
ECE 4750 Computer Architecture, Fall 2015

T03 Fundamental Memory Concepts

School of Electrical and Computer Engineering
Cornell University

revision: 2015-10-05-13-36

1 Memory/Library Analogy 2

1.1. Three Example Scenarios . 2

1.2. Memory Technology . 6

1.3. Cache Memories in Computer Architecture 11

2 Cache Concepts 13

2.1. Three Key Questions . 13

2.2. Categorizing Misses: The Three C’s 19

2.3. Write Policies . 22

3 Memory Translation, Protection, and Virtualization 24

3.1. Memory Translation . 24

3.2. Memory Protection . 32

3.3. Memory Virtualization . 34

4 Analyzing Memory Performance 37

4.1. Estimating AMAL . 38

1

1. Memory/Library Analogy 1.1. Three Example Scenarios

1. Memory/Library Analogy

Our goal is to do some research on a new computer architecture, and
so we wish to consult the literature to learn more about past computer
systems. The library contains most of the literature we are interested in,
although some of the literature is stored off-site in a large warehouse.
There are too many distractions at the library, so we prefer to do our
reading in our doorm room or office. Our doorm room or office has an
empty bookshelf that can hold ten books or so, and our desk can hold a
single book at a time.

Desk
(can hold one book)

Book Shelf
(can hold a few books)

Library
(can hold many books)

Warehouse
(long-term storage)

1.1. Three Example Scenarios

• Use desk and library
• Use desk, book shelf, and library
• Use desk, book shelf, library, and warehouse

2

1. Memory/Library Analogy 1.1. Three Example Scenarios

Books from library with no bookshelf “cache”

Desk
(can hold one book)

Library
(can hold many books)

Need book 1

Checkout book 1
(10 min)

Walk to library (15m)

Walk to office (15m)

Read some of book 1
(10 min)

Need book 2 Return book 1
Checkout book 2
(10 min)

Walk to library (15m)

Walk to office (15m)

Read some of book 2
(10 min)

Need book 1
again! Return book 2

Checkout book 1
(10 min)

Walk to library (15m)

Walk to office (15m)

Read some of book 1
(10 min)

Need book 2

• Some inherent “translation” since we need to use the online catalog
to translate a book author and title into a physical location in the
library (e.g., floor, row, shelf)

• Average latency to access a book: 40 minutes

• Average throughput including reading time: 1.2 books/hour

• Latency to access library limits our throughput

3

1. Memory/Library Analogy 1.1. Three Example Scenarios

Books from library with bookshelf “cache”
Desk

(can hold one book)

Need book 1

Read some of book 1

Book Shelf
(can hold a few books)

Library
(can hold many books)

Check bookshelf (5m) Walk to library (15m)

Walk to office (15m)
Checkout book 1
and book 2
(10 min)

Check bookshelf (5m)

Cache Miss!

Read some of book 2

Read some of book 1

Cache Hit! (Spatial Locality)
Check bookshelf (5m)
Cache Hit! (Temporal Locality)

• Average latency to access a book: <20 minutes

• Average throughput including reading time: ≈2 books/hour

• Bookshelf acts as a small “cache” of the books in the library

– Cache Hit: Book is on the bookshelf when we check, so there is no need to
go to the library to get the book

– Cache Miss: Book is not on the bookshelf when we check, so we need to
go to the library to get the book

• Caches exploit structure in the access pattern to avoid the library
access time which limits throughput

– Temporal Locality: If we access a book once we are likely to access the
same book again in the near future

– Spatial Locality: If we access a book on a given topic we are likely to
access other books on the same topic in the near future

4

1. Memory/Library Analogy 1.1. Three Example Scenarios

Books from warehouse

Desk
(can hold one book)

Need
book 1

Book Shelf
(can hold a few books)

Library
(can hold many books)

Check bookshelf (5m)
Walk to library (15m)

Walk to office (15m)

Check library
(10 min)

Cache Miss!

