
ECE 4750 Computer Architecture, Fall 2015

T04 Fundamental Memory Microarchitecture

School of Electrical and Computer Engineering
Cornell University

revision: 2015-10-14-13-18

1 Memory Microarchitectural Design Patterns 3

1.1. Transactions and Steps . 3

1.2. Microarchitecture Overview . 4

2 FSM Cache 5

2.1. High-Level Idea for FSM Cache . 6

2.2. FSM Cache Datapath . 7

2.3. FSM Cache Control Unit . 9

2.4. Analyzing Performance . 10

3 Pipelined Cache 12

3.1. High-Level Idea for Pipelined Cache 13

3.2. Pipelined Cache Datapath and Control Unit 14

3.3. Analyzing Performance . 20

3.4. Pipelined Cache with TLB . 22

3.5. Cache Microarchitecture Optimizations 26

4 Case Study: ARM Cortex A8 and Intel Core i7 33

4.1. ARM Cortex A8 . 33

1

4.2. Intel Core i7 . 34

2

1. Memory Microarchitectural Design Patterns 1.1. Transactions and Steps

1. Memory Microarchitectural Design Patterns

Time
Mem Access Sequence

=
Mem Accesses

Sequence
× Avg Cycles

Mem Access
× Time

Cycle

Avg Cycles
Mem Access

=
Avg Cycles

Hit
+

(
Num Misses

Num Accesses
× Avg Extra Cycles

Miss

)

Extra Accesses
Microarchitecture Hit Latency for Translation

FSM Cache >1 1+
Pipelined Cache ≈1 1+
Pipelined Cache + TLB ≈1 ≈0

1.1. Transactions and Steps

• We can think of each memory access as a transaction

• Executing a memory access involves a sequence of steps

– Check Tag : Check one or more tags in cache
– Select Victim : Select victim line from cache using replacement policy
– Evict Victim : Evict victim line from cache and write victim to memory
– Refill : Refill requested line by reading line from memory
– Write Mem : Write requested word to memory
– Access Data : Read or write requested word in cache

3

1. Memory Microarchitectural Design Patterns 1.1. Transactions and Steps

Steps for Write-Through
with No Write Allocate

Steps for Write-Back
with Write Allocate

1.2. Microarchitecture
Overview

Control Status

Control Unit

Datapath

>1 cycle
combinational

Main Memory

Tag
Array

mreq mresp

Data
Array

cachereq cacheresp

128b

32b

mmureq mmuresp32b

Memory Management Unit

4

2. FSM Cache

2. FSM Cache

Time
Mem Access Sequence

=
Mem Accesses

Sequence
× Avg Cycles

Mem Access
× Time

Cycle

Avg Cycles
Mem Access

=
Avg Cycles

Hit
+

(
Num Misses

Num Accesses
× Avg Extra Cycles

Miss

)

Extra Accesses
Microarchitecture Hit Latency for Translation

FSM Cache >1 1+
Pipelined Cache ≈1 1+
Pipelined Cache + TLB ≈1 ≈0

Assumptions

• Page-based translation, no
TLB, physically addr cache

• Single-ported combinational
SRAMs for tag, data storage

• Unrealistic combinational
main memory

• Cache requests are 4 B

Configuration

• Four 16 B cache lines
• Two-way set-associative
• Replacement policy: LRU
• Write policy: write-through,

no write allocate

Control Status

Control Unit

Datapath

>1 cycle
combinational

Main Memory

Tag
Array

mreq mresp

Data
Array

cachereq cacheresp

128b

32b

mmureq mmuresp32b

Memory Management Unit

5

2. FSM Cache 2.1. High-Level Idea for FSM Cache

2.1. High-Level Idea for FSM Cache

Check
Tag

Select
Victim

Write
Mem

Refill

Access
Data

read hit

read miss

write

write hit

read
hit

write
hit

read
miss

read
hit

read
hit

F
S
M

Check
Tag

Access
Data

Check
Tag

Access
Data

Tag
Check

Select
Victim

Write
Mem

Refill Access
Data

Check
Tag

Access
Data

Check
Tag

Access
Data

Check
Tag

Access
Data

Check
Tag

Access
Data

Check
Tag

Access
Data

6

2. FSM Cache 2.2. FSM Cache Datapath

2.2. FSM Cache Datapath

As with processors, we can design our cache datapath by incrementally
adding support for each transaction and resolving conflicts using muxes.

Implementing READ transactions that hit

=

offtagidx idxcache
req.

addr
W

ay
 0

Data
Array

tarray0
_match

128b
[31:0]

[63:32]

[95:64]

[127:96]
32b

cache
resp.
data

=

tagidx

W
ay

 1

tarray1
_match

Tag
Array

2b

ta
rr

ay
0_

en

ta
rr

ay
0_

en

darray_en

00offidx

27b 1b 2b

tag

MT

MRD

read
hit

MT: Check tag
MRD: Read data array, return cacheresp

v
ic

ti
m

v
ic

ti
m

_s
el

!cachereq_val

Implementing READ transactions that miss

=

offtagidx idxcache
req.

addr

W
ay

 0

Data
Array

tarray0
_match

128b
[31:0]

[63:32]

[95:64]

