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1. Processor Microarchitectural Design Patterns 2.0. Transactions and Steps

1. Processor Microarchitectural Design Patterns

Time
Program

=
Instructions

Program
× Cycles

Instruction
× Time

Cycles

• Instructions / program depends on source code, compiler, ISA
• Cycles / instruction (CPI) depends on ISA, microarchitecture
• Time / cycle depends upon microarchitecture and implementation

Microarchitecture CPI Cycle Time

Single-Cycle Processor 1 long
FSM Processor >1 short
Pipelined Processor ≈1 short

1.1. Transactions and Steps

• We can think of each instruction as a transaction
• Executing a transaction involves a sequence of steps

addu addiu mul lw sw j jal jr bne

Fetch Instruction 3 3 3 3 3 3 3 3 3

Decode Instruction 3 3 3 3 3 3 3 3 3

Read Registers 3 3 3 3 3 3 3

Register Arithmetic 3 3 3 3 3 3

Read Memory 3

Write Memory 3

Write Registers 3 3 3 3 3

Update PC 3 3 3 3 3 3 3 3 3
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1. Processor Microarchitectural Design Patterns1.2. Microarchitecture: Control/Datapath Split

1.2. Microarchitecture: Control/Datapath Split

Control Signals Status Signals

Control Unit

Datapath

imem
req_val

imem
req

imem
resp

dmem
req_val

dmem
req

dmem
resp

Memory
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2. PARCv1 Single-Cycle Processor 2.1. High-Level Idea for Single-Cycle Processors

2. PARCv1 Single-Cycle Processor

Time
Program

=
Instructions

Program
× Cycles

Instruction
× Time

Cycles

• Instructions / program depends on source code, compiler, ISA
• Cycles / instruction (CPI) depends on ISA, microarchitecture
• Time / cycle depends upon microarchitecture and implementation

Microarchitecture CPI Cycle Time

Single-Cycle Processor 1 long
FSM Processor >1 short
Pipelined Processor ≈1 short

Technology Constraints

• Assume technology where
logic is not too expensive, so
we do not need to overly
minimize the number of
registers and combinational
logic

• Assume multi-ported register
file with a reasonable number
of ports is feasible

• Assume a dual-ported
combinational memory

Control Status

Control Unit

Datapath

<1 cycle
combinational

Memory

regfile

imem
req

imem
resp

dmem
req

dmem
resp
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2. PARCv1 Single-Cycle Processor 2.1. High-Level Idea for Single-Cycle Processors

2.1. High-Level Idea for Single-Cycle Processors

addu addiu mul lw sw j jal jr bne

Fetch Instruction 3 3 3 3 3 3 3 3 3

Decode Instruction 3 3 3 3 3 3 3 3 3

Read Registers 3 3 3 3 3 3 3

Register Arithmetic 3 3 3 3 3 3

Read Memory 3

Write Memory 3

Write Registers 3 3 3 3 3

Update PC 3 3 3 3 3 3 3 3 3

Fetch
Inst

lw

Decode
Inst

Reg
Arith

Read
Mem

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

addu

Decode
Inst

Reg
Arith

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

Decode
Inst

Update
PC

j

S
in
g
le
-C
y
cl
e
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2. PARCv1 Single-Cycle Processor 2.2. Single-Cycle Processor Datapath

2.2. Single-Cycle Processor Datapath

Implementing ADDU Instruction

pc
regfile
(read) regfile

(write)

rf
_wen

rf
_waddr

Implementing ADDIU Instruction

pc
regfile
(read) regfile

(write)

rf
_wen

rf
_waddr
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2. PARCv1 Single-Cycle Processor 2.2. Single-Cycle Processor Datapath

Implementing ADDU and ADDIU Instructions

pc
regfile
(read) regfile

(write)

rf
_wen

rf
_waddr

alu
ir[20:16]

ir[25:21]

+4

imemreq.
addr

To control unit

pc_plus4

imemresp.
data

op1
_sel

sext
ir[15:0]

Adding the MUL Instruction

pc
regfile
(read) regfile

(write)

rf
_wen

rf
_waddr

alu
ir[20:16]

ir[25:21]

+4

imemreq.
addr

To control unit

pc_plus4

imemresp.
data

op1
_sel

sext
ir[15:0]

mul

wb_sel
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2. PARCv1 Single-Cycle Processor 2.2. Single-Cycle Processor Datapath

Adding the LW and SW Instructions

pc
regfile
(read) regfile

(write)

rf
_wen

rf
_waddr

alu
ir[20:16]

ir[25:21]

+4

imemreq.
addr

To control unit

pc_plus4

imemresp.
data

op1
_sel

sext
ir[15:0]

mul

wb_sel

dmemresp.
data

dmemreq.
addr

Adding the J Instruction

pc
regfile
(read) regfile

(write)

rf
_wen

rf
_waddr

alu
ir[20:16]

ir[25:21]

+4

imemreq.
addr

To control unit

pc_plus4

imemresp.
data

op1
_sel

sext
ir[15:0]

mul

wb_sel

dmemresp.
data

dmemreq.
addr

dmemreq.
data

ir[25:0]

j_tgen

j_targ

pc_sel
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2. PARCv1 Single-Cycle Processor 2.2. Single-Cycle Processor Datapath

Adding the JAL and JR Instructions

pc
regfile
(read) regfile

(write)

rf
_wen

rf
_waddr

alu
ir[20:16]

ir[25:21]

+4

imemreq.
addr

To control unit

pc_plus4

imemresp.
data

op1
_sel

sext
ir[15:0]

mul

wb_sel

dmemresp.
data

dmemreq.
addr

dmemreq.
data

ir[25:0]

j_tgen

j_targ

pc_sel

alu_func

Adding the BNE Instruction

pc
regfile
(read) regfile

(write)

rf
_wen

rf
_waddr

alu
ir[20:16]

ir[25:21]

+4

imemreq.
addr

To control unit

pc_plus4

imemresp.
data

op1
_sel

sext
ir[15:0]

mul

wb_sel

dmemresp.
data

dmemreq.
addr

dmemreq.
data

ir[25:0]

j_tgen

j_targ

pc_sel

alu_func

jr

ir[15:0]

br_tgen

eq

br_targ
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2. PARCv1 Single-Cycle Processor 2.2. Single-Cycle Processor Datapath

Adding a New Auto-Incrementing Load Instruction

Draw on the datapath diagram what paths we need to use as well as
any new paths we will need to add in order to implement the following
auto-incrementing load instruction.

lw.ai rt, offset(rs)

R[rt]←M[ R[rs] + sext(offset) ]; R[rs]← R[rs] + 4

pc
regfile
(read) regfile

(write)

rf
_wen

rf
_waddr

alu
ir[20:16]

ir[25:21]

+4

imemreq.
addr

To control unit

pc_plus4

imemresp.
data

op1
_sel

sext
ir[15:0]

mul

wb_sel

dmemresp.
data

dmemreq.
addr

dmemreq.
data

ir[25:0]

j_tgen

j_targ

pc_sel

alu_func

jr

ir[15:0]

br_tgen

eq

br_targ
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2. PARCv1 Single-Cycle Processor 2.3. Single-Cycle Processor Control Unit

2.3. Single-Cycle Processor Control Unit

imem dmem
pc op1 alu wb rf rf req req

inst sel sel func sel waddr wen val val

addu pc+4 rf + alu rd 1 1 0

addiu

mul pc+4 rf × mul rd 1 1 0

lw pc+4 sext + mem rt 1 1 1

sw

j j_targ – – – – 0 1 0

jal

jr jr – – – – 0 1 0

bne

lw.ai

2.4. Analyzing Performance

Time
Program

=
Instructions

Program
× Cycles

Instruction
× Time

Cycles

• Instructions / program depends on source code, compiler, ISA
• Cycles / instruction (CPI) depends on ISA, microarchitecture
• Time / cycle depends upon microarchitecture and implementation

12



2. PARCv1 Single-Cycle Processor 2.4. Analyzing Performance

Estimating cycle time

There are many paths through the design that start at a state element
and end at a state element. The “critical path” is the longest path across
all of these paths. We can usually use a simple first-order static timing
estimate to estimate the cycle time (i.e., the clock period and thus also
the clock frequency).

pc
regfile
(read) regfile

(write)

rf
_wen

rf
_waddr

alu
ir[20:16]

ir[25:21]

+4

imemreq.
addr

To control unit

pc_plus4

imemresp.
data

op1
_sel

sext
ir[15:0]

mul

wb_sel

dmemresp.
data

dmemreq.
addr

dmemreq.
data

ir[25:0]

j_tgen

j_targ

pc_sel

alu_func

jr

ir[15:0]

br_tgen

eq

br_targ

• register read = 1τ

• register write = 1τ

• regfile read = 10τ

• regfile write = 10τ

• memory read = 20τ

• memory write = 20τ

• +4 unit = 4τ

• sext unit = 1τ

• br_tgen = 8τ

• j_tgen = 1τ

• mux = 3τ

• multiplier = 20τ

• alu = 10τ

13



2. PARCv1 Single-Cycle Processor 2.4. Analyzing Performance

Estimating execution time

Using our first-order equation for processor performance, how long in
nanoseconds will it take to execute the vector-vector add example as-
suming n is 64?