Warehouse
(long-term storage)

Go to Warehouse (1hr) Retrieve
Book
(30 min)

Back to Library (1hr)

Read
book 1

Walk to library (15m) Return book 1
Keep book 1 in the library
(10 min)

• Keep very frequently used books on book shelf, but also keep books
that have recently been checked out in the library before moving
them back to long-term storage in the warehouse

• We have created a “book storage hierarchy”

• Book Shelf : low latency, low capacity

• Library : high latency, high capacity

• Warehouse : very high latency, very high capacity

5

1. Memory/Library Analogy 1.2. Memory Technology

1.2. Memory Technology

Level-High Latch Positive Edge-Triggered Register

D Q

clk

D Q

clk

QD

clk clk

6

1. Memory/Library Analogy 1.2. Memory Technology

Memory Arrays: Register Files

Memory Arrays: SRAM

65nm [Bai04]45nm [Mistry07] 130nm [Tyagi00]32nm [Natarajan08] 90nm [Thompson02]

1 micron

7

1. Memory/Library Analogy 1.2. Memory Technology

Memory Arrays: DRAM

Adapted from [Foss, ʺImplementing Application-Specific Memory.ʺ ISSCCʹ96]

R
ow

 D
ec

o
d
er

I/Os

Column Decoder

Helper
FFs

I/O Strip

M
em

o
ry

 C
on

tr
o
ll

er

Rank
wordline

bi
tl

in
e

Bank

Sub-bank

Bank

Array Core Array Block Bank & Chip Channel

On-Chip
SRAM

DRAM in
Dedicated Process

SRAM in
Dedicated Process

On-Chip
DRAM

8

1. Memory/Library Analogy 1.2. Memory Technology

Flash and Disk

• Magnetic hard drives require
rotating platters resulting in long
random acess times which have
hardly improved over several
decades

• Solid-state drives using flash have
100× lower latencies but also
lower density and higher cost

Memory Technology Trade-Offs

Latches &
Registers

Register Files

SRAM

DRAM
High Capacity
High Latency
Low Bandwidth

Low Capacity
Low Latency
High Bandwidth
(more and wider ports)

Flash & Disk

9

1. Memory/Library Analogy 1.2. Memory Technology

Latency numbers every programmer (architect) should know

L1 cache reference 1 ns
Branch mispredict 3 ns
L2 cache reference 4 ns
Mutex lock/unlock 17 ns
Main memory reference 100 ns
Send 2KB over commodity network 250 ns

Compress 1KB with zip 2 us
Read 1MB sequentially from main memory 9 us
SSD random read 16 us
Read 1MB sequentially from SSD 156 us
Round trip in datacenter 500 us

Read 1MB sequentially from disk 2 ms
Disk random read 4 ms
Packet roundtrip from CA to Netherlands 150 ms

http://www.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Aside: Combinational vs. Synchronous SRAMs

10

1. Memory/Library Analogy 1.3. Cache Memories in Computer Architecture

1.3. Cache Memories in Computer Architecture

Main MemoryCacheProcessor

P $ M
Cache Accesses

(10 or fewer cycles)
Main Memory Access

(100s of cycles)

Disk/Flash

D
Disk Access

(100,000s of cycles)

Desk Book Shelf Library Warehouse

Cache memories exploit temporal and spatial locality

Address

Time

Instruction
 fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine
call

subroutine
return

argument access

vector access

scalar accesses

11

1. Memory/Library Analogy 1.3. Cache Memories in Computer Architecture

Understanding locality for assembly programs

Examine each of the following assembly programs and rank each pro-
gram based on the level of temporal and spatial locality in both the in-
struction and data address stream on a scale from 0 to 5 with 0 being no
locality and 5 being very significant locality.