[127:96]
32b

cache
resp.
data

=

tagidx

W
ay

 1

tarray1
_match

Tag
Array

2b

ta
rr

ay
0_

en

ta
rr

ay
0_

en

darray_en

00offidx

27b 1b 2b

tag

MT

MRD

read
hit

MT: Check tag
MRD: Read data array, return cacheresp

v
ic

ti
m

v
ic

ti
m

_s
el

!cachereq_val

darray_wen

tagtag

ta
rr

ay
0_

w
en

ta
rr

ay
0_

w
en

z4b

memreq.
addr

memresp.
data

128b darray_en

R0

R1

read
miss

word
enable

R0: Send refill memreq, get memresp
R1: Write data array with refill cache line

1111

7

2. FSM Cache 2.2. FSM Cache Datapath

Implementing WRITE transactions that miss

=

offtagidx idxcache
req.

addr

W
ay

 0

Data
Array

tarray0
_match

128b
[31:0]

[63:32]

[95:64]

[127:96]
32b

cache
resp.
data

=

tagidx

W
ay

 1

tarray1
_match

Tag
Array

2b
ta

rr
ay

0_
en

ta
rr

ay
0_

en

darray_en

00offidx

27b 1b 2b

tag

MT

MRD

read
hit

MT: Check tag
MRD: Read data array, return cacheresp

v
ic

ti
m

v
ic

ti
m

_s
el

!cachereq_val

darray_wen

tagtag

ta
rr

ay
0_

w
en

ta
rr

ay
0_

w
en

z4b

memreq.
addr

memresp.
data

128b darray_en

R0

R1

read
miss

word
enable

R0: Send refill memreq, get memresp
R1: Write data array with refill cache line

1111

memreq.
addr

z4b

z4b_sel

cache
req.

data

32b

memreq.
data

zext

128bMWD

write

MWD: Send write memreq, write data array

Implementing WRITE transactions that hit

=

offtagidx idxcache
req.

addr

W
ay

 0

Data
Array

tarray0
_match

128b
[31:0]

[63:32]

[95:64]

[127:96]
32b

cache
resp.
data

=

tagidx

W
ay

 1

tarray1
_match

Tag
Array

2b

ta
rr

ay
0_

en

ta
rr

ay
0_

en

darray_en

00offidx

27b 1b 2b

tag

MT

MRD

read
hit

MT: Check tag
MRD: Read data array, return cacheresp

v
ic

ti
m

v
ic

ti
m

_s
el

!cachereq_val

darray_wen

tagtag

ta
rr

ay
0_

w
en

ta
rr

ay
0_

w
en

z4b

memreq.
addr

memresp.
data

128b darray_en

R0

R1

read
miss

word
enable

R0: Send refill memreq, get memresp
R1: Write data array with refill cache line

1111

memreq.
addr

z4b

z4b_sel

cache
req.

data

32b

memreq.
data

zext

128bMWD

write

MWD: Send write memreq, write data array

128brepl
unit

128b

darray_
write_

sel

off

word
enable

1111

word_
en_sel

8

2. FSM Cache 2.3. FSM Cache Control Unit

2.3. FSM Cache Control Unit

MT MRD

read
hit

R0 R1read
miss

MWD

write

We will need to keep valid bits in the control unit, with one valid bit for
every cache line. We will also need to keep use bits which are updated
on every access to indicate which was the last “used” line. Assume we
create the following two internal control signals to be used in the FSM
control unit.

hit = (tarray0_match && valid0[idx])
|| (tarray1_match && valid1[idx])

victim = !use[idx]

tarray0 tarray1 darray darray worden z4b memreq cachresp

en wen en wen en wen sel sel sel val op val

MT

MRD

R0

R1

MWD

9

2. FSM Cache 2.4. Analyzing Performance

2.4. Analyzing Performance

Time
Mem Access Sequence

=
Mem Accesses

Sequence
× Avg Cycles

Mem Access
× Time

Cycle

Avg Cycles
Mem Access

=
Avg Cycles

Hit
+

(
Num Misses

Num Accesses
× Avg Extra Cycles

Miss

)
Estimating cycle time

=

offtagidx idxcache
req.

addr

W
ay

 0

Data
Array

tarray0
_match

128b
[31:0]

[63:32]

[95:64]

[127:96]
32b

cache
resp.
data

=

tagidx

W
ay

 1
tarray1
_match

Tag
Array

2b

ta
rr

ay
0_

en

ta
rr

ay
0_

en

darray_en

00offidx

27b 1b 2b

tag

MT

MRD

read
hit

MT: Check tag
MRD: Read data array, return cacheresp

v
ic

ti
m

v
ic

ti
m

_s
el

!cachereq_val

darray_wen

tagtag

ta
rr

ay
0_

w
en

ta
rr

ay
0_

w
en

z4b

memreq.
addr

memresp.
data

128b darray_en

R0

R1

read
miss

word
enable

R0: Send refill memreq, get memresp
R1: Write data array with refill cache line

1111

memreq.
addr

z4b

z4b_sel

cache
req.

data

32b

memreq.
data

zext

128bMWD

write

MWD: Send write memreq, write data array

128brepl
unit

128b

darray_
write_

sel

off

word
enable

1111

word_
en_sel

• register read/write = 1τ

• tag array read/write = 10τ

• data array read/write = 10τ

• mem read/write = 20τ

• decoder = 3τ

• comparator = 10τ

• mux = 3τ

• repl unit = 0τ

• z4b = 0τ

10

2. FSM Cache 2.4. Analyzing Performance

Estimating AMAL

Consider the following sequence of memory acceses which might corre-
spond to copying 4 B elements from a source array to a destination array.
Each array contains 64 elements. What is the AMAL?

