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1. Processor and L1 Cache Interface
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• Processors for computation

• Memories for storage

• Networks for communication

1. Processor and L1 Cache Interface

Approaches to integrate L1 caches into a processor pipeline vary based
on how the L1 memory system timing is encapsulated.

Zero-Cycle Hit Latency with Tightly Coupled Interface
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1. Processor and L1 Cache Interface

Two-Cycle Hit Latency with Val/Rdy Interface
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Parallel Read, Pipelined Write Hit Path
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1. Processor and L1 Cache Interface

Integrating Instruction and Data TLBs
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• TLB miss needs a hardware or software mechanism to refill TLB

• Software handlers need restartable exceptions on page fault

• Need mechanism to cope with the additional latency of a TLB

– Increase the cycle time
– Pipeline the TLB and cache access
– Use virtually addressed caches
– Access TLB and cache in parallel
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2. Analyzing Processor + Cache Performance

2. Analyzing Processor + Cache Performance

How long in cycles will it take to execute the vvadd example assuming
n is 64? Assume cache is initially empty, parallel-read/pipelined-write,
four-way set-associative, write-back/write-allocate, and miss penalty is
two cycles.

loop:
lw r12, 0(r4)
lw r13, 0(r5)
addu r14, r12, r13
sw r14, 0(r6)
addiu r4, r4, 4
addiu r5, r5, 4
addiu r6, r6, 4
addiu r7, r7, -1
bne r7, r0, loop
jr r31
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2. Analyzing Processor + Cache Performance
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3. Case Study: MIPS R4000

3. Case Study: MIPS R4000

C-62 ! Appendix C Pipelining: Basic and Intermediate Concepts

Figure C.41 shows the eight-stage pipeline structure using an abstracted
version of the data path. Figure C.42 shows the overlap of successive instruc-
tions in the pipeline. Notice that, although the instruction and data memory

Figure C.40 The stalls occurring for the MIPS FP pipeline for five of the SPEC89 FP
benchmarks. The total number of stalls per instruction ranges from 0.65 for su2cor to
1.21 for doduc, with an average of 0.87. FP result stalls dominate in all cases, with an
average of 0.71 stalls per instruction, or 82% of the stalled cycles. Compares generate
an average of 0.1 stalls per instruction and are the second largest source. The divide
structural hazard is only significant for doduc. 

Figure C.41 The eight-stage pipeline structure of the R4000 uses pipelined instruction and data caches. The
pipe stages are labeled and their detailed function is described in the text. The vertical dashed lines represent the
stage boundaries as well as the location of pipeline latches. The instruction is actually available at the end of IS, but
the tag check is done in RF, while the registers are fetched. Thus, we show the instruction memory as operating
through RF. The TC stage is needed for data memory access, since we cannot write the data into the register until we
know whether the cache access was a hit or not.
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• 8-stage pipeline with extra stages for instruction/data mem access

– IF: First-half of inst fetch: PC selection and start icache access
– IS: Second half of inst fetch, complete icache access
– RF: Instruction decode, register read, stall logic, icache hit detection
– EX: Execution (including effecive address calculation)
– DF: First-half of data fetch, start dcache access
– DS: Second half of data fetch. complete dcache access
– TC: Tag check, dcache hit detection
– WB: Write-back for loads and reg-reg operations

• Longer pipeline results in

– Decreased cycle time
– Increased load-use delay latency and branch resolution latency
– More bypass paths
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3. Case Study: MIPS R4000

Load-Use Delay Latency
C.6 Putting It All Together: The MIPS R4000 Pipeline ! C-63

occupy multiple cycles, they are fully pipelined, so that a new instruction can
start on every clock. In fact, the pipeline uses the data before the cache hit
detection is complete; Chapter 2 discusses how this can be done in more detail. 

The function of each stage is as follows:

! IF—First half of instruction fetch; PC selection actually happens here,
together with initiation of instruction cache access.

! IS—Second half of instruction fetch, complete instruction cache access.

! RF—Instruction decode and register fetch, hazard checking, and instruction
cache hit detection.

! EX—Execution, which includes effective address calculation, ALU opera-
tion, and branch-target computation and condition evaluation.

! DF—Data fetch, first half of data cache access.

! DS—Second half of data fetch, completion of data cache access.

! TC—Tag check, to determine whether the data cache access hit.

! WB—Write-back for loads and register-register operations.

In addition to substantially increasing the amount of forwarding required, this
longer-latency pipeline increases both the load and branch delays. Figure C.42
shows that load delays are 2 cycles, since the data value is available at the end of

Figure C.42 The structure of the R4000 integer pipeline leads to a 2-cycle load delay. A 2-cycle delay is possible
because the data value is available at the end of DS and can be bypassed. If the tag check in TC indicates a miss, the
pipeline is backed up a cycle, when the correct data are available.
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Chapter 3

54 MIPS R4000 Microprocessor User's Manual

Backing Up the Pipeline
An example of pipeline back-up occurs in a data cache miss, in which the
late detection of the miss causes a subsequent instruction to compute an
incorrect result.

When this occurs, not only must the cache miss be serviced but the EX
stage of the dependent instruction must be re-executed before the pipeline
can be restarted.  Figure 3-7 illustrates this procedure; a minus (–) after
the pipeline stage descriptor (for instance, EX–) indicates the operation
produced an incorrect result, while a plus (+) indicates the successful
re-execution of that operation.

Figure 3-7    Pipeline Overrun
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• Load-use delay latency increased by one cycle

• Data is forwarded from end of DS stage to end of RF stage

• Tag check does not happen until TC!

• On miss, instruction behind load may have bypassed incorrect data

• EX stage of dependent instruction needs to be re-executed
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3. Case Study: MIPS R4000

Branch Resolution Latency

C-64 ! Appendix C Pipelining: Basic and Intermediate Concepts

DS. Figure C.43 shows the shorthand pipeline schedule when a use immediately
follows a load. It shows that forwarding is required for the result of a load
instruction to a destination that is 3 or 4 cycles later.  

Figure C.44 shows that the basic branch delay is 3 cycles, since the branch
condition is computed during EX. The MIPS architecture has a single-cycle
delayed branch. The R4000 uses a predicted-not-taken strategy for the remain-
ing 2 cycles of the branch delay. As Figure C.45 shows, untaken branches are
simply 1-cycle delayed branches, while taken branches have a 1-cycle delay
slot followed by 2 idle cycles. The instruction set provides a branch-likely
instruction, which we described earlier and which helps in filling the branch

 Clock number

Instruction number 1 2 3 4 5 6 7 8

LD R1,... IF IS RF EX DF DS TC WB

DADD R2,R1,... IF IS RF Stall Stall EX DF DS

DSUB R3,R1,... IF IS Stall Stall RF EX DF

OR R4,R1,... IF Stall Stall IS RF EX
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Figure C.43 A load instruction followed by an immediate use results in a 2-cycle stall. Normal forwarding paths
can be used after 2 cycles, so the DADD and DSUB get the value by forwarding after the stall. The OR instruction gets
the value from the register file. Since the two instructions after the load could be independent and hence not stall,
the bypass can be to instructions that are 3 or 4 cycles after the load. 

Figure C.44 The basic branch delay is 3 cycles, since the condition evaluation is performed during EX.
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• Branches are resolved in EX stage

• Instruction 1 is in the branch delay slot

• Use predicted not-taken for instruction 2 and 3
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