Inst Inst Data Data
Temp Spat Temp Spat

loop:
lw r1, 0(r2)
lw r3, 0(r4)
addiu r5, r1, r3
sw r5, 0(r6)
addiu r2, r2, 4
addiu r4, r4, 4
addiu r6, r6, 4
addiu r7, r7, -1
bne r7, r0, loop

loop:
lw r1, 0(r2)
lw r3, 0(r1) # random ptrs
lw r4, 0(r3) # random ptrs
addiu r4, r4, 1
addiu r2, r2, 4
addiu r7, r7, -1
bne r7, r0, loop

loop:
lw r1, 0(r2) # many diff
jalr r1 # func ptrs
addiu r2, r2, 4
addiu r7, r7, -1
bne r7, r0, loop

12

2. Cache Concepts 2.1. Three Key Questions

2. Cache Concepts

• Three Key Questions

– How much data is aggregated in a cache line (spatial locality)?
– How do we organize multiplie lines in the cache (spatial/temporal

locality)?
– What data is replaced to make room for new data when cache is full

(temporal locality)?

• Categorizing Misses

• Write Policies

• Multi-Level Cache

2.1. Three Key Questions

How much data is stored in a cache line?

Consider only 4B word accesses and three single-line cache designs:

13

2. Cache Concepts 2.1. Three Key Questions

00

V Tag

tag

30b

32bhit

00

V Tag

tag

29b

32bhit 32b

32b

off

1b

00

V Tag

tag

28b

32bhit 32b

32b

off

2b

32b 32b

How do we organize multiple lines in the cache?

Four-line direct-mapped cache with 4B cache lines

00

V Tag

tag

28b

32b

idx

2b
Data

0x000

0x004

0x008

0x00c

0x010

0x014

0x018

0x01c

0x020

0x024

4 Sets

hit

14

2. Cache Concepts 2.1. Three Key Questions

Example execution worksheet and table for direct-mapped cache

V Tag Data0x000

0x004

0x008

0x00c

0x010

rd 0x000

rd 0x004

rd 0x000

rd 0x010

Dynamic Transaction
 Stream

Set 0
Set 1
Set 2
Set 3

13
14
15
16
17

rd 0x004

Set

tag idx h/m 0 1 2 3

rd 0x000

rd 0x004

rd 0x010

rd 0x000

rd 0x004

rd 0x020

15

2. Cache Concepts 2.1. Three Key Questions

Increasing cache associativity

Four-line direct-mapped cache with 4B cache lines

00

V Tag

tag

28b

32b

idx

2b
Data

0x000

0x004

0x008

0x00c

0x010

0x014

0x018

0x01c

0x020

0x024

4 Sets

hit

Four-line two-way set-associative cache with 4B cache lines

00

V Tag

tag

29b

32b

idx

1b
Data V Tag

32b

Data

2 Sets

2 Ways0x000

0x004

0x008

0x00c

0x010

0x014

0x018

0x01c

0x020

0x024

Four-line fully-associative cache with 4B cache lines

32b

00

V Tag

tag

30b

32b

Data V Tag

32b

Data

hit

4 Ways

V Tag Data V Tag Data

en
c

32b 32b

16

2. Cache Concepts 2.1. Three Key Questions

Increasing cache line size

00

V Tag

off

2b

tag

27b

32b

32b32b 32b 32b

idx

1b
Data

hit

Way 1

Way 0

What data is replaced to make room for new data when cache is full?

• No choice in a direct-mapped cache

• Random

– Good average case performance, but difficult to implement

• Least Recently Used (LRU)

– Replace cache line which has not been accessed recently
– Exploits temporal locality
– LRU cache state must be updated on every access which is expensive
– True implementation only feasible for small sets
– Two-way cache can use a single “last used bit”
– Pseudo-LRU uses binary tree to approximate LRU for higher associativity

• First-In First-Out (FIFO, Round Robin)

– Simpler implementation, but does not exploit temporal locality
– Potentially useful in large fully associative caches

17

2. Cache Concepts 2.1. Three Key Questions

Example execution worksheet and table for 2-way set associative cache

V Tag Data

0x000

0x004

0x008

0x00c

0x010

rd 0x000

rd 0x004

rd 0x000

rd 0x010

Dynamic
Transaction

 Stream Set 0
Set 1

13
14
15
16
17

rd 0x004

V Tag Data

Way 0 Way 1

U

Set 0 Set 1

tag idx h/m U Way 0 Way 1 U Way 0 Way 1

rd 0x000

rd 0x004

rd 0x010

rd 0x000

rd 0x004

rd 0x020

18

2. Cache Concepts 2.2. Categorizing Misses: The Three C’s

2.2. Categorizing Misses: The Three C’s

• Compulsory : first-reference to a block
• Capacity : cache is too small to hold all of the data
• Conflict : collisions in a specific set