rd 0x1000
wr 0x2000
rd 0x1004
wr 0x2004
rd 0x1008
wr 0x2008
...
rd 0x1040
wr 0x2040

Consider the following sequence of memory acceses which might corre-
spond to incrementing 4 B elements in an array. The array contains 64
elements. What is the AMAL?

rd 0x1000
wr 0x1000
rd 0x1004
wr 0x1004
rd 0x1008
wr 0x1008
...
rd 0x1040
wr 0x1040

11

3. Pipelined Cache

3. Pipelined Cache

Time
Mem Access Sequence

=
Mem Accesses

Sequence
× Avg Cycles

Mem Access
× Time

Cycle

Avg Cycles
Mem Access

=
Avg Cycles

Hit
+

(
Num Misses

Num Accesses
× Avg Extra Cycles

Miss

)

Extra Accesses
Microarchitecture Hit Latency for Translation

FSM Cache >1 1+
Pipelined Cache ≈1 1+
Pipelined Cache + TLB ≈1 ≈0

Assumptions

• Page-based translation, no
TLB, physically addr cache

• Single-ported combinational
SRAMs for tag, data storage

• Unrealistic combinational
main memory

• Cache requests are 4 B

Configuration

• Four 16 B cache lines
• Direct-mapped
• Replacement policy: LRU
• Write policy: write-through,

no write allocate

Control Status

Control Unit

Datapath

>1 cycle
combinational

Main Memory

Tag
Array

mreq mresp

Data
Array

cachereq cacheresp

128b

32b

mmureq mmuresp32b

Memory Management Unit

12

3. Pipelined Cache 3.1. High-Level Idea for Pipelined Cache

3.1. High-Level Idea for Pipelined Cache

Check
Tag

Select
Victim

Write
Mem

Refill

Access
Data

read hit

read miss

write

write hit

read
hit

write
hit

read
miss

read
hit

read
hit

F
S
M

Check
Tag

Access
Data

Check
Tag

Access
Data

Tag
Check

Select
Victim

Write
Mem

Refill Access
Data

Check
Tag

Access
Data

Check
Tag

Access
Data

Check
Tag

Access
Data

Check
Tag

Access
Data

Check
Tag

Access
Data

read
hit

write
hit

read
hit

read
miss

read
hit

Refill

P
ip
el
in
ed

Check
Tag

Access
Data

Check
Tag

Mem
Write

Tag
Check

Select
Victim

Access
Data

Access
Data

Check
Tag

Access
Data

Check
Tag

Access
Data

Check
Tag

Access
Data

Check
Tag

Access
Data

Check
Tag

Access
Data

13

3. Pipelined Cache 3.2. Pipelined Cache Datapath and Control Unit

3.2. Pipelined Cache Datapath and Control Unit

As with processors, we incrementally adding support for each transac-
tion and resolving conflicts using muxes.

Implementing READ transactions that hit

=

offtagidx idxcache
req.
addr

Data
Array

tarray
_match

128b
[31:0]

[63:32]

[95:64]

[127:96]
32b

cache
resp.
data

ta
rr
ay
_e
n

darray_en

Tag
Array

M0 Stage M1 Stage

00offidx

26b 2b 2b

tag

Implementing WRITE transactions that hit

=

offtagidx idxcache
req.
addr

Data
Array

tarray
_match

128b
[31:0]

[63:32]

[95:64]

[127:96]
32b

cache
resp.
data

ta
rr
ay
_e
n

darray_en

Tag
Array

M0 Stage M1 Stage

00offidx

26b 2b 2b

tag

memreq.
addr

cache
req.
data

32b

memreq.
data

zext

128b

repl
unit

128b

off

darray_en
darray_wen

14

3. Pipelined Cache 3.2. Pipelined Cache Datapath and Control Unit

Implementing transactions that miss

=

offtagidx idxcache
req.

addr

Data
Array

tarray
_match

128b
[31:0]

[63:32]

[95:64]

[127:96]
32b

cache
resp.
data

ta
rr

ay
_e

n

darray_en

Tag
Array

M0 Stage M1 Stage

00offidx

26b 2b 2b

tag

memreq.
addr

cache
req.

data

32b

memreq.
data

zext

128b

repl
unit

128b

off

darray_en
darray_wen

z4b

z4b_sel

word
enable

1111

word_en_sel

memresp.
data

128b

128b

darray_
write_

mux_sel

tag

ta
rr

ay
_w

en

pipe

R0

R1

miss

M0 Stage
FSM

• Hybrid pipeline/FSM design pattern
• Hit path is pipelined with two-cycle hit latency
• Miss path stalls in M0 stage to refill cache line

Pipeline diagram for pipelined cache with 2-cycle hit latency

rd (hit)

wr (hit)

rd (miss)

rd (miss)

wr (miss)

rd (hit)

15

3. Pipelined Cache 3.2. Pipelined Cache Datapath and Control Unit

Parallel read with pipelined write datapath

=

offtagidx idxcache
req.

addr

Data
Array

tarray
_match

128b
[31:0]

[63:32]

[95:64]

[127:96]
32b

cache
resp.
data

ta
rr

ay
_e

n

darray_en

Tag
Array

M0 Stage M1 Stage

00offidx

26b 2b 2b

tag

memreq.
addr

cache
req.

data

32b

memreq.
data

zext

128b

repl
unit

128b

off

darray_en
darray_wen

z4b

z4b_sel

word
enable

1111

word_en_sel

memresp.
data

128b

128b

darray_
write_

mux_sel

tag

ta
rr

ay
_w

en

pipe

R0

R1

miss

M0 Stage
FSM

p
ar

al
le

l_
re

ad
_s

el

Pipeline diagram for parallel read with pipelined write

rd (hit)

rd (hit)

rd (hit)

wr (hit)

wr (hit)

rd (hit)

• Achieves single-cycle hit latency for reads
• Two-cycle hit latency for writes, but is this latency observable?
• With write acks, send write-ack back in M0 stage
• How do we resolve structural hazards?