loop:
lw r12, 0(r4)
lw r13, 0(r5)
addu r14, r12, r13
sw r14, 0(r6)
addiu r4, r4, 4
addiu r5, r5, 4
addiu r6, r6, 4
addiu r7, r7, -1
bne r7, r0, loop
jr r31

Using our first-order equation for processor performance, how long in
nanoseconds will it take to execute the mystery program assuming n is
64 and that we find a match on the last element.

addiu r12, r0, 0
loop:
lw r13, 0(r4)
bne r13, r6, foo
addiu r2, r12, 0
jr r31

foo:
addiu r4, r4, 4
addiu r12, r12, 1
bne r12, r5, loop
addiu r2, r0, -1
jr r31
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3. PARCv1 FSM Processor 3.1. High-Level Idea for FSM Processors

3. PARCv1 FSM Processor

Time
Program

=
Instructions

Program
× Cycles

Instruction
× Time

Cycles

• Instructions / program depends on source code, compiler, ISA
• Cycles / instruction (CPI) depends on ISA, microarchitecture
• Time / cycle depends upon microarchitecture and implementation

Microarchitecture CPI Cycle Time

Single-Cycle Processor 1 long
FSM Processor >1 short
Pipelined Processor ≈1 short

Technology Constraints

• Assume legacy technology
where logic is expensive, so
we want to minimize the
number of registers and
combinational logic

• Assume an (unrealistic)
combinational memory

• Assume multi-ported register
files and memories are too
expensive, these structures
can only have a single
read/write port

Control Status

Control Unit

Datapath

<1 cycle
combinational

Memory

regfile

mem
req

mem
resp
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3. PARCv1 FSM Processor 3.1. High-Level Idea for FSM Processors

3.1. High-Level Idea for FSM Processors

addu addiu mul lw sw j jal jr bne

Fetch Instruction 3 3 3 3 3 3 3 3 3

Decode Instruction 3 3 3 3 3 3 3 3 3

Read Registers 3 3 3 3 3 3 3

Register Arithmetic 3 3 3 3 3 3

Read Memory 3

Write Memory 3

Write Registers 3 3 3 3 3

Update PC 3 3 3 3 3 3 3 3 3

Fetch
Inst

lw

Decode
Inst

Reg
Arith

Read
Mem

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

addu

Decode
Inst

Reg
Arith

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

Decode
Inst

Update
PC

j

S
in
g
le
-C
y
cl
e

j

Fetch
Inst

lw

Decode
Inst

Reg
Arith

Read
Mem

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

addu

Decode
Inst

Reg
Arith

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

Decode
Inst

Update
PC

F
S
M

3.2. FSM Processor Datapath

Implementing an FSM datapath requires thinking about the required
FSM states, but we will defer discussion of how to implement the control
logic to the next section.

16



3. PARCv1 FSM Processor 3.2. FSM Processor Datapath

Implementing Fetch Sequence

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

F0

F1

F2

(pseudo-control-signal syntax)

17



3. PARCv1 FSM Processor 3.2. FSM Processor Datapath

Implementing ADDU Instruction

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

B

b_en

RF
rf_wen

rf_
bus_en

alu_
func

alu func

alu

rf_addr
_sel

rs
rt
rd

A + 4+4:

A + B+:

F0

F1

F2

A0

A1

A2

(pseudo-control-signal syntax)
addu rd, rs, rt

18



3. PARCv1 FSM Processor 3.2. FSM Processor Datapath

Full Datapath for PARCv1 FSM Processor

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

B

b_en

RF
rf_wen

rf_
bus_en

alu_
func

alu func

alu

rf_addr
_sel

rs
rt
rd

A + 4+4:

A + B+:

sext
imm

iau_
bus_en

>>

b_sel

>>
C

c_sel
c_en

0

A +? B+?:

memreq.
data

WD

wd_en

iau_
func

jt: { A[31:28], B[27:0] }

iau func

iau

A == Bcmp:

sext(IR[15:0])si: 

IR[25:0] << 2ts:

31

alu_
bus_en

eq

sext(IR[15:0]) << 2sis:

F0

F1

F2

A0

A1

A2

AI0

AI1

AI2

M0

M1

M2

M34

M3

L0

L1

L2

L3

S0

S1

S2

S3

J0

J1

JA0

JA1

JA2

JR0 B0

B1

B2

B3

B4

ADDIU Pseudo-Control-Signal
Fragment

addiu rd, rs, imm

19



3. PARCv1 FSM Processor 3.2. FSM Processor Datapath

MUL Instruction

mul rd, rs, rt

M0: A← RF[r0]
M1: B← RF[rs]
M2: C← RF[rt]
M3: A← A +? B;

B← B << 1; C← C >> 1
M4: A← A +? B;

B← B << 1; C← C >> 1
...

M35: RF[rd]← A +? B; goto F0

LW Instruction

lw rt, offset(rs)

L0: A← RF[rs]
L1: B← sext(offset)
L2: memreq.addr← A + B
L3: RF[rt]← RD; goto F0

SW Instruction

sw rt, offset(rs)

S0: WD← RF[rt]
S1: A← RF[rs]
S2: B← sext(imm)
S3: memreq.addr← A + B; goto F0

J Instruction

j targ

J0: B← targ << 2
J1: PC← A jt B; goto F0

JAL Instruction

jal targ

JA0: RF[31]← PC
JA1: B← targ << 2
JA2: PC← A jt B; goto F0

JR Instruction

jr rs

JR0: PC← RF[rs]; goto F0

BNE Instruction

bne rs, rt, offset

B0: A← RF[rs]
B1: B← RF[rt]
B2: A← sext(offset) << 2;

if A == B goto F0
B3: B← PC
B4: PC← A + B; goto F0

20



3. PARCv1 FSM Processor 3.2. FSM Processor Datapath

Adding a Complex Instruction

FSM processors simplify adding complex instructions. New instructions
usually do not require datapath modifications, only additional states.

addu.mm rd, rs, rt

M[ R[rd] ]←M[ R[rs] ] + M[ R[rt] ]

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

B

b_en

RF
rf_wen

rf_
bus_en

alu_
func

alu func

alu

rf_addr
_sel

rs
rt
rd

A + 4+4:

A + B+:

sext
imm

iau_
bus_en

>>

b_sel

>>
C

c_sel
c_en

0

A +? B+?:

memreq.
data

WD

wd_en

iau_
func

jt: { A[31:28], B[27:0] }

iau func

iau

A == Bcmp:

sext(IR[15:0])si: 

IR[25:0] << 2ts:

31

alu_
bus_en

eq

sext(IR[15:0]) << 2sis:

21



3. PARCv1 FSM Processor 3.2. FSM Processor Datapath

Adding a New Auto-Incrementing Load Instruction

Implement the following auto-incrementing load instruction using
pseudo-control-signal syntax. Modify the datapath if necessary.

lw.ai rt, offset(rs)

R[rt]←M[ R[rs] + sext(offset) ]; R[rs]← R[rs] + 4

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

B

b_en

RF
rf_wen

rf_
bus_en

alu_
func

alu func

alu

rf_addr
_sel

rs
rt
rd

A + 4+4:

A + B+:

sext
imm

iau_
bus_en

>>

b_sel

>>
C

c_sel
c_en

0

A +? B+?:

memreq.
data

WD

wd_en

iau_
func

jt: { A[31:28], B[27:0] }

iau func

iau

A == Bcmp:

sext(IR[15:0])si: 

IR[25:0] << 2ts:

31

alu_
bus_en

eq

sext(IR[15:0]) << 2sis:
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3. PARCv1 FSM Processor 3.3. FSM Processor Control Unit

3.3. FSM Processor Control Unit

F0

F1

F2

A0

A1

A2

AI0

AI1

AI2

M0

M1

M2

M34

M3

L0

L1

L2

L3

S0

S1

S2

S3

J0

J1

JA0

JA1

JA2

JR0 B0

B1

B2

B3

B4

We will study three techniques
for implementing FSM control
units:

• Hardwired control units are
high-performance, but
inflexible

• Horizontal µcoding
increases flexibility, requires
large control store

• Vertical µcoding is an
intermediate design point

Hardwired FSM

State

Control
Signal
Logic

State
Transition

Logic

Control Signals
(24)

Status Signals
(1)

23



3. PARCv1 FSM Processor 3.3. FSM Processor Control Unit

Control signal output table for hardwired control unit

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

B

b_en

RF
rf_wen

rf_
bus_en

alu_
func

alu func

alu

rf_addr
_sel

rs
rt
rd

A + 4+4:

A + B+:

sext
imm

iau_
bus_en

>>

b_sel

>>
C

c_sel
c_en

0

A +? B+?:

memreq.
data

WD

wd_en

iau_
func

jt: { A[31:28], B[27:0] }

iau func

iau

A == Bcmp:

sext(IR[15:0])si: 

IR[25:0] << 2ts:

31

alu_
bus_en

eq

sext(IR[15:0]) << 2sis:

F0: memreq.addr← PC; A← PC
F1: IR← RD
F2: PC← A + 4; A← A + 4; goto inst

A0: A← RF[rs]
A1: B← RF[rt]
A2: RF[rd]← A + B; goto F0

Bus Enables Register Enables Mux Func RF MReq

state pc iau alu rf rd pc ir a b c wd b c iau alu sel wen val op

F0 1 0 0 0 0 0 0 1 0 0 0 – – – – – 0 1 r

F1 0 0 0 0 1 0 1 0 0 0 0 – – – – – 0 0 –

F2 0 0 1 0 0 1 0 1 0 0 0 – – – +4 – 0 0 –

A0

A1

A2
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3. PARCv1 FSM Processor 3.3. FSM Processor Control Unit

Vertically Microcoded FSM

uPC

Control
Signals

Next
State

+1

decoderopcode
F0

eq

Next State Encoding

n : increment uPC by one
d : dispatch based on opcode
f  : goto state F0
b : goto state F0 if A == B

Control Signals (24)

bus
en

mux
sel

Status Signals
(1)

• Use memory array (called the control store) instead of random logic
to encode both the control signal logic and the state transition logic

• Enables a more systematic approach to implementing complex
multi-cycle instructions

• Microcoding can produce good performance if accessing the control
store is much faster than accessing main memory

• Read-only control stores might be replaceable enabling in-field
updates, while read-write control stores can simplify diagnostics
and microcode patches
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3. PARCv1 FSM Processor 3.3. FSM Processor Control Unit

Control signal store for microcoded control unit

PC IR

ir_enpc_en

D
at

ap
at

h
 B

u
s

pc_
bus_en

A

a_en

+4

alu_
bus_en

memresp.
data

memreq.
addr

RD

rd_
bus_en

To control unit

B

b_en

RF
rf_wen

rf_
bus_en

alu_
func

alu func

alu

rf_addr
_sel

rs
rt
rd

A + 4+4:

A + B+:

sext
imm

iau_
bus_en

>>

b_sel

>>
C

c_sel
c_en

0

A +? B+?:

memreq.
data

WD

wd_en

iau_
func

jt: { A[31:28], B[27:0] }

iau func

iau

A == Bcmp:

sext(IR[15:0])si: 

IR[25:0] << 2ts:

31

alu_
bus_en

eq

sext(IR[15:0]) << 2sis:

B0: A← RF[rs]
B1: B← RF[rt]
B2: A← sext(offset) << 2; if A == B goto F0

B3: B← PC
B4: PC← A + B; goto F0

Bus Enables Register Enables Mux Func RF MReq

state pc iau alu rf rd pc ir a b c wd b c iau alu sel wen val op next

B0 0 0 0 1 0 0 0 1 0 0 0 – – – – rs 0 0 –

B1 0 0 0 1 0 0 0 0 1 0 0 b – – – rt 0 0 –

B2 0 1 0 0 0 0 0 1 0 0 0 – – sis cmp – 0 0 –

B3 1 0 0 0 0 0 0 0 1 0 0 b – – – – 0 0 –

B4 0 0 1 0 0 1 0 0 0 0 0 – – – + – 0 0 –
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3. PARCv1 FSM Processor 3.4. Analyzing Performance

3.4. Analyzing Performance

Time
Program

=
Instructions

Program
× Cycles

Instruction
× Time

Cycles

Estimating cycle time

PC IR
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D
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ap
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h
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s

pc_
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a_en
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rd_
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alu func
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rt
rd

A + 4+4:

A + B+:

sext
imm

iau_
bus_en

>>

b_sel

>>
C

c_sel
c_en

0

A +? B+?:

memreq.
data

WD

wd_en

iau_
func

jt: { A[31:28], B[27:0] }

iau func

iau

A == Bcmp:

sext(IR[15:0])si: 

IR[25:0] << 2ts:

31

alu_
bus_en

eq

sext(IR[15:0]) << 2sis:

• register read/write = 1τ

• regfile read/write = 10τ

• mem read/write = 20τ

• iau unit = 1τ

• mux = 3τ

• alu = 10τ

• 1b shifter = 1τ

• tri-state buf = 1τ
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3. PARCv1 FSM Processor 3.4. Analyzing Performance

Estimating execution time

Using our first-order equation for processor performance, how long in
nanoseconds will it take to execute the vector-vector add example as-
suming n is 64?

loop:
lw r12, 0(r4)
lw r13, 0(r5)
addu r14, r12, r13
sw r14, 0(r6)
addiu r4, r4, 4
addiu r5, r5, 4
addiu r6, r6, 4
addiu r7, r7, -1
bne r7, r0, loop
jr r31

Using our first-order equation for processor performance, how long in
nanoseconds will it take to execute the mystery program assuming n is
64 and that we find a match on the last element.

addiu r12, r0, 0
loop:
lw r13, 0(r4)
bne r13, r6, foo
addiu r2, r12, 0
jr r31

foo:
addiu r4, r4, 4
addiu r12, r12, 1
bne r12, r5, loop
addiu r2, r0, -1
jr r31
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4. PARCv1 Pipelined Processor 4.1. High-Level Idea for Pipelined Processors

4. PARCv1 Pipelined Processor

Time
Program

=
Instructions

Program
× Cycles

Instruction
× Time

Cycles

• Instructions / program depends on source code, compiler, ISA
• Cycles / instruction (CPI) depends on ISA, microarchitecture
• Time / cycle depends upon microarchitecture and implementation

Microarchitecture CPI Cycle Time

Single-Cycle Processor 1 long
FSM Processor >1 short
Pipelined Processor ≈1 short

Technology Constraints

• Assume modern technology
where logic is cheap and fast
(e.g., fast integer ALU)

• Assume multi-ported register
files with a reasonable
number of ports are feasible

• Assume small amount of very
fast memory (caches) backed
by large, slower memory

Control Status

Control Unit

Datapath

<1 cycle
combinational

Memory

regfile

imem
req

imem
resp

dmem
req

dmem
resp
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4. PARCv1 Pipelined Processor 4.1. High-Level Idea for Pipelined Processors

4.1. High-Level Idea for Pipelined Processors

• Anne, Brian, Cathy, and Dave each have one load of clothes
• Washing, drying, folding, and storing each take 30 minutes

7pm 8pm 9pm 10pm 11pm 12am 1am 2am 3am

Anne's
Load

Ben's
Load

Cathy's
Load

Dave's
Load

Pipelined Laundry with Slow Dryers

Anne's
Load

7pm 8pm 9pm

Ben's
Load

Cathy's
Load

Dave's
Load

7pm 8pm 9pm 10pm 11pm

Anne's
Load

Ben's
Load

Cathy's
Load

Dave's
Load

Fixed Time-Slot Laundry

Pipelined Laundry
10pm 12am

Pipelining lessons

• Multiple transactions operate simultaneously using different resources
• Pipelining does not help the transaction latency
• Pipelining does help the transaction throughput
• Potential speedup is proportional to the number of pipeline stages
• Potential speedup is limited by the slowest pipeline stage
• Potential speedup is reduced by time to fill the pipeline
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4. PARCv1 Pipelined Processor 4.1. High-Level Idea for Pipelined Processors

Applying pipelining to processors

addu addiu mul lw sw j jal jr bne

Fetch Instruction 3 3 3 3 3 3 3 3 3

Decode Instruction 3 3 3 3 3 3 3 3 3

Read Registers 3 3 3 3 3 3 3

Register Arithmetic 3 3 3 3 3 3

Read Memory 3

Write Memory 3

Write Registers 3 3 3 3 3

Update PC 3 3 3 3 3 3 3 3 3
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Read
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Reg
Arith

Write
Reg

Read
Reg

Update
PC

Fetch
Inst

Decode
Inst

Update
PC

addu

j

P
ip
el
in
ed

31



4. PARCv1 Pipelined Processor 4.2. Pipelined Processor Datapath and Control Unit

4.2. Pipelined Processor Datapath and Control Unit
• Incrementally develop an unpipelined datapath
• Keep data flowing from left to right
• Position control signal table early in the diagram
• Divided datapath/control into stages by inserting pipeline registers
• Keep the pipeline stages roughly balanced
• Forward arrows should avoid “skipping” pipeline registers
• Backward arrows will need careful consideration

pc_plus4

sext

op1
_sel_D

ir[15:0]

mul

result_sel_X

ir[25:0]

j_tgen

j_targ

alu_
fn_X

jr

ir[15:0]

br_tgen

eq_X

br_targ

wb_sel_M

pc_F

+4

regfile
(read)ir[20:16]

ir[25:21]

alu

regfile
(write)

rf
_wen_W

rf
_waddr_W

regfile
(write)