Classifying misses in a cache with a target capacity and associativity as
a sequence of three questions:

• Q1) Would this miss occur in a cache with infinite capacity? If the
answer is yes, then this is a compulsory miss and we are done. If the
answer is no, then consider question 2.

• Q2) Would this miss occur in a fully associative cache with the desired
capacity? If the answer is yes, then this is a capacity miss and we are
done. If the answer is no, then consider question 3.

• Q3) Would this miss occur in a cache with the desired capacity and
associativity? If the answer is yes, then this is a conflict miss and we
are done. If the answer is no, then this is not a miss – it is a hit!

19

2. Cache Concepts 2.2. Categorizing Misses: The Three C’s

Example 1 illustrating categorizing misses

Assume we have a direct-mapped cache with two 16B lines, each with four 4B
words for a total cache capacity of 32B. We will need four-bits for the offset, one
bit for the index, and the remaining bits for the tag.

tag idx h/m type Set 0 Set 1

rd 0x000

rd 0x020

rd 0x000

rd 0x020

Q1. Would the cache miss occur in an infinite capacity cache? For the first two
misses, the answer is yes so they are compulsory misses. For the last two
misses, the answer is no, so consider question 2.

Q2. Would the cache miss occur in a fully associative cache with the target
capacity (two 16B lines)? Re-run address stream on such a fully associative
cache. For the last two misses, the answer is no, so consider question 3.

tag idx h/m Way 0 Way 1

rd 0x000

rd 0x020

rd 0x000

rd 0x020

3. Would the cache miss occur in a cache with the desired capacity and
associativity? For the last two misses, the asnwer is yes, so these are conflict
misses. There is enough capacity in the cache; the limited associativity is what is
causing the misses.

20

2. Cache Concepts 2.2. Categorizing Misses: The Three C’s

Example 2 illustrating categorizing misses

Assume we have a direct-mapped cache with two 16B lines, each with four 4B
words for a total cache capacity of 32B. We will need four-bits for the offset, one
bit for the index, and the remaining bits for the tag.

tag idx h/m type Set 0 Set 1

rd 0x000

rd 0x020

rd 0x030

rd 0x000

Q1. Would the cache miss occur in an infinite capacity cache? For the first three
misses, the answer is yes so they are compulsory misses. For the last miss, the
answer is no, so consider question 2.

Q2. Would the cache miss occur in a fully associative cache with the target
capacity (two 16B lines)? Re-run address stream on such a fully associative
cache. For the last miss, the answer is yes, so this is a capacity miss.

tag idx h/m Way 0 Way 1

rd 0x000

rd 0x020

rd 0x030

rd 0x000

Categorizing misses helps us understand how to reduce miss rate.
Should we increase associativity? Should we use a larger cache?

21

2. Cache Concepts 2.3. Write Policies

2.3. Write Policies

Write-Through with No Write Allocate

• On write miss, write memory but do not bring line into cache
• On write hit, write both cache and memory
• Requires more memory bandwidth, but simpler to implement

Set write

tag idx h/m 0 1 2 3 mem?

rd 0x010

wr 0x010

wr 0x024

rd 0x024

rd 0x020

Assume 4-line direct-mapped cache with 4B cache lines

22

2. Cache Concepts 2.3. Write Policies

Write-Back with Write Allocate

• On write miss, bring cache line into cache then write
• On write hit, only write cache, do not write memory
• Only update memory when a dirty cache line is evicted
• More efficient, but more complicated to implement

Write-Back Flow-Chart

Set write

tag idx h/m 0 1 2 3 mem?