16

3. Pipelined Cache 3.2. Pipelined Cache Datapath and Control Unit

Resolving structural hazard by exposing in ISA

rd (hit)

wr (hit)

nop

rd (hit)

Resolving structural hazard with hardware stalling

rd (hit)

wr (hit)

rd (hit)

ostall_Y = val_Y && (type_Y == RD)
&& val_M0 && (type_M0 == WR)

Resolving structural hazard with hardware duplication

rd (hit)

wr (hit)

rd (hit)

Resolving RAW data hazard with software scheduling

Software scheduling: hazard depends on memory address, so difficult to
know at compile time!

Resolving RAW data hazard with hardware stalling

ostall_Y = ...

17

3. Pipelined Cache 3.2. Pipelined Cache Datapath and Control Unit

Resolving RAW data hazard with hardware bypassing

We could use the previous stall signal as our bypass signal, but we will
also need a new bypass path in our datapath. Draw this new bypass path
on the following datapath diagram.

=

offtagidx idxcache
req.

addr

Data
Array

tarray
_match

128b
[31:0]

[63:32]

[95:64]

[127:96]
32b

cache
resp.
data

ta
rr

ay
_e

n

darray_en

Tag
Array

M0 Stage M1 Stage

00offidx

26b 2b 2b

tag

memreq.
addr

cache
req.

data

32b

memreq.
data

zext

128b

repl
unit

128b

off

darray_en
darray_wen

z4b

z4b_sel

word
enable

1111

word_en_sel

memresp.
data

128b

128b

darray_
write_

mux_sel

tag
ta

rr
ay

_w
en

pipe

R0

R1

miss

M0 Stage
FSM

p
ar

al
le

l_
re

ad
_s

el

18

3. Pipelined Cache 3.2. Pipelined Cache Datapath and Control Unit

Parallel read and pipelined write in set associative caches

To implement parallel read in set-associative caches, we must specula-
tively read a line from each way in parallel with tag check. This can
be expensive in terms of latency, motivating two-cycle hit latencies for
highly associative caches.

offidxcache
req.

addr

Data
Array

[31:0]

[63:32]

[95:64]

[127:96]
32b

cache
resp.
datadarray_en

M0 Stage M1 Stage

00offidx

26b 2b 2b

tag

=

tagidx

W
ay

 0

tarray0
_match

=

tagidx

W
ay

 1

tarray1
_match

Tag
Array

ta
rr

ay
0_

en

ta
rr

ay
0_

en

tagtag

ta
rr

ay
0_

w
en

ta
rr

ay
0_

w
en

W
ay

 0

W
ay

 1
memreq.

addr

cache
req.

data

32b

memreq.
data

zext

128b

repl
unit

128b

off

darray_en
darray_wen

z4b

z4b_sel

word
enable

1111

word_en_sel

memresp.
data

128b

128b

darray_
write_

mux_sel

pipe

R0

R1

miss

MT Stage
FSM

w
ay

_s
el

p
ar

al
le

l_
re

ad
_s

el

19

3. Pipelined Cache 3.3. Analyzing Performance

3.3. Analyzing Performance

Time
Mem Access Sequence

=
Mem Accesses

Sequence
× Avg Cycles

Mem Access
× Time

Cycle

Avg Cycles
Mem Access

=
Avg Cycles

Hit
+

(
Num Misses

Num Accesses
× Avg Extra Cycles

Miss

)

Estimating cycle time

=

offtagidx idxcache
req.

addr

Data
Array

tarray
_match

128b
[31:0]

[63:32]

[95:64]

[127:96]
32b

cache
resp.
data

ta
rr

ay
_e

n

darray_en

Tag
Array

M0 Stage M1 Stage

00offidx

26b 2b 2b

tag

memreq.
addr

cache
req.

data

32b

memreq.
data

zext

128b

repl
unit

128b

off

darray_en
darray_wen

z4b

z4b_sel

word
enable

1111

word_en_sel

memresp.
data

128b

128b

darray_
write_

mux_sel

tag

ta
rr

ay
_w

en

pipe

R0

R1

miss

M0 Stage
FSM

p
ar

al
le

l_
re

ad
_s

el

• register read/write = 1τ

• tag array read/write = 10τ

• data array read/write = 10τ

• mem read/write = 20τ

• decoder = 3τ

• comparator = 10τ

• mux = 3τ

• repl unit = 0τ

• z4b = 0τ

20

3. Pipelined Cache 3.3. Analyzing Performance

Estimating AMAL

Consider the following sequence of memory acceses which might corre-
spond to copying 4 B elements from a source array to a destination array.
Each array contains 64 elements. What is the AMAL?

rd 0x1000

wr 0x2000

rd 0x1004

wr 0x2004

rd 0x1008

wr 0x2008

rd 0x100c

wr 0x200c

wr 0x1010

21

3. Pipelined Cache 3.4. Pipelined Cache with TLB

3.4. Pipelined Cache with TLB

How should we integrate a MMU (TLB) into a pipelined cache?

