Case Study: MIPS R4000



1. Processor and L1 Cache Interface

Network * Processors for computation

n * Memories for storage
' e Networks for communication

(
i =
Q
=
[ Network é
[ Network

1. Processor and L1 Cache Interface

Approaches to integrate L1 caches into a processor pipeline vary based
on how the L1 memory system timing is encapsulated.

Zero-Cycle Hit Latency with Tightly Coupled Interface

cs_X cs.M cs W
I B ] l
br_targ
X branch
25
pe_plus4_D N250) ‘m con
I i1s0] *% aly regfile
: func_X wac
op0_X l g
lwos N\—__16 wo_sel_M W
e —
2521] "D_’ result_M result_W !
i - | :
addr  rdata 1 regfile regfile
wose) | (read) I op1_X alu - (write)
imem nop
stall_D e,
n N addr rdata
,Di,uﬂ h
dmem
Tag Check —
Data Access
Fetch (F) Decode & Reg Read (D) Execute (X) Memory (M)  Writeback (W)




1. Processor and L1 Cache Interface

Two-Cycle Hit Latency with Val/Rdy Interface

cs_Mo cs_M1 cs W

br_targ
X

branch
cond

250 — 7
op0
1150] soLD alu regfile
br_tgen - func_X waddr_W
op0_X regfile
sl 0 o 10y ! s |
tall_FO . 2 —3
stallt KIlF1 ir D oo ”D—' result_MO result_M1 result_W !
|;| 2521 H

s e regfile regfile
val

ity «—| valrdy \izotel | (read) opl_X (write)

sd_X

imem nop

memresp
|| memreq  val
bypass_from_M Tag Check —
bypass_from W Data Access
Fetch (FO/F1) Decode & Reg Read (D) Execute (X) ' Memory (MO/M1) Writeback (W)
Parallel Read, Pipelined Write Hit Path
cs_X cs. M cs W
bk LT lh
br_targ
ir
br_targ
‘X branch
pec_plusd_D fzsa) ‘ _cond
1s0) *% alu regile
- fune_X waddr_W
op0_X l C
S0 o N 163 wo_sel_M wen_W
- KILF ir.D result_M result_'W
irf25:21] —
memreq  memresp regfile regfile
Irdy +—| valrdy val (read) (write)
imem nop
stall_D
memresp 0
|$| memreq  val A ards*
> valrdy A Nevi Az
Tag Check || Write
bypass_from W Read Access__| Access
Fetch (F) Decode & Reg Read (D) Execute (X) Memory (M)  Writeback (W)




1. Processor and L1 Cache Interface

Integrating Instruction and Data TLBs

TLB miss? cs X cs M cs W
Protection violation? 1
5 decode
Page fault? 1 W ]
br_targ
L br_targ TLB mi§s? o
X pranch ! PrOtection violation?
po_plusd. D NI Tgen cond | Page fault?
+4 0opo ogfile
op0_X l regfile
stal D | 0g 16 3| wb_sel_M wen_W
(os S~
KILF ir D —3 "|;|—' result_M result_W i
ir[25:21] [
memreq | memresp regfile regfile
Iy ] vairdy | val s (rond) | | op1_x > alu 1 (wiio)
imem |nop
stall_D ir[15:0]
150 sd X
sel D [ memreq | val 1 hrds*
valrdy NeY NaZf
A.IDTLE' dmem
bypass_from_X1 1
bypass_from M Tag Check || Write
bypass_from_W Read Ac Access
Fetch (F) Decode & Reg Read (D) Execute (X) Memory (M) Writeback (W)

¢ TLB miss needs a hardware or software mechanism to refill TLB
¢ Software handlers need restartable exceptions on page fault

¢ Need mechanism to cope with the additional latency of a TLB

Increase the cycle time

Pipeline the TLB and cache access
— Use virtually addressed caches
Access TLB and cache in parallel




2. Analyzing Processor + Cache Performance

2. Analyzing Processor + Cache Performance

How long in cycles will it take to execute the vvadd example assuming
n is 64? Assume cache is initially empty, parallel-read/pipelined-write,
four-way set-associative, write-back/write-allocate, and miss penalty is
two cycles.

loop:

1w r12, 0(r4d)

1w r13, 0(r5)
addu ri14, ri12, ri13
sW ri4, 0(r6)
addiu r4, 14, 4
addiu r5, 15, 4
addiu r6, 16, 4
addiu r7, 7, -1
bne r7, 1r0, loop
jr r31




2. Analyzing Processor + Cache Performance

o< Mm
== =d HHd 28 e e
— =+ n|+ + + |+ Q0 0 | A +

sw
+i

+i
+i

+i

bne

opA
opB

1w




3. Case Study: MIPS R4000

3. Case Study: MIPS R4000

IF IS RF EX DF DS TC WB

Instruction memory H Reg ’ Data memory

* 8-stage pipeline with extra stages for instruction/data mem access

IF: First-half of inst fetch: PC selection and start icache access

IS: Second half of inst fetch, complete icache access

— RF: Instruction decode, register read, stall logic, icache hit detection
- EX: Execution (including effecive address calculation)

DF: First-half of data fetch, start dcache access

DS: Second half of data fetch. complete dcache access

— TC: Tag check, dcache hit detection

— WB: Write-back for loads and reg-reg operations

* Longer pipeline results in

— Decreased cycle time
— Increased load-use delay latency and branch resolution latency
— More bypass paths




3. Case Study: MIPS R4000

Load-Use Delay Latency

Time (in clock cycles)

CcC1 CC2 CcCc3 CC4 CCs CCe cc7 ccs CCo9 CC 10 cc11

Instriction memory .w-g Data memory

Instruction 2

LD R1

ADDD R2, R1

Instruction memory .w-g Data memory .

Cycle \Run\Run\ Run\ Run\ Run\ Run\ Run\ st \ St \ St \ st \ St \Run\ﬂun\Run\Run\Run\

Resan [ | [ [ [ [ [ [ [ [ [refet] [ [ [ [ |

Load | IF [ 1S [RF] EX[DF| DS TC| [ DF [ DS [ TC [wB]

|
(F[is[RF[Ex[DF[Ds| | [ [DF|DS[TC[ws]
|

AL L IF [ 1s [ RF ] EX] DF | | | Jor]ps|Tc[ws]
[ [is]RE[ex] [ [ [RF[Ex+|DF[Ds[TC|wB]
(FJws[rr] | [ | | [ex]oF[ps][Tc [ws]

¢ Load-use delay latency increased by one cycle

* Data is forwarded from end of DS stage to end of RF stage

¢ Tag check does not happen until TC!

* On miss, instruction behind load may have bypassed incorrect data

¢ EX stage of dependent instruction needs to be re-executed

8



3. Case Study: MIPS R4000

Branch Resolution Latency

Time (in clock cycles)

CC1 cC2 CC3 CC4 CCs CCe CCc7 CCs CcCo Ccc10 CC 11

T @

Instruction 1 Instruction memory .M-g @

Instruction memo: ’ Data memory

Instr 'ctior'i_' memory 'M-g T‘ Data memory r—‘*
Target Instruction memory 'ﬂ-g Data memory

* Branches are resolved in EX stage

Instruction 2

Instruction 3

¢ Instruction 1 is in the branch delay slot

¢ Use predicted not-taken for instruction 2 and 3

O