rd 0x010

wr 0x010

wr 0x024

rd 0x024

rd 0x020

Assume 4-line direct-mapped cache with 4B cache lines

23

3. Memory Translation, Protection, and Virtualization 3.1. Memory Translation

3. Memory Translation, Protection, and Virtualization

Memory Management Unit (MMU)

• Translation : mapping of virtual addresses to physical addresses
• Protection : permission to access address in memory
• Virtualization : transparent extension of memory space using disk

Most modern systems provide support for all three functions
with a single paged-based MMU

3.1. Memory Translation

Mapping of virtual addresses to physical addresses

24

3. Memory Translation, Protection, and Virtualization 3.1. Memory Translation

Why memory translation?

• Enables using full virtual address space with less physical memory

• Enables multiple programs to execute concurrently

• Can facilitate memory protection and virtualization

Simple base-register translation

25

3. Memory Translation, Protection, and Virtualization 3.1. Memory Translation

Memory fragmentation

ECE 4750 T16: Address Translation and Protection 8!

Memory Fragmentation

 As users come and go, the storage is “fragmented”.
 Therefore, at some stage programs have to be moved
 around to compact the storage.

OS

Space
16K

24K

24K

32K

24K

user 1

user 2

user 3

OS

Space
16K

24K

16K

32K

24K

user 1

user 2

user 3

user 5

user 4
8K

Users 4 & 5

arrive

Users 2 & 5

leave OS

Space
16K

24K

16K

32K

24K

user 1

user 4
8K

user 3

free

26

3. Memory Translation, Protection, and Virtualization 3.1. Memory Translation

Linear-page table tranlsation

PTEV

Physical Memory

off
Physical

Page

Physical
Page

Physical
Address

Space

Physical
Page

Physical
Page

Physical
Page

Physical
Page

Logical
Address

Space

Logical
Page

Logical
Page

Logical
Page

Logical
Page

PPN off

Logical to Physical
Address Translation

VPN off

Virtual Address

Physical
Address

Linear Page Table

• Logical address can be interpreted as a page number and offset

• Page table contains the physical address of the base of each page

• Page tables make it possible to store the pages of a program
non-contiguously

27

3. Memory Translation, Protection, and Virtualization 3.1. Memory Translation

PT Base Reg

Program 2
Page Table

Program 1
Page Table

Physical
Address

Space

Physical
Address

Space

Physical
Page

Physical
Page

Physical
Page

Physical
Page

Physical
Page

Physical
Page

Physical
Page

Physical
Page

Page in PMem

Page not allocated

Linear Page Table
Per Program

Storing Page
Tables

in Physical
Memory

• Not all page tabele entries (PTEs) are valid

• Invalid PTE means the program has not allocated that page

• Each program has its own page table with entry for each logical page

• Where should page tables reside?

– Space required by page table proportional to address space
– Too large too keep in registers
– Keep page tables in memory
– Need one mem access for page bage address, and another for actual data

28

3. Memory Translation, Protection, and Virtualization 3.1. Memory Translation

Size of linear page table?

• With 32-bit addresses, 4KB pages, and 4B PTEs

– Potentially 4GB of physical memory needed per program
– 4KB page means VPN is 20 bits and offset is 12 bits
– 220 PTEs, which means 4MB page table overhead per program

• With 64-bit addresses, 1MB pages, and 8B PTEs

– 1MB pages means VPN is 44 bits and offset is 20 bits
– 244 PTEs, which means 35TB page table overhead per program

• How can this possible ever work? Exploit program structure, i.e.,
sparsity in logical address usage

Two-level table translation

VPN off

L1 PTEV

Physical Memory

off
Physical

Page

Physical
Page

L2 PTEV

PPN off

Virtual Address

Physical
Address

29

3. Memory Translation, Protection, and Virtualization 3.1. Memory Translation

off

L2 Page Tables

Physical
Address

Space

Physical
Page

Physical
Page

Physical
Page

Physical
Page

L1 Page Table

p1 p2

Physical
Page

p2

p2

p2

p1

Virtual Address

Page in PMem

Page not allocated

PT Base Reg

Physical
Address

Space

Physical
Page

Physical
Page

Physical
Page

• Again, we store page tables in physical memory

• Space requirements are now much more modest

• Now need three memory accesses to retieve one piece of data

30

3. Memory Translation, Protection, and Virtualization 3.1. Memory Translation

Translation lookaside buffers

• Address translation is very expensive

• Every reference requires multiple memory accesses

• Solution: Cache translations in a translation lookaside buffer

– TLB Hit: Single-cycle translation
– TLB Miss: Page table walk to refill TLB

ECE 4750 T16: Address Translation and Protection 18!