Physically Addressed Caches

Perform memory translation before cache access

TLBProcessor Cache Main
Memory

VA PA PA

• Advantages:

– Physical addresses are unique, so cache entries are unique
– Updating memory translation simply requires changing TLB

• Disadvantages:

– Increases hit latency

Virtually Addressed Caches

Perform memory translation after or in parallel with cache access

CacheProcessor TLB Main
Memory

VA VA PA

Cache

Processor

TLB

Main
Memory

VA PA

22

3. Pipelined Cache 3.4. Pipelined Cache with TLB

• Advantages:

– Simple one-step process for hits

• Disadvantages:

– Intra-program protection (store protection bits in cache?)
– I/O uses physical addr (map into virtual addr space?)
– Virtual address homonyms
– Virtual address synonyms (aliases)

Virtual Address Homonyms

Single virtual address points to two physical address.

Program 2
Page Table

Program 1
Page Table

Physical Address
Space

Physical
Page

Physical
Page

Physical
Page

Physical
Page

Page in PMem

Page not allocated

0x3000
VA0

V Tag Data

Way 0

0x3000
VA0

0x7000
PA0

0x5000
PA1

0x30001 0xcafe

Way 1
Way 2
Way 3

• Example scenario

– Program 1 brings VA 0x3000 into cache
– Program 1 is context swapped for program 2
– Program 2 hits in cache, but gets incorrect data!

• Potential solutions

– Flush cache on context swap
– Store program ids (address space IDS) in cache

23

3. Pipelined Cache 3.4. Pipelined Cache with TLB

Virtual Address Synonyms (Aliases)

Program 2
Page Table

Program 1
Page Table

Physical Address
Space

Physical
Page

Physical
Page

Physical
Page

Physical
Page

Page in PMem

Page not allocated

0x3000
VA0

V Tag Data

0x1000
VA1

0x4000
PA0

0x30001 0xcafeWay 0
Way 1
Way 2
Way 3

0x10001 0xbeef

• Example scenarios

– User and OS can potentially have different VAs point to same PA
– Memory map the same file (via mmap) in two different programs

• Potential solutions

– Hardware checks all ways (and potentially different sets) on a miss to
ensure that a given physical address can only live in one location in cache

– Software forces aliases to share some address bits (page coloring)
reducing the number of sets we need to check on a miss (or reducing the
need to check any other locations for a direct mapped cache)

24

3. Pipelined Cache 3.4. Pipelined Cache with TLB

Virtually Indexed and Physically Tagged Caches

PPN off

VPN off

Virtual Address

Physical
Tag

(k bits)

TLB
Direct Mapped $

2n lines
2b-byte cacheline

idx

Virtual
Index

(n bits)

Page
Offset

(m bits)

=

hit?

Physical
Tag

(k bits)

Virtual
Page Num

(v bits)

• Page offset is the same in VA and PA

• Up to n bits of physical address available without translation

• If index bits + cache offset (n+b) < page offset bits (m), can do
translation in parallel with reading out the physical tag and data

• Complete (physical) tag check once tag/data access complete

• With 4 KB pages, direct-mapped cache must be <= 4 KB

• Larger page sizes (decrease k) or higher associativity (decrease n)
enable larger virtually indexed, physically tagged caches

25

3. Pipelined Cache 3.5. Cache Microarchitecture Optimizations

3.5. Cache Microarchitecture Optimizations

MMUProcessor Cache
Main
Memory

Hit
Latency

Miss
Penalty

AMAL = Hit Latency + (Miss Rate ×Miss Penalty)

• Reduce hit time

– Small and simple caches

• Reduce miss penalty

– Multi-level cache hierarchy
– Prioritize reads

• Reduce miss rate

– Large block size
– Large cache size
– High associativity
– Hardware prefetching
– Compiler optimizations

Reduce Hit Latency: Small & Simple Caches

2.2 Ten Advanced Optimizations of Cache Performance ! 81

Second Optimization: Way Prediction to Reduce Hit Time

Another approach reduces conflict misses and yet maintains the hit speed of
direct-mapped cache. In way prediction, extra bits are kept in the cache to predict
the way, or block within the set of the next cache access. This prediction means
the multiplexor is set early to select the desired block, and only a single tag
comparison is performed that clock cycle in parallel with reading the cache data.
A miss results in checking the other blocks for matches in the next clock cycle.

Added to each block of a cache are block predictor bits. The bits select which
of the blocks to try on the next cache access. If the predictor is correct, the cache
access latency is the fast hit time. If not, it tries the other block, changes the way
predictor, and has a latency of one extra clock cycle. Simulations suggest that set
prediction accuracy is in excess of 90% for a two-way set associative cache and
80% for a four-way set associative cache, with better accuracy on I-caches than
D-caches. Way prediction yields lower average memory access time for a two-
way set associative cache if it is at least 10% faster, which is quite likely. Way
prediction was first used in the MIPS R10000 in the mid-1990s. It is popular in
processors that use two-way set associativity and is used in the ARM Cortex-A8
with four-way set associative caches. For very fast processors, it may be chal-
lenging to implement the one cycle stall that is critical to keeping the way predic-
tion penalty small.

Figure 2.4 Energy consumption per read increases as cache size and associativity
are increased. As in the previous figure, CACTI is used for the modeling with the same
technology parameters. The large penalty for eight-way set associative caches is due to
the cost of reading out eight tags and the corresponding data in parallel.