Control Signal
Table

pc
_sel_F

imemreq.
addr

imemresp.
data

dmemreq.
addr

dmemreq.
data

dmemresp.
data

imemreq.
addr

imemresp.
data

dmemreq.
addr

dmemreq.
data

dmemresp.
data

F D X M W

F D X M W

F D X M W

addiu r1, r2, 1

addiu r3, r4, 1

addiu r5, r6, 1
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4. PARCv1 Pipelined Processor 4.2. Pipelined Processor Datapath and Control Unit

Adding a new auto-incrementing load instruction

Draw on the above datapath diagram what paths we need to use as well
as any new paths we will need to add in order to implement the follow-
ing auto-incrementing load instruction.

lw.ai rt, imm(rs)

R[rt]←M[ R[rs] + sext(imm) ]; R[rs]← R[rs] + 4

pc_plus4

sext

op1
_sel_D

ir[15:0]

mul

result_sel_X

ir[25:0]

j_tgen

j_targ

alu_
fn_X

jr

ir[15:0]

br_tgen

eq_X

br_targ

wb_sel_M

pc_F

+4

regfile
(read)ir[20:16]

ir[25:21]

alu

regfile
(write)

rf
_wen_W

rf
_waddr_W

regfile
(write)

Control Signal
Table

pc
_sel_F

imemreq.
addr

imemresp.
data

dmemreq.
addr

dmemreq.
data

dmemresp.
data

ir_FD

op0_DX

result
_XM

F Stage D Stage X Stage M Stage W Stage

cs_DX cs_XM cs_MW

sd_XM

result
_XM

result
_MW

sd_DX

btarg_DX

op0_DX

op1_DX

pc_F
pc_plus4

_FDalways
pc_plus4

val_DX val_XM val_MWval_FD

val_F

Control
Logic

Control
Logic

Control
Logic
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4. PARCv1 Pipelined Processor 4.2. Pipelined Processor Datapath and Control Unit

Pipeline diagrams

addiu r1, r2, 1

addiu r3, r4, 1

addiu r5, r6, 1

What would be the total execution time if these three instructions were
repeated 10 times?

Hazards occur when instructions interact with each other in pipeline

• RAW Data Hazards: An instruction depends on a data value
produced by an earlier instruction

• Control Hazards: Whether or not an instruction should be executed
depends on a control decision made by an earlier instruction

• Structural Hazards: An instruction in the pipeline needs a resource
being used by another instruction in the pipeline

• WAW and WAR Name Hazards: An instruction in the pipeline is
writing a register that an earlier instruction in the pipeline is either
writing or reading

Stalling and squashing instructions

• Stalling: An instruction originates a stall due to a hazard, causing all
instructions earlier in the pipeline to also stall. When the hazard is
resolved, the instruction no longer needs to stall and the pipeline
starts flowing again.

• Squashing: An instruction originates a squash due to a hazard, and
squashes all previous instructions in the pipeline (but not itself). We
restart the pipeline to begin executing a new instruction sequence.
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4. PARCv1 Pipelined Processor 4.2. Pipelined Processor Datapath and Control Unit

Control logic with no stalling and no squashing

Stage A
Datapath
Logic

Stage B
Datapath
Logic

Stage C
Datapath
Logic

Stage A
Control
Logic

Stage B
Control
Logic

Stage C
Control
Logic

always_ff @( posedge clk )
if ( reset )

val_B <= 0
else

val_B <= next_val_A

next_val_B = val_B

Control logic with stalling and no squashing

Stage A
Control
Logic

Stage A
Datapath

Logic

Stage B
Control
Logic

Stage C
Control
Logic

Stage B
Datapath

Logic

Stage C
Datapath

Logic

control, ostall signals

reg_en_B

val_B
next_
val_B

reg_en_B = !stall_B

always_ff @( posedge clk )
if ( reset )

val_B <= 0
else if ( reg_en_B )

val_B <= next_val_A

ostall_B = val_B && ( ostall_hazard1_B || ostall_hazard2_B )

stall_B = val_B && ( ostall_B || ostall_C || ... )

next_val_B = val_B && !stall_B

ostall_B Originating stall due to hazards detected in B stage.

stall_B Should we actually stall B stage? Factors in ostalls due to hazards
and ostalls from later pipeline stages.

next_val_B Only send transaction to next stage if transaction in B stage is valid
and we are not stalling B stage.
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4. PARCv1 Pipelined Processor 4.2. Pipelined Processor Datapath and Control Unit

Control logic with stalling and squashing

Stage A
Control
Logic

Stage A
Datapath

Logic

Stage B
Control
Logic

Stage C
Control
Logic

Stage B
Datapath

Logic

Stage C
Datapath

Logic

control, ostall signals

reg_en_B

val_B
next_
val_B

control, ostall, osquash signals

reg_en_B = !stall_B

always_ff @( posedge clk )
if ( reset )

val_B <= 0
else if ( reg_en_B )

val_B <= next_val_A

squash_B = val_B && ( osquash_C || ... )

ostall_B = val_B && !squash_B && ( ostall_hazard1_B || ostall_hazard2_B )

stall_B = val_B && !squash_B && ( ostall_B || ostall_C || ... )

osquash_B = val_B && !squash_B && !stall_B && ( osquash_hazard1_B || ... )

next_val_B = val_B && !stall_B && !squash_B

squash_B Should we squash B stage? Factors in the originating squashes
from later pipeline stages. An originating squash from B stage
means to squash all stages earlier than B, so osquash_B is not
factored into squash_B.

ostall_B A squash takes priority, since a squashed transaction is invalid and
thus it should not originate a stall.

stall_B A squash takes priority, since a squashed transaction is invalid and
thus it should not actually stall.

osquash_B Originating squash due to hazards detected in B stage. A squash
takes priority, since a squashed transaction is invalid and thus it
should not originate a squash. A stall also takes priority, since a
stalling transactions should not originate a squash.

next_val_B Only send transaction to next stage if transaction in B stage is valid
and we are not stalling or squashing B stage.
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5. Pipeline Hazards: RAW Data Hazards

5. Pipeline Hazards: RAW Data Hazards

RAW data hazards occur when one instruction depends on a data value
produced by a preceding instruction still in the pipeline. We use archi-
tectural dependency arrows to illustrate RAW dependencies in assembly
code sequences.

addiu r1, r2, 1

addiu r3, r1, 1

addiu r4, r3, 1

Using pipeline diagrams to illustrate RAW hazards

We use microarchitectural dependency arrows to illustrate RAW hazards
on pipeline diagrams.

F D X M W

F D X M W

F D X M W

addiu r1, r2, 1

addiu r3, r1, 1

addiu r4, r3, 1

addiu r1, r2, 1

addiu r3, r1, 1

addiu r4, r3, 1
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5. Pipeline Hazards: RAW Data Hazards

Approaches to resolving data hazards

• Expose in Instruction Set Architecture: Expose data hazards in ISA
forcing compiler to explicitly avoid scheduling instructions that
would create hazards (i.e., software scheduling for correctness)

• Hardware Scheduling: Hardware dynamically schedules
instructions to avoid RAW hazards, potentially allowing
instructions to execute out of order

• Hardware Stalling: Hardware includes control logic that freezes
later instructions until earlier instruction has finished producing
data value; software scheduling can still be used to avoid stalling
(i.e., software scheduling for performance)

• Hardware Bypassing/Forwarding: Hardware allows values to be
sent from an earlier instruction to a later instruction before the
earlier instruction has left the pipeline (sometimes called forwarding)

• Hardware Speculation: Hardware guesses that there is no hazard
and allows later instructions to potentially read invalid data; detects
when there is a problem, squashes and then re-executes instructions
that operated on invalid data
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5. Pipeline Hazards: RAW Data Hazards 5.1. Expose in Instruction Set Architecture

5.1. Expose in Instruction Set Architecture

Insert nops to delay read of earlier
write. These nops count as real
instructions increasing
instructions per program.

addiu r1, r2, 1
nop
nop
nop
addiu r3, r1, 1
nop
nop
nop
addiu r4, r3, 1

Insert independent instructions to
delay read of earlier write, and
only use nops if there is not
enough useful work

addiu r1, r2, 1
addiu r6, r7, 1
addiu r8, r9, 1
nop
addiu r3, r1, 1
nop
nop
nop
addiu r4, r3, 1

Pipeline diagram showing software scheduling for RAW data hazards

addiu r1, r2, 1

addiu r6, r7, 1

addiu r8, r9, 1

nop

addiu r3, r1, 1

nop

nop

nop

addiu r4, r3, 1

Note: If hazard is exposed in ISA, software scheduling is required for
correctness! A scheduling mistake can cause undefined behavior.
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5. Pipeline Hazards: RAW Data Hazards 5.2. Hardware Stalling

5.2. Hardware Stalling

Hardware includes control logic that freezes later instructions (in front
of pipeline) until earlier instruction (in back of pipeline) has finished
producing data value.