Translation Lookaside Buffers

Address translation is very expensive!
In a two-level page table, each reference becomes
several memory accesses

Solution: Cache translations in TLB
 TLB hit ⇒ Single Cycle Translation
 TLB miss ⇒ Page Table Walk to refill TLB

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

• Typically 32-128 entries, usually fully associative

– Each entry maps large number of consecutive addresses so most spatial
locality within page as opposed to across pages -> More likely that two
entries conflict

– Sometimes larger TLBs (256-512 entries) are 4-8 way set-associative
– Larger systems sometimes have multi-level (L1 and L2) TLBs

• Random or FIFO replacement policy

• Usually no program identifier in the TLB

– Flush TLB on program context switch

• TLB Reach: Size of largest virtual address space that can be
simultaneously mapped by TLB

– Example: 64 TLB entries, 4KB pages, one page pery entry
– TLB Reach: 64 entries * 4 KB = 256 KB (if contiguous)

31

3. Memory Translation, Protection, and Virtualization 3.2. Memory Protection

• Handling a TLB miss in software (MIPS, Alpha)

– TLB miss causes an exception and the operating system walks the page
tables and reloads TLB. A privileged “untranslated” addressing mode
used for walk

• Handling a TLB miss in hardware (SPARCv8, x86, PowerPC)

– The memory management unit (MMU) walks the page tables and reloads
the TLB, any additional complexities encountered during walk causes
MMU to give up and signal an exception

3.2. Memory Protection

Base-and-bound protection

ECE 4750 T16: Address Translation and Protection 5!

Simple Base and Bound Translation

Load X

Program
Address
Space

Bound
Register ≤

Bounds
Violation?

Ph
ys

ic
al

 M
em

or
y

current
segment

Base
Register

+

Physical
Address Effective

Address

Base and bounds registers are visible/accessible only
when processor is running in the supervisor mode

Base Physical Address

Segment Length

32

3. Memory Translation, Protection, and Virtualization 3.2. Memory Protection

Separate areas for program and data

ECE 4750 T16: Address Translation and Protection 6!

Separate Areas for Program and Data

What is an advantage of this separation?

Load X

Program
Address
Space

Ph
ys

ic
al

 M
em

or
y

data
segment

Data Bound
Register

Effective Addr
Register

Data Base
Register +

Bounds
Violation?

Program Bound
Register

Program
Counter

Program Base
Register +

Bounds
Violation?

program
segment

<

<

Page-based protection

• We can store protection information in the page-tables to enable
page-level protection

• Protection information prevents two programs from being able to
read or write each other’s physical memory space

33

3. Memory Translation, Protection, and Virtualization 3.3. Memory Virtualization

3.3. Memory Virtualization

ECE 4750 L20: Virtual Memory and Caches 4

Adding VM to Page Based Mem Management
 Illusion of a large, private, uniform store

• More than just translation and protection

• Use disk to extend apparent size of mem

• Treat DRAM as cache of disk contents

• Only need to hold active working set of

processes in DRAM, rest of memory

image can be swapped to disk

• Inactive processes can be completely

swapped to disk (except usually the root
of the page table)

Primary

Memory

Swapping

Store

• Hides machine configuration from software

• Implemented with combination of hardware/software

• ATLAS was first implementation of this idea

ECE 4750 L20: Virtual Memory and Caches 5

Page Fault Handler

•  When the referenced page is not in DRAM:

–  The missing page is located (or created)