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

E
ne

rg
y

pe
r

re
ad

 in
 n

an
o

jo
ul

es

Cache size
16 KB 32 KB 64 KB 128 KB 256 KB

1-way 2-way
8-way4-way

26

3. Pipelined Cache 3.5. Cache Microarchitecture Optimizations

Reduce Miss Rate: Large Block Size

• Less tag overhead
• Exploit fast burst transfers from DRAM and over wide on-chip busses
• Can waste bandwidth if data is not used
• Fewer blocks→more conflicts

Reduce Miss Rate: Large Cache Size or High Associativity

If cache size is doubled,
miss rate usually drops
by about

√
2

Direct-mapped cache of
size N has about the
same miss rate as a
two-way set-associative
cache of size N/2

27

3. Pipelined Cache 3.5. Cache Microarchitecture Optimizations

Reduce Miss Rate: Hardware Prefetching

Proc
Prefetch
Buffer

L1
D$

Main
Memory

Tag Cache Line

• Previous techniques only help capacity and conflict misses
• Hardware prefetcher looks for patterns in miss address stream
• Attempts to predict what the next miss might be
• Prefetches this next miss into a pfetch buffer
• Very effective in reducing compulsory misses for streaming accesses

28

3. Pipelined Cache 3.5. Cache Microarchitecture Optimizations

Reduce Miss Rate: Compiler Optimizations

• Restructuring code affects the data block access sequence

– Group data accesses together to improve spatial locality
– Re-order data accesses to improve temporal locality

• Prevent data from entering the cache

– Useful for variales that will only be accessed once before eviction
– Needs mechanism for software to tell hardware not to cache data

(“no-allocate” instruction hits or page table bits)

• Kill data that will never be used again

– Streaming data exploits spatial locality but not temporal locality
– Replace into dead-cache locations

Loop Interchange and Fusion

What type of locality does each optimization improve?

��for(j=0; j < N; j++) {
 for(i=0; i < M; i++) {
 x[i][j] = 2 * x[i][j];
 }
 }

 for(i=0; i < M; i++) {
 for(j=0; j < N; j++) {
 x[i][j] = 2 * x[i][j];
 }
 }

What type of locality does this improve?

for(i=0; i < N; i++)

 a[i] = b[i] * c[i];

for(i=0; i < N; i++)

 d[i] = a[i] * c[i];

 for(i=0; i < N; i++)

{

 a[i] = b[i] * c[i];

 d[i] = a[i] * c[i];

 }

What type of locality does this improve?

29

3. Pipelined Cache 3.5. Cache Microarchitecture Optimizations

Matrix Multiply with Naive Code

�����for(i=0; i < N; i++)
 for(j=0; j < N; j++) {
 r = 0;
 for(k=0; k < N; k++)
 r = r + y[i][k] * z[k][j];
 x[i][j] = r;
 }

Not touched Old access New access

x j

i

y k

i

z j

k

Matrix Multiply with Cache Tiling

�for(jj=0; jj < N; jj=jj+B)

 for(kk=0; kk < N; kk=kk+B)

 for(i=0; i < N; i++)

 for(j=jj; j < min(jj+B,N); j++) {

 r = 0;

 for(k=kk; k < min(kk+B,N); k++)

 r = r + y[i][k] * z[k][j];

 x[i][j] = x[i][j] + r;

 }

y k

i

z j

k

x j

i

30

3. Pipelined Cache 3.5. Cache Microarchitecture Optimizations

Reduce Miss Penalty: Multi-Level Caches

Processor L1 Cache L2 Cache

Hit

L1 Miss -- L2 Hit

Main
Memory

AMALL1 = Hit Latency of L1 + (Miss Rate of L1 × AMALL2)

AMALL2 = Hit Latency of L2 + (Miss Rate of L2 ×Miss Penalty of L2)

• Local miss rate = misses in cache / accesses to cache
• Global miss rate = misses in cache / processor memory accesses
• Misses per instruction = misses in cache / number of instructions

Reduce Miss Penalty: Multi-Level Caches

• Use smaller L1 is there is also a L2

– Trade increased L1 miss rate for reduced L1 hit time & L1 miss penalty
– Reduces average access energy

• Use simpler write-through L1 with on-chip L2

– Write-back L2 cahce absorbs write traffic, doesn’t go off-chip
– Simplifies processor pipeline
– Simplifies on-chip coherence issues

• Inclusive Multilevel Cache

– Inner cache holds copy of data in outer cache
– External coherence is simpler

• Exclusive Multilevel Cache

– Inner cache may hold data in outer cache
– Swap lines between inner/outer cache on miss

31

3. Pipelined Cache 3.5. Cache Microarchitecture Optimizations

Reduce Miss Penalty: Prioritize Reads

Processor Cache
Main

Memory

Hit

Miss

Write Buffer

• Processor not stalled on writes, and read misses can go ahead of writes to
main memory

• Write buffer may hold updated value of location needed by read miss

– On read miss, wait for write buffer to be empty
– Check write buffer addresses and bypass

Cache Optimizations Impact on Average Memory Access Latency

Hit Miss Miss
Technique Lat Rate Penalty BW HW

Smaller caches − + 0
Avoid TLB before indexing − 1

Large block size − + 0
Large cache size + − 1
High associativity + − 1
Hardware prefetching − 2
Compiler optimizations − 0

Multi-level cache − 2
Prioritize reads − 1

Pipelining + + 1

32

4. Case Study: ARM Cortex A8 and Intel Core i7 4.1. ARM Cortex A8

4. Case Study: ARM Cortex A8 and Intel Core i7

4.1. ARM Cortex A8

2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7 ! 115

memory. Figure 2.16 shows how the 32-bit virtual address is used to index the
TLB and the caches, assuming 32 KB primary caches and a 512 KB secondary
cache with 16 KB page size.