Pipeline diagram showing hardware stalling for RAW data hazards

addiu r1, r2, 1

addiu r3, r1, 1

addiu r4, r3, 1

Note: Software scheduling is not required for correctness, but can
improve performance! Programmer or compiler schedules independent
instructions to reduce the number of cycles spent stalling.

Modifications to datapath/control to support hardware stalling
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5. Pipeline Hazards: RAW Data Hazards 5.3. Hardware Bypassing/Forwarding

Deriving the stall signal

addu addiu mul lw sw j jal jr bne

rs_en

rt_en

rf_wen

rf_waddr

ostall_waddr_X_rs_D =
val_D && rs_en_D && val_X && rf_wen_X

&& (inst_rs_D == rf_waddr_X) && (rf_waddr_X != 0)

ostall_waddr_M_rs_D =
val_D && rs_en_D && val_M && rf_wen_M

&& (inst_rs_D == rf_waddr_M) && (rf_waddr_M != 0)

ostall_waddr_W_rs_D =
val_D && rs_en_D && val_W && rf_wen_W

&& (inst_rs_D == rf_waddr_W) && (rf_waddr_W != 0)

... similar for ostall signals for rt source register ...

ostall_D = val_D
&& ( ostall_waddr_X_rs_D || ostall_waddr_X_rt_D

|| ostall_waddr_M_rs_D || ostall_waddr_M_rt_D
|| ostall_waddr_W_rs_D || ostall_waddr_W_rt_D )

5.3. Hardware Bypassing/Forwarding

Hardware allows values to be sent from an earlier instruction (in back
of pipeline) to a later instruction (in front of pipeline) before the earlier
instruction has left the pipeline. Sometimes called “forwarding”.
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5. Pipeline Hazards: RAW Data Hazards 5.3. Hardware Bypassing/Forwarding

Pipeline diagram showing hardware bypassing for RAW data hazards

addiu r1, r2, 1

addiu r3, r1, 1

addiu r4, r3, 1

Adding single bypass path to support limited hardware bypassing

pc_plus4

sext

op1
_sel_D

ir[15:0]

mul

result_sel_X

ir[25:0]

j_tgen

j_targ

alu_
fn_X

jr

ir[15:0]

br_tgen

eq_X

br_targ

wb_sel_M

pc_F

+4

regfile
(read)ir[20:16]

ir[25:21]

alu

regfile
(write)

rf
_wen_W

rf
_waddr_W

regfile
(write)

Control Signal
Table

pc
_sel_F

imemreq.
addr

imemresp.
data

dmemreq.
addr

dmemreq.
data

dmemresp.
data

ir_FD

op0_DX

result
_XM

F Stage D Stage X Stage M Stage W Stage

cs_DX cs_XM cs_MW

sd_XM

result
_XM

result
_MW

sd_DX

btarg_DX

op0_DX

op1_DX

pc_F
pc_plus4

_FDalways
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Logic
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op0_byp
_sel_D

Deriving the bypass and stall signals

ostall_waddr_X_rs_D = 0
bypass_waddr_X_rs_D = val_D && rs_en_D && val_X && rf_wen_X

&& (inst_rs_D == rf_waddr_X) && (rf_waddr_X != 0)
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5. Pipeline Hazards: RAW Data Hazards 5.3. Hardware Bypassing/Forwarding

Pipeline diagram showing multiple hardware bypass paths

addiu r2, r10, 1

addiu r2, r11, 1

addiu r1, r2, 1

addiu r3, r4, 1

addiu r5, r3, 1

addu r6, r1, r3

sw r5, 0(r1)

jr r6

Adding all bypass path to support full hardware bypassing
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5. Pipeline Hazards: RAW Data Hazards 5.3. Hardware Bypassing/Forwarding

Handling load-use RAW dependencies

ALU-use latency is only one cycle, but load-use latency is two cycles.

lw r1, 0(r2)

addiu r3, r1, 1

lw r1, 0(r2)

addiu r3, r1, 1

ostall_load_use_X_rs_D =
val_D && rs_en_D && val_X && rf_wen_X

&& (inst_rs_D == rf_waddr_X) && (rf_waddr_X != 0)
&& (op_X == lw)

ostall_load_use_X_rt_D =
val_D && rt_en_D && val_X && rf_wen_X

&& (inst_rt_D == rf_waddr_X) && (rf_waddr_X != 0)
&& (op_X == lw)

ostall_D =
val_D && ( ostall_load_use_X_rs_D || ostall_load_use_X_rt_D )

bypass_waddr_X_rs_D =
val_D && rs_en_D && val_X && rf_wen_X

&& (inst_rs_D == rf_waddr_X) && (rf_waddr_X != 0)
&& (op_X != lw)

bypass_waddr_X_rt_D =
val_D && rt_en_D && val_X && rf_wen_X

&& (inst_rt_D == rf_waddr_X) && (rf_waddr_X != 0)
&& (op_X != lw)
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5. Pipeline Hazards: RAW Data Hazards 5.4. RAW Data Hazards Through Memory

Pipeline diagram for simple assembly sequence

Draw a pipeline diagram illustrating how the following assembly
sequence would execute on a fully bypassed pipelined PARCv1
processor. Include microarchitectural dependency arrows to illustrate
how data is transferred along various bypass paths.

lw r1, 0(r2)

lw r3, 0(r4)

addu r5, r1, r3

sw r5, 0(r6)

addiu r2, r2, 4

addiu r4, r4, 4

addiu r6, r6, 4

addiu r7, r7, -1

bne r7, r0, loop

5.4. RAW Data Hazards Through Memory

So far we have only studied RAW data hazards through registers, but
we must also carefully consider RAW data hazards through memory.

sw r1, 0(r2)
lw r3, 0(r4) # RAW dependency occurs if R[r2] == R[r4]

sw r1, 0(r2)

lw r3, 0(r4)
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6. Pipeline Hazards: Control Hazards

6. Pipeline Hazards: Control Hazards

Control hazards occur when whether or not an instruction should be
executed depends on a control decision made by an earlier instruction
We use architectural dependency arrows to illustrate control
dependencies in assembly code sequences.

Static Instr Sequence

addiu r1, r0, 1
j foo
opA
opB

foo: addiu r2, r3, 1
bne r0, r1, bar
opC
opD
opE

bar: addiu r4, r5, 1

Dynamic Instr Sequence

addiu r1, r0, 1
j foo
addiu r2, r3, 1
bne r0, r1, bar
addiu r4, r5, 1

Using pipeline diagrams to illustrate control hazards

We use microarchitectural dependency arrows to illustrate control
hazards on pipeline diagrams.

addiu r1, r0, 1

j foo

addiu r2, r3, 1

bne r0, r1, bar

addiu r4, r5, 1
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6. Pipeline Hazards: Control Hazards 6.1. Expose in Instruction Set Architecture

The jump resolution latency and branch resolution latency are the
number of cycles we need to delay the fetch of the next instruction in
order to avoid any kind of control hazard. Jump resolution latency is
two cycles, and branch resolution latency is three cycles.

addiu r1, r0, 1

j foo

addiu r2, r3, 1

bne r0, r1, bar

addiu r4, r5, 1

Approaches to resolving control hazards

• Expose in Instruction Set Architecture: Expose control hazards in
ISA forcing compiler to explicitly avoid scheduling instructions that
would create hazards (i.e., software scheduling for correctness)

• Software Predication: Programmer or compiler converts control
flow into data flow by using instructions that conditionally execute
based on a data value

• Hardware Speculation: Hardware guesses which way the control
flow will go and potentially fetches incorrect instructions; detects
when there is a problem and re-executes instructions the instructions
that are along the correct control flow

• Software Hints: Programmer or compiler provides hints about
whether a conditional branch will be taken or not taken, and
hardware can use these hints for more efficient hardware speculation
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6. Pipeline Hazards: Control Hazards 6.1. Expose in Instruction Set Architecture

6.1. Expose in Instruction Set Architecture

Expose branch delay slots as part of the instruction set. Branch delay
slots are instructions that follow a jump or branch and are always
executed regardless of whether a jump or branch is taken or not taken.
Compiler tries to insert useful instructions, otherwise inserts nops.

addiu r1, r0, 1
j foo
nop
opA
opB

foo: addiu r2, r3, 1
bne r0, r1, bar
nop
nop
opC
opD
opE

bar: addiu r4, r5, 1

Assume we modify the PARCv1
instruction set to specify that J,
JAL, and JR instructions have a
single-instruction branch delay
slot (i.e., one instruction after a J,
JAL, and JR is always executed)
and the BNE instruction has a
two-instruction branch delay slot
(i.e., two instructions after a BNE
are always executed).

Pipeline diagram showing using branch delay slots for control hazards

addiu r1, r0, 1

j foo

nop

addiu r2, r3, 1

bne r0, r1, bar

nop

nop

addiu r4, r5, 1
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6. Pipeline Hazards: Control Hazards 6.2. Hardware Speculation

6.2. Hardware Speculation

Hardware guesses which way the control flow will go and potentially
fetches incorrect instructions; detects when there is a problem and
re-executes instructions the instructions that are along the correct
control flow. For now, we will only consider a simple branch prediction
scheme where the hardware always predicts not taken.

