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1. Processor and L1 Cache Interface

Approaches to integrate L1 caches into a processor pipeline vary based
on how the L1 memory system timing is encapsulated.

Zero-Cycle Hit Latency with Tightly Coupled Interface
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1. Processor and L1 Cache Interface

Two-Cycle Hit Latency with Val/Rdy Interface
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1. Processor and L1 Cache Interface

Integrating Instruction and Data TLBs
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¢ TLB miss needs a hardware or software mechanism to refill TLB
¢ Software handlers need restartable exceptions on page fault

¢ Need mechanism to cope with the additional latency of a TLB

Increase the cycle time

Pipeline the TLB and cache access
— Use virtually addressed caches
Access TLB and cache in parallel
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2. Analyzing Processor + Cache Performance

How long in cycles will it take to execute the vvadd example assuming
n is 64? Assume cache is initially empty, parallel-read/pipelined-write,
four-way set-associative, write-back/write-allocate, and miss penalty is
two cycles.

loop:

1w r12, 0(r4d)

1w r13, 0(r5)
addu ri14, ri12, ri13
sW ri4, 0(r6)
addiu r4, 14, 4
addiu r5, 15, 4
addiu r6, 16, 4
addiu r7, 7, -1
bne r7, 1r0, loop
jr r31
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3. Case Study: MIPS R4000

3. Case Study: MIPS R4000

IF IS RF EX DF DS TC WB

Instruction memory H Reg ’ Data memory

* 8-stage pipeline with extra stages for instruction/data mem access

IF: First-half of inst fetch: PC selection and start icache access

IS: Second half of inst fetch, complete icache access

— RF: Instruction decode, register read, stall logic, icache hit detection
- EX: Execution (including effecive address calculation)

DF: First-half of data fetch, start dcache access

DS: Second half of data fetch. complete dcache access

— TC: Tag check, dcache hit detection

— WB: Write-back for loads and reg-reg operations

* Longer pipeline results in

— Decreased cycle time
— Increased load-use delay latency and branch resolution latency
— More bypass paths
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Load-Use Delay Latency

Time (in clock cycles)
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Instruction 2
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¢ Load-use delay latency increased by one cycle

* Data is forwarded from end of DS stage to end of RF stage

¢ Tag check does not happen until TC!

* On miss, instruction behind load may have bypassed incorrect data

¢ EX stage of dependent instruction needs to be re-executed
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Branch Resolution Latency

Time (in clock cycles)
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* Branches are resolved in EX stage

Instruction 2

Instruction 3

¢ Instruction 1 is in the branch delay slot

¢ Use predicted not-taken for instruction 2 and 3
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