Performance of the Cortex-A8 Memory Hierarchy

The memory hierarchy of the Cortex-A8 was simulated with 32 KB primary
caches and a 1 MB eight-way set associative L2 cache using the integer
Minnespec benchmarks (see KleinOsowski and Lilja [2002]). Minnespec is a
set of benchmarks consisting of the SPEC2000 benchmarks but with different
inputs that reduce the running times by several orders of magnitude. Although
the use of smaller inputs does not change the instruction mix, it does affect the

Figure 2.16 The virtual address, physical address, indexes, tags, and data blocks for the ARM Cortex-A8 data
caches and data TLB. Since the instruction and data hierarchies are symmetric, we show only one. The TLB (instruc-
tion or data) is fully associative with 32 entries. The L1 cache is four-way set associative with 64-byte blocks and 32 KB
capacity. The L2 cache is eight-way set associative with 64-byte blocks and 1 MB capacity. This figure doesn’t show
the valid bits and protection bits for the caches and TLB, nor the use of the way prediction bits that would dictate the
predicted bank of the L1 cache.

Virtual add ress <32>

Physical address <32>

Virtual page number <18> Page offset <14>

L2 tag compare address <15> L2 cache index <11> Block offset <6>

TLB data <19>

L2 cache tag <15> L2 data <512>

=?

=?

To CPU

To CPU

To CPU

To L1 cache or CPU

L1 cache index <7> Block offset <6>

L1 cache tag <19> L1 data <64>

TLB tag <19>

• L1 data cache

– 32 KB, 64 B cache lines, 4-way set-associative with random replacement
– 32K/64 = 512 cache lines, 128 lines per set (set index = 7 bits)
– Virtually indexed, physically tagged with single-cycle hit latency

• Memory management unit

– TLB with multi-level page tables in physical memory
– TLB has 32 entries, fully associative, hardware TLB miss handler
– Variable page size: 4 KB, 16 KB, 64 KB, 1 MB, 16 MB (fig shows 16 KB)
– TLB tag entries can have wildcards to support multiple page sizes

• L2 cache

– 1 MB, 64 B cache lines, 8-way set-associative
– 1M/64 = 16K cache lines, 2K lines per set (set index = 11 bits)
– Physically addressed with multi-cycle hit latency

33

4. Case Study: ARM Cortex A8 and Intel Core i7 4.2. Intel Core i7

4.2. Intel Core i7

118 ! Chapter Two Memory Hierarchy Design

described in Chapter 4. In 2010, the fastest i7 had a clock rate of 3.3 GHz, which
yields a peak instruction execution rate of 13.2 billion instructions per second, or
over 50 billion instructions per second for the four-core design.

The i7 can support up to three memory channels, each consisting of a sepa-
rate set of DIMMs, and each of which can transfer in parallel. Using DDR3-1066
(DIMM PC8500), the i7 has a peak memory bandwith of just over 25 GB/sec.

i7 uses 48-bit virtual addresses and 36-bit physical addresses, yielding a max-
imum physical memory of 36 GB. Memory management is handled with a two-
level TLB (see Appendix B, Section B.4), summarized in Figure 2.19.

Figure 2.20 summarizes the i7’s three-level cache hierarchy. The first-level
caches are virtually indexed and physically tagged (see Appendix B, Section B.3),
while the L2 and L3 caches are physically indexed. Figure 2.21 is labeled with the

Characteristic Instruction TLB Data DLB Second-level TLB

Size 128 64 512

Associativity 4-way 4-way 4-way

Replacement Pseudo-LRU Pseudo-LRU Pseudo-LRU

Access latency 1 cycle 1 cycle 6 cycles

Miss 7 cycles 7 cycles Hundreds of cycles to access
page table

Figure 2.19 Characteristics of the i7’s TLB structure, which has separate first-level
instruction and data TLBs, both backed by a joint second-level TLB. The first-level
TLBs support the standard 4 KB page size, as well as having a limited number of entries
of large 2 to 4 MB pages; only 4 KB pages are supported in the second-level TLB.

Characteristic L1 L2 L3

Size 32 KB I/32 KB D 256 KB 2 MB per core

Associativity 4-way I/8-way D 8-way 16-way

Access latency 4 cycles, pipelined 10 cycles 35 cycles

Replacement scheme Pseudo-LRU Pseudo-
LRU

Pseudo-LRU but with an
ordered selection algorihtm

Figure 2.20 Characteristics of the three-level cache hierarchy in the i7. All three
caches use write-back and a block size of 64 bytes. The L1 and L2 caches are separate
for each core, while the L3 cache is shared among the cores on a chip and is a total of 2
MB per core. All three caches are nonblocking and allow multiple outstanding writes.
A merging write buffer is used for the L1 cache, which holds data in the event that the
line is not present in L1 when it is written. (That is, an L1 write miss does not cause the
line to be allocated.) L3 is inclusive of L1 and L2; we explore this property in further
detail when we explain multiprocessor caches. Replacement is by a variant on pseudo-
LRU; in the case of L3 the block replaced is always the lowest numbered way whose
access bit is turned off. This is not quite random but is easy to compute.