Pipeline diagram when branch is not taken

addiu r1, r0, 1

j foo

opA

addiu r2, r3, 1

bne r0, r1, bar

opC

opD

Pipeline diagram when branch is taken

addiu r1, r0, 1

j foo

opA

addiu r2, r3, 1

bne r0, r1, bar

opC

opD

addiu r4, r5, 1
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6. Pipeline Hazards: Control Hazards 6.2. Hardware Speculation

Modifications to datapath/control to support hardware speculation
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Deriving the squash signals

osquash_j_D = (op_D == j) || (op_D == jal) || (op_D == jr)
osquash_br_X = br_taken_X

Our generic stall/squash scheme gives priority to squashes over stalls.
A squashed instruction is invalid, so it should not stall the pipeline.

squash_D = val_D && osquash_X
ostall_D = val_D && !squash_D && ( ostall_hazard1_D || ... )
stall_D = val_D && !squash_D && ostall_D
osquash_D = val_D && !squash_D && !stall_D && osquash_j_D

Important: PC select logic must give priority to older instructions
(i.e., prioritize branches over jumps)! Good quiz question?
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6. Pipeline Hazards: Control Hazards 6.2. Hardware Speculation

Pipeline diagram for simple assembly sequence

Draw a pipeline diagram illustrating how the following assembly
sequence would execute on a fully bypassed pipelined PARCv1
processor that uses hardware speculation which always predicts
not-taken. Unlike the “standard” PARCv1 processor, you should also
assume that we add a single-instruction branch delay slot to the
instruction set. So this processor will partially expose the control
hazard in the instruction, but also use hardware speculation. Include
microarchitectural dependency arrows to illustrate both data and
control flow.

addiu r1, r2, 1
bne r0, r3, foo # assume R[rs] != 0
addiu r4, r5, 1 # instruction is in branch delay slot
addiu r6, r7, 1
...

foo:
addu r8, r1, r4
addiu r9, r1, 1
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6. Pipeline Hazards: Control Hazards 6.3. Interrupts and Exceptions

6.3. Interrupts and Exceptions

Interrupts and exceptions alter the normal control flow of the program.
They are caused by an external or internal event that needs to be
processed by the system, and these events are usually unexpected or
rare from the program’s point of view.

• Asynchronous Interrupts

– Input/output device needs to be serviced
– Timer has expired
– Power distruption or hardware failure

• Synchronous Exceptions

– Undefined opcode, privileged instruction
– Arithmetic overflow, floating-point exception
– Misaligned memory access for instruction fetch or data access
– Memory protection violation
– Virtual memory page faults
– System calls (traps) to jump into the operating system kernel

Interrupts and Exception Semantics

• Interrupts are asynchronous with respect to the program, so the
microarchitecture can decide when to service the interrupt

• Exceptions are synchronous with respect to the program, so they
must be handled immediately

52



6. Pipeline Hazards: Control Hazards 6.3. Interrupts and Exceptions

• To handle an interrupt or exception the hardware/software must:

– Stop program at current instruction (I), ensure previous insts finished
– Save cause of interrupt or exception in privileged arch state
– Save the PC of the instruction I in a special register (EPC)
– Switch to privileged mode
– Set the PC to the address of either the interrupt or the exception handler
– Disable interrupts
– Save the user architectural state
– Check the type of interrupt or exception

– Handle the interrupt or exception

– Enable interrupts
– Switch to user mode
– Set the PC to EPC if I should be restarted
– Potentially set PC to EPC+4 if we should skip I

Handling a misaligned data address and syscall exceptions

Static Instr Sequence

addiu r1, r0, 0x2001
lw r2, 0(r1)
syscall
opB
opC
...

exception_hander:
opD # disable interrupts
opE # save user registers
opF # check exception type
opG # handle exception
opH # enable interrupts
addiu EPC, EPC, 4
eret

Dynamic Instr Sequence

addiu r1, r0, 0x2001
lw r2, 0(r1) (excep)
opD
opE
opF
opG
opH
addiu EPC, EPC, 4
eret
syscall (excep)
opD
opE
opF
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6. Pipeline Hazards: Control Hazards 6.3. Interrupts and Exceptions

Interrupts and Exceptions in a PARCv4? Pipelined Processor

F D X M W

Inst Address
Exceptions

Illegal
Instruction

Arithmetic
Overflow

Data Address
Exceptions

• How should we handle a single instruction which generates
multiple exceptions in different stages as it goes down the pipeline?

– Exceptions in earlier pipeline stages override later exceptions for a given
instruction

• How should we handle multiple instructions generating exceptions
in different stages at the same or different times?

– We always want the execution to appear as if we have completely
executed one instruction before going onto the next instruction

– So we want to process the exception corresponding to the earliest
instruction in program order first

– Hold exception flags in pipeline until commit point

– Commit point is after all exceptions could be generated but before any
architectural state has been updated

– To handle an exception at the commit point: update cause and EPC,
squash all stages before the commit point, and set PC to exception handler

• How and where to handle external asynchronous interrupts?

– Inject asynchronous interrupts at the commit point

– Asynchronous interrupts will then naturally override exceptions caused
by instructions earlier in the pipeline
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6. Pipeline Hazards: Control Hazards 6.3. Interrupts and Exceptions

Modifications to datapath/control to support exceptions
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Deriving the squash signals

osquash_j_D = (op_D == j) || (op_D == jal) || (op_D == jr)
osquash_br_X = br_taken_X
osquash_xcept_M = exception_M

Control logic needs to redirect the front end of the pipeline just like for a
jump or branch. Again, squashes take priority over stalls, and PC select
logic must give priority to older instructions (i.e., priortize exceptions,
over branches, over jumps)!
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6. Pipeline Hazards: Control Hazards 6.3. Interrupts and Exceptions

Pipeline diagram of exception handling

addiu r1, r0, 0x2001
lw r2, 0(r1) # assume causes misaligned address exception
syscall # causes a syscall exception
opB
opC
...

exception_hander:
opD # disable interrupts
opE # save user registers
opF # check exception type
opG # handle exception
opH # enable interrupts
addiu EPC, EPC, 4
eret
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7. Pipeline Hazards: Structural Hazards 7.1. Expose in Instruction Set Architecture

7. Pipeline Hazards: Structural Hazards

Structural hazards occur when an instruction in the pipeline needs a
resource being used by another instruction in the pipeline. The PARCv1
processor pipeline is specifically designed to avoid any structural
hazards.

Let’s introduce a structural hazard by allowing ADDU, ADDIU, MUL,
and JAL instructions to write to the register file in the M stage instead of
waiting until the W stage. We would need to add another writeback
mux in the W stage and carefully handle bypassing.

Using pipeline diagrams to illustrate structural hazards

We use structural dependency arrows to illustrate structural hazards.

addiu r1, r2, 1

addiu r3, r4, 1

lw r5, 0(r6)

addiu r7, r8, 1

Approaches to resolving structural hazards

• Expose in Instruction Set Architecture: Expose structural hazards in
ISA forcing compiler to explicitly avoid scheduling instructions that
would create hazards (i.e., software scheduling for correctness)

• Hardware Stalling: Hardware includes control logic that freezes
later instructions until earlier instruction has finished using the
shared resource; software scheduling can still be used to avoid
stalling (i.e., software scheduling for performance)

• Hardware Duplication: Add more hardware so that each instruction
can access separate resources at the same time
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7. Pipeline Hazards: Structural Hazards 7.1. Expose in Instruction Set Architecture

7.1. Expose in Instruction Set Architecture
Insert independent instructions or nops to delay an ADDU, ADDIU,
MUL, or JAL instructions if they follow a LW instruction.

Pipeline diagram showing software scheduling for structural hazards

addiu r1, r2, 1

addiu r3, r4, 1

lw r5, 0(r6)

nop

addiu r7, r8, 1

7.2. Hardware Stalling
Hardware includes control logic that freezes an ADDU, ADDIU, MUL,
or JAL instruction if a LW instruction is ahead in the pipeline.