–  It is brought in from disk, and page table is updated

 Another job may be run on the CPU while the first job waits
for the requested page to be read from disk

–  If no free pages are left, a page is swapped out

 Pseudo-LRU replacement policy

•  Since it takes a long time to transfer a page
(msecs), page faults are handled completely in
software by the OS

– Untranslated addressing mode is essential to allow kernel
to access page tables

34

3. Memory Translation, Protection, and Virtualization 3.3. Memory Virtualization

ECE 4750 L20: Virtual Memory and Caches 6

Caching vs. Demand Paging

CPU cache
primary

memory

secondary

memory

Caching Demand paging
cache entry page frame
cache block (~32 bytes) page (~4K bytes)
cache miss rate (1% to 20%) page miss rate (<0.001%)
cache hit (~1 cycle) page hit (~100 cycles)
cache miss (~100 cycles) page miss (~5M cycles)
a miss is handled a miss is handled
 in hardware mostly in software

primary

memory
CPU

ECE 4750 L20: Virtual Memory and Caches 7

Hierarchical Page Table with VM

Level 1

Page Table

Level 2

Page Tables

Data Pages

page in primary memory

page in secondary memory

Root of the Current

Page Table

p1

offset

p2

Virtual Address

(Processor
Register)

PTE of a nonexistent page

p1 p2 offset

0 11 12 21 22 31

10-bit

L1 index

10-bit

L2 index

If on page table walk, reach page that is in

secondary memory then must handle a page fault

to bring page into primary memory

35

3. Memory Translation, Protection, and Virtualization 3.3. Memory Virtualization

ECE 4750 L20: Virtual Memory and Caches

Address Translation:
putting it all together

8

Virtual Address

TLB

Lookup

Page Table

Walk

Update TLB Page Fault
(OS loads page)

Protection

Check

Physical

Address
(to cache)

miss hit

 the page is

∉ Memory ∈ memory

denied permitted

Protection

Fault

hardware

hardware or software

software

SEGFAULT

Restart instruction

36

4. Analyzing Memory Performance

4. Analyzing Memory Performance

Time
Mem Access Sequence

=
Mem Accesses

Sequence
× Avg Cycles

Mem Access
× Time

Cycle

Avg Cycles
Mem Access

=
Avg Cycles

Hit
+

(
Num Misses

Num Accesses
× Avg Extra Cycles

Miss

)
• Mem access / sequence depends on program and translation
• Time / cycle depends on microarchitecture and implementation

• Also called the average memory access latency (AMAL)
• Avg cycles / hit is called the hit latency
• Number of misses / number of accesses is called the miss rate
• Avg extra cycles / miss is called the miss penalty

• Avg cycles per hit depends on microarchitecture
• Miss rate depends on microarchitecture
• Miss penalty depends on microarchitecture, rest of memory system

MMUProcessor Cache
Main
Memory

Hit
Latency

Miss
Penalty

Extra Accesses
Microarchitecture Hit Latency for Translation

FSM Cache >1 1+
Pipelined Cache ≈1 1+
Pipelined Cache + TLB ≈1 ≈0

37

4. Analyzing Memory Performance 4.1. Estimating AMAL

4.1. Estimating AMAL

Consider the following sequence of memory acceses which might
correspond to copying 4 B elements from a source array to a destination
array. Each array contains 64 elements. Assume two-way set associative
cache with 16 B cache lines, hit latency of 1 cycle and 10 cycle miss
penalty. What is the AMAL in cycles?

rd 0x1000
wr 0x2000
rd 0x1004
wr 0x2004
rd 0x1008
wr 0x2008
...
rd 0x1040
wr 0x2040

Consider the following sequence of memory acceses which might
correspond to incrementing 4 B elements in an array. The array contains
64 elements. Assume two-way set associative cache with 16 B cache
lines, hit latency of 1 cycle and 10 cycle miss penalty. What is the AMAL
in cycles?

rd 0x1000
wr 0x1000
rd 0x1004
wr 0x1004
rd 0x1008
wr 0x1008
...
rd 0x1040
wr 0x1040

38