• Write-back with merging write buffer (more like no write allocate)
• L3 is inclusive of L1/L2
• Hardware prefetching from L2 into L1, from L3 into L2
• Virtually indexed, physically tagged L1 caches
• Physically addressed L2/L3 caches

118 ! Chapter Two Memory Hierarchy Design

described in Chapter 4. In 2010, the fastest i7 had a clock rate of 3.3 GHz, which
yields a peak instruction execution rate of 13.2 billion instructions per second, or
over 50 billion instructions per second for the four-core design.

The i7 can support up to three memory channels, each consisting of a sepa-
rate set of DIMMs, and each of which can transfer in parallel. Using DDR3-1066
(DIMM PC8500), the i7 has a peak memory bandwith of just over 25 GB/sec.

i7 uses 48-bit virtual addresses and 36-bit physical addresses, yielding a max-
imum physical memory of 36 GB. Memory management is handled with a two-
level TLB (see Appendix B, Section B.4), summarized in Figure 2.19.

Figure 2.20 summarizes the i7’s three-level cache hierarchy. The first-level
caches are virtually indexed and physically tagged (see Appendix B, Section B.3),
while the L2 and L3 caches are physically indexed. Figure 2.21 is labeled with the

Characteristic Instruction TLB Data DLB Second-level TLB

Size 128 64 512

Associativity 4-way 4-way 4-way

Replacement Pseudo-LRU Pseudo-LRU Pseudo-LRU

Access latency 1 cycle 1 cycle 6 cycles

Miss 7 cycles 7 cycles Hundreds of cycles to access
page table

Figure 2.19 Characteristics of the i7’s TLB structure, which has separate first-level
instruction and data TLBs, both backed by a joint second-level TLB. The first-level
TLBs support the standard 4 KB page size, as well as having a limited number of entries
of large 2 to 4 MB pages; only 4 KB pages are supported in the second-level TLB.

Characteristic L1 L2 L3

Size 32 KB I/32 KB D 256 KB 2 MB per core

Associativity 4-way I/8-way D 8-way 16-way

Access latency 4 cycles, pipelined 10 cycles 35 cycles

Replacement scheme Pseudo-LRU Pseudo-
LRU

Pseudo-LRU but with an
ordered selection algorihtm

Figure 2.20 Characteristics of the three-level cache hierarchy in the i7. All three
caches use write-back and a block size of 64 bytes. The L1 and L2 caches are separate
for each core, while the L3 cache is shared among the cores on a chip and is a total of 2
MB per core. All three caches are nonblocking and allow multiple outstanding writes.
A merging write buffer is used for the L1 cache, which holds data in the event that the
line is not present in L1 when it is written. (That is, an L1 write miss does not cause the
line to be allocated.) L3 is inclusive of L1 and L2; we explore this property in further
detail when we explain multiprocessor caches. Replacement is by a variant on pseudo-
LRU; in the case of L3 the block replaced is always the lowest numbered way whose
access bit is turned off. This is not quite random but is easy to compute.

• 48 bit virtual addresses and 36 bit physical addresses (36 GB physical mem)
• 4 KB pages except for few large 2–4MB pages in L1 TLBs

34

4. Case Study: ARM Cortex A8 and Intel Core i7 4.2. Intel Core i7
2.6 Putting It All Together: Memory Hierachies in the ARM Cortex-A8 and Intel Core i7 ! 119

Figure 2.21 The Intel i7 memory hierarchy and the steps in both instruction and data access. We show only reads
for data. Writes are similar, in that they begin with a read (since caches are write back). Misses are handled by simply
placing the data in a write buffer, since the L1 cache is not write allocated.

Data
<128x4>

Data
<512>

Virtual page
number <36>

Data in <64>

Instruction
<128>

<128>

<7>

<64>

<30>

Page
offset <12>

PC
CPU

2:1 mux

<21>
Tag

<9>
L2

C
A
C
H
E

C
A
C
H
E

Data virtual page
number <36>

Page
offset <12>

<7>
Index Block offset

I
C
A
C
H
E

I
T
L
B

L2

T
L
B

<23>

=?

4:1 mux

4:1 mux

4:1 mux

2
1

3

5
5

6

8

9

7

16

10

V
<1>

D
<1>

V
<1>

D
<1>

Tag
<21>

V
<1>

D
<1>

Tag
<17>

8:1 mux

=?

=?

<7>

<6>

D
C
A
C
H
E

D
T
L
B

4:1 mux

<4>
Prot

<1>
V

4:1 mux
(64 PTEs in 4 banks)(128 PTEs in 4 banks)

<31>
Tag

<24>
Physical address

<4>
Prot

<1>
V

<31>
Tag

<24>
Physical address

<4>
Prot

<1>
V

<29>
Tag

<24>
Physical address

=?

(512 PTEs
 in 4 banks)

(512 blocks in 4 banks)

Data
<128×4>

(512 blocks in 8 banks)

Data
<64>

(4K blocks in 8 banks)

Data
<512><17> <13>

L3
11

12

13 16:1 mux=?

(128K blocks in 16 banks)

<64> <64>

DIMM DIMM

M
A
I
N

M
E
M
O
R
Y 15

Memory Interface

<64>DIMM
14

16

4

Index

Tag Index

V
<1>

D
<1>

Tag
<21>

Index Block offset
<6> <6>

<24> <28>

35

