
ECE 4750 Computer Architecture, Fall 2015

T01 Fundamental Processor Concepts

School of Electrical and Computer Engineering
Cornell University

revision: 2015-09-05-13-33

1 Instruction Set Architecture 2

1.1. IBM 360 Instruction Set Architecture 4

1.2. MIPS32 Instruction Set Architecture 6

1.3. PARC Instruction Set Architecture 10

2 Processor Functional-Level Model 12

2.1. Transactions and Steps . 12

2.2. Simple Assembly Example . 13

2.3. PARCv1 VVAdd Asm and C Program 14

2.4. PARCv1 Mystery Asm and C Program 15

3 Processor/Laundry Analogy 16

3.1. Arch vs. µArch vs. VLSI Impl . 16

3.2. Processor Microarchitectural Design Patterns 17

3.3. Transaction Diagrams . 18

4 Analyzing Processor Performance 19

1

1. Instruction Set Architecture

1. Instruction Set Architecture

• By early 1960’s, IBM had several incompatible lines of computers!

– Defense : 701
– Scientific : 704, 709, 7090, 7094
– Business : 702, 705, 7080
– Mid-Sized Business : 1400
– Decimal Architectures : 7070, 7072, 7074

• Each system had its own:

– Implementation and potentially even technology
– Instruction set
– I/O system and secondary storage (tapes, drums, disks)
– Assemblers, compilers, libraries, etc
– Application niche

Register-Transfer Level

Circuits
Devices

Programming Language
Algorithm

Microarchitecture

Physics

Application

Operating System

Gate Level

Instruction Set Architecture

• IBM 360 was the first line of
machines to separate ISA from
microarchitecture

– Enabled same software to run on
different current and future
microarchitectures

– Reduced impact of modifying the
microarchitecture enabling rapid
innovation in hardware

... the structure of a computer that a machine language programmer
must understand to write a correct (timing independent)

program for that machine.

— Amdahl, Blaauw, Brooks, 1964

2

1. Instruction Set Architecture

ISA is the contract between software and hardware

• 1.

– Representations for characters, integers, floating-point
– Integer formats can be signed or unsigned
– Floating-point formats can be single- or double-precision
– Byte addresses can ordered within a word as either little- or big-endian

• 2.

– Registers: general-purpose, floating-point, control
– Memory: different addresses spaces for heap, stack, I/O

• 3.

– Register: operand stored in registers
– Immediate: operand is an immediate in the instruction
– Direct: address of operand in memory is stored in instruction
– Register Indirect: address of operand in memory is stored in register
– Displacement: register indirect, addr is added to immediate
– Autoincrement/decrement: register indirect, addr is automatically adj
– PC-Relative: displacement is added to the program counter

• 4.

– Integer