Pipeline diagram showing hardware stalling for structural hazards

addiu r1, r2, 1

addiu r3, r4, 1

lw r5, 0(r6)

addiu r7, r8, 1

Deriving the stall signal

ostall_wport_hazard_D = val_D && rf_wen_D && val_X && (op_X == lw)

Stall far before the structural hazard actually occurs, because we know
exactly how instructions move down the pipeline. Also possible to use
dynamic arbitration in the back-end of the pipeline.
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7. Pipeline Hazards: Structural Hazards 7.3. Hardware Duplication

7.3. Hardware Duplication

Add a second write port so that an ADDU, ADDIU, MUL, or JAL
instruction can writeback to the register file at the same time as a LW.
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rf
_wen1_W

rf
_waddr1_W

Does allowing early writeback help performance in the first place?

addiu r1, r2, 1

addiu r3, r1, 1

addiu r4, r3, 1

addiu r5, r4, 1

addiu r6, r5, 1

addiu r7, r6, 1
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8. Pipeline Hazards: WAW and WAR Name Hazards

8. Pipeline Hazards: WAW and WAR Name Hazards

WAW dependencies occur when an instruction overwrites a register
than an earlier instruction has already written. WAR dependencies
occur when an instruction writes a register than an earlier instruction
needs to read. We use architectural dependency arrows to illustrate
WAW and WAR dependencies in assembly code sequences.

mul r1, r2, r3

addiu r4, r6, 1

addiu r1, r5, 1

WAW name hazards occur when an instruction in the pipeline writes a
register before an earlier instruction (in back of the pipeline) has had a
chance to write that same register.

WAR name hazards occur when an instruction in the pipeline writes a
register before an earlier instuction (in back of pipeline) has had a
chance to read that same register.

The PARCv1 processor pipeline is specifically designed to avoid any
WAW or WAR name hazards. Instructions always write the registerfile
in-order in the same stage, and instructions always read registers in the
front of the pipeline and write registers in the back of the pipeline.

Let’s introduce a WAW name hazard by using an iterative variable
latency multiplier, and allowing other instructions to continue
executing while the multiplier is working.
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8. Pipeline Hazards: WAW and WAR Name Hazards 8.1. Software Renaming

Using pipeline diagrams to illustrate WAW name hazards

We use microarchitectural dependency arrows to illustrate WAW
hazards on pipeline diagrams.

mul r1, r2, r3

addiu r4, r6, 1

addiu r1, r5, 1

Approaches to resolving structural hazards

• Software Renaming: Programmer or compiler changes the register
names to avoid creating name hazards

• Hardware Renaming: Hardware dynamically changes the register
names to avoid creating name hazards

• Hardware Stalling: Hardware includes control logic that freezes
later instructions until earlier instruction has finished either writing
or reading the problematic register name

8.1. Software Renaming

As long as we have enough architectural registers, renaming registers in
software is easy. WAW and WAR dependencies occur because we have
a finite number of architectural registers.

mul r1, r2, r3
addiu r4, r6, 1
addiu r7, r5, 1
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9. Summary of Processor Performance 8.2. Hardware Stalling

8.2. Hardware Stalling

Simplest approach is to add stall logic in the decode stage similar to
what the approach used to resolve other hazards.

mul r1, r2, r3

addiu r4, r6, 1

addiu r1, r5, 1

Deriving the stall signal

ostall_struct_hazard_D = val_D && (op_D == MUL) && !imul_rdy_D

ostall_waw_hazard_D =
val_D && rf_wen_D && val_Z && rf_wen_Z

&& (rf_waddr_D == rf_waddr_Z) && (rf_waddr_Z != 0)

9. Summary of Processor Performance

Time
Program

=
Instructions

Program
× Cycles

Instruction
× Time

Cycles

Results for vector-vector add example

Microarchitecture Inst CPI Cycle Time Exec Time

Single-Cycle Processor 576 1.0 74 τ 43 kτ

FSM Processor 576 6.5 40 τ 150 kτ

Pipelined Processor 576
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9. Summary of Processor Performance

Estimating cycle time for pipelined processor
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• register read = 1τ

• register write = 1τ

• regfile read = 10τ

• regfile write = 10τ

• memory read = 20τ

• memory write = 20τ

• +4 unit = 4τ

• sext unit = 1τ

• br_tgen = 8τ

• j_tgen = 1τ

• mux = 3τ

• multiplier = 20τ

• alu = 10τ
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9. Summary of Processor Performance

Estimating execution time

Using our first-order equation for processor performance, how long in τ
will it take to execute the vvadd example assuming n is 64?

loop:
lw r12, 0(r4)
lw r13, 0(r5)
addu r14, r12, r13
sw r14, 0(r6)
addiu r4, r4, 4
addiu r5, r5, 4
addiu r6, r6, 4
addiu r7, r7, -1
bne r7, r0, loop
jr r31

lw

lw

addu

sw

addiu

addiu

addiu

addiu

bne

opA

opB

lw
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9. Summary of Processor Performance

Using our first-order equation for processor performance, how long in τ
will it take to execute the mystery program assuming n is 64 and that
we find a match on the last element.

addiu r12, r0, 0
loop:
lw r13, 0(r4)
bne r13, r6, foo
addiu r2, r12, 0
jr r31

foo:
addiu r4, r4, 4
addiu r12, r12, 1
bne r12, r5, loop
addiu r2, r0, -1
jr r31
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10. Case Study: Transition from CISC to RISC

10. Case Study: Transition from CISC to RISC

• Microcoding thrived in the 1970’s

– ROMs significantly faster than DRAMs
– For complex instruction sets, microcode was cheaper and simpler
– New instructions supported without modifying datapath
– Fixing bugs in controller is easier
– ISA compatibility across models relatively straight-forward

— Maurice Wilkes, 1954
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10. Case Study: Transition from CISC to RISC 10.1. Example CISC: IBM 360/M30

10.1. Example CISC: IBM 360/M30

M30 M40 M50 M65

Datapath width (bits) 8 16 32 64
µinst width (bits) 50 52 85 87
µcode size (1K µinsts) 4 4 2.75 2.75
µstore technology CCROS TCROS BCROS BCROS
µstore cycle (ns) 750 625 500 200
Memory cycle (ns) 1500 2500 2000 750
Rental fee ($K/month) 4 7 15 35

TROS = transformer read-only storage (magnetic storage)
BCROS = balanced capacitor read-only storage (capacitive storage)

CCROS = card capacitor read-only storage (metal punch cards, replace in field)

Only the fastest models (75,95) were hardwired

IBM 360/M30 microprogram for register-register logical OR

OR

Fetch first byte
of operands

Instruction Fetch

Writeback Result

Prepare for Next Byte
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10. Case Study: Transition from CISC to RISC 10.1. Example CISC: IBM 360/M30

IBM 360/M30 microprogram for register-register binary ADD

Analyzing Microcoded Machines

• John Cocke and group at IBM

– Working on a simple pipelined processor, 801, and advanced compilers

– Ported experimental PL8 compiler to IBM 370, and only used simple
register-register and load/store instructions similar to 801

– Code ran faster than other existing compilers that used all 370
instructions! (up to 6 MIPS, whereas 2 MIPS considered good before)

• Joel Emer and Douglas Clark at DEC

– Measured VAX-11/780 using external hardware
– Found it was actually a 0.5 MIPS machine, not a 1 MIPS machine
– 20% of VAX instrs = 60% of µcode, but only 0.2% of the dynamic execution

• VAX 8800, high-end VAX in 1984

– Control store: 16K×147b RAM, Unified Cache: 64K×8b RAM
– 4.5×more microstore RAM than cache RAM!

68



10. Case Study: Transition from CISC to RISC 10.1. Example CISC: IBM 360/M30

From CISC to RISC

• Key changes in technology constraints

– Logic, RAM, ROM all implemented with MOS transistors
– RAM ≈ same speed as ROM

• Use fast RAM to build fast instruction cache of user-visible
instructions, not fixed hardware microfragments

– Change contents of fast instruction memory to fit what app needs

• Use simple ISA to enable hardwired pipelined implementation

– Most compiled code only used a few of CISC instructions
– Simpler encoding allowed pipelined implementations
– Load/Store Reg-Reg ISA as opposed to Mem-Mem ISA

• Further benefit with integration

– Early 1980’s→ fit 32-bit datapath, small caches on single chip
– No chip crossing in common case allows faster operation

μPC

ROM for

μInst

Small

Decoder

User PC

RAM for

Instr Cache 

"Larger"

Decoder

Vertical μCode

Controller
RISC

Controller
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10. Case Study: Transition from CISC to RISC 10.2. Example RISC: MIPS R2K

10.2. Example RISC: MIPS R2K

• MIPS R2K is one of the first popular
pipelined RISC processors

• MIPS R2K implements the MIPS I
instruction set

• MIPS = Microprocessor without
Interlocked Pipeline Stages

MIPSI

MIPSII

MIPSIII

MIPSIV

MIPS64

MIPS32

MIPS16

• MIPS I used software scheduling to avoid some RAW hazards by
including a single-instruction load-use delay slot

• MIPS I used software scheduling to avoid some control hazards by
including a single-instruction branch delay slot

One-Instr Branch Delay Slot

addiu r1, r2, 1
j foo
addiu r3, r4, 1 # BDS
...

foo:
addiu r5, r6, 1
bne r7, r8, bar
addiu r9, r10, 1 # BDS
...

bar:

Present in all MIPS instruction
sets; not possible to depricate and
still enable legacy code to execute
on new microarchitectures

One-Instr Load-Use Delay Slot

lw r1, 0(r2)
lw r3, 0(r4)
addiu r2, r2, 4 # LDS
addu r5, r1, r3

Deprecated in MIPS II instruction
set; legacy code can still execute
on new microarchitectures, but
code using the MIPS II instruction
set can rely in hardware stalling

70



10. Case Study: Transition from CISC to RISC 10.2. Example RISC: MIPS R2K

MIPS R2K Microarchitecture

The pipelined datapath and control
were located on a single die. Cache
control and memory management unit
were also integrated on-die, but the
actual tag and data storage for the
cache was located off-chip.

Control Unit Datapath

I$ Controller D$ Controller

I$ (4-32KB) D$ (4-32KB)

Used two-phase clocking to enable five pipeline stages to fit into four
clock cycles. This avoided the need for explicit bypassing from the W
stage to the end of the D stage. 1.2 The MIPS Five-Stage Pipeline 5

Instruction 1

Instruction 2

Instruction 3

RDIF ALU WB

RD ALU MEM WB

Time

Instruction sequence

IF
from 

I-cache

MEM 
from

D-cache

RD 
from

register
file

WB
to 

register
file

ALU

IF

MEM

FIGURE 1.2 MIPS five-stage pipeline.

fetch data from the cache; a cache miss is a relatively rare event and we can just
stop the CPU when it happens (though cleverer CPUs find more useful things
to do).

The MIPS architecture was planned with separate instruction and data
caches, so it can fetch an instruction and read or write a memory variable simul-
taneously.

CISC architectures have caches too, but they’re most often afterthoughts,
fitted in as a feature of the memory system. A RISC architecture makes more
sense if you regard the caches as very much part of the CPU and tied firmly into
the pipeline.

1.2 The MIPS Five-Stage Pipeline

The MIPS architecture is made for pipelining, and Figure 1.2 is close to the
earliest MIPS CPUs and typical of many. So long as the CPU runs from the
cache, the execution of every MIPS instruction is divided into five phases, called
pipestages, with each pipestage taking a fixed amount of time. The fixed amount
of time is usually a processor clock cycle (though some actions take only half
a clock, so the MIPS five-stage pipeline actually occupies only four clock
cycles).

All instructions are rigidly defined so they can follow the same sequence
of pipestages, even where the instruction does nothing at some stage. The net
result is that, so long as it keeps hitting the cache, the CPU starts an instruction
every clock cycle.

Two-phase clocking enabled a single-cycle branch resolution latency
since register read, branch address generation, and branch comparison
can fit in a single cycle.

1.5 MIPS Compared with CISC Architectures 27

IF

IF RD ALU MEM WB

WBMEMALURDIF

RD MEM WB
Branch

instruction

Branch
delay

Branch
target

Branch
address

FIGURE 1.3 The pipeline and branch delays.

on a MIPS CPU without using some registers). For a program running
in any system that takes interrupts or traps, the values of these registers
may change at any time, so you’d better not use them.

1.5.4 Programmer-Visible Pipeline Effects

So far, this has all been what you might expect from a simplified CPU. However,
making the instruction set pipeline friendly has some stranger effects as well,
and to understand them we’re going to draw some pictures.

Delayed branches: The pipeline structure of the MIPS CPU (Figure 1.3)
means that when a jump/branch instruction reaches the execute phase
and a new program counter is generated, the instruction after the jump
will already have been started. Rather than discard this potentially useful
work, the architecture dictates that the instruction after a branch must
always be executed before the instruction at the target of the branch. The
instruction position following any branch is called the branch delay slot.
If nothing special was done by the hardware, the decision to branch or
not, together with the branch target address, would emerge at the end
of the ALU pipestage—by which time, as Figure 1.3 shows, you’re too
late to present an address for an instruction in even the next-but-one
pipeline slot.
But branches are important enough to justify special treatment, and you
can see from Figure 1.3 that a special path is provided through the ALU to
make the branch address available half a clock cycle early. Together with
the odd half-clock-cycle shift of the instruction fetch stage, that means
that the branch target can be fetched in time to become the next but one,
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MIPS R2K VLSI Design

Process: 2 µm, two metal layers
Clock Frequency: 8–15 MHz
Size: 110K transistors, 80 mm2
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Ratio of

MIPS

to

VAX

-- H&P, Appendix J, from Bhandarkar and Clark, 1991
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CISC/RISC Convergence

by Linley Gwennap

Not to be left out in the move to the
next generation of RISC, MIPS Tech-
nologies (MTI) unveiled the design of
the R10000, also known as T5. As the
spiritual successor to the R4000, the
new design will be the basis of high-end

MIPS processors for some time, at least until 1997. By
swapping superpipelining for an aggressively out-of-
order superscalar design, the R10000 has the potential
to deliver high performance throughout that period.

The new processor uses deep queues decouple the
instruction fetch logic from the execution units. Instruc-
tions that are ready to execute can jump ahead of those
waiting for operands, increasing the utilization of the ex-
ecution units. This technique, known as out-of-order ex-
ecution, has been used in PowerPC processors for some
time (see 081402.PDF ), but the new MIPS design is the
most aggressive implementation yet, allowing more in-
structions to be queued than any of its competitors.

Taking advantage of its experience with the 200-
MHz R4400, MTI was able to streamline the design and
expects it to run at a high clock rate. Speaking at the
Microprocessor Forum, MTI’s Chris Rowen said that the
first R10000 processors will reach a speed of 200 MHz,
50% faster than the PowerPC 620. At this speed, he ex-
pects performance in excess of 300 SPECint92 and 600
SPECfp92, challenging Digital’s 21164 for the perfor-
mance lead. Due to schedule slips, however, the R10000
has not yet taped out; we do not expect volume ship-
ments until 4Q95, by which time Digital may enhance
the performance of its processor.

Speculative Execution Beyond Branches
The front end of the processor is responsible for

maintaining a continuous flow of instructions into the
queues, despite problems caused by branches and cache
misses. As Figure 1 shows, the chip uses a two-way set-
associative instruction cache of 32K. Like other highly
superscalar designs, the R10000 predecodes instructions
as they are loaded into this cache, which holds four extra

bits per instruction. These bits reduce
the time needed to determine the ap-
propriate queue for each instruction.

The processor fetches four instruc-
tions per cycle from the cache and de-
codes them. If a branch is discovered, it
is immediately predicted; if it is pre-
dicted taken, the target address is sent
to the instruction cache, redirecting the
fetch stream. Because of the one cycle
needed to decode the branch, taken
branches create a “bubble” in the fetch
stream; the deep queues, however, gen-
erally prevent this bubble from delay-
ing the execution pipeline.

The sequential instructions that
are loaded during this extra cycle are
not discarded but are saved in a “re-
sume” cache. If the branch is later de-
termined to have been mispredicted, the
sequential instructions are reloaded
from the resume cache, reducing the
mispredicted branch penalty by one
cycle. The resume cache has four entries
of four instructions each, allowing spec-
ulative execution beyond four branches.

The R10000 design uses the stan-
dard two-bit Smith method to predict
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MIPS R10000 Uses Decoupled Architecture
High-Performance Core Will Drive MIPS High-End for Years
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Figure 1. The R10000 uses deep instruction queues to decouple the instruction fetch logic
from the five function units.

Instruction Cache
32K, two-way associative

PC

Unit

Predecode

Unit

ITLB
8 entry

Decode, Map,

Dispatch
Active

List
Map
Table

Main TLB
64 entries

ALU1

Data Cache
32K, two-way associative

FP

Adder

4 instr

4 instr

4 instr

Memory
Queue

16 entries

Integer
Queue
16 entries

FP
Queue
16 entries

ALU2 FP

Mult÷!

FP
÷
"

virtual
addr

phys addr

64

Data
SRAM

128

512K
-16M

A
v
a
la

n
c
h
e
 B

u
s
 (

6
4
 b

it
 a

d
d
r/

d
a
ta

)

L
2
 C

a
c
h
e
 I
n
te

rf
a
c
e

128

S
y
s
te

m
 I
n
te

rf
a
c
e

Tag
SRAM

BHT
512 x 2

Resume

Cache

Address

Adder

Integer Registers
64 ! 64 bits

FP Registers
64 ! 64 bits

MIPS R10K uses sophisticated
out-of-order engine; branch

delay slot not useful

– Gwennap, MPR, 1994

Intel Nehalem frontend breaks x86 CISC
into smaller RISC-like µops; µcode engine

handles rarely used complex instr

– Kanter, Real World Technologies, 2009
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Microprogamming Today

• Microprogramming is far from extinct

• Played a crucial role in microprocessors of the 1980s
(DEC VAX, Motorola 68K series, Intel 386/486)

• Microprogramming plays assisting role in many modern processors
(AMD Phenom, Intel Nehalem, Intel Atom, IBM Z196)

– 761 Z196 instructions executed with hardwired control
– 219 Z196 “complex” instructions always executed with microcode
– 24 Z196 instructions conditionally executed with microcode

• Patchable microcode common for post-fabrication bug fixes (Intel
processors load µcode patches at bootup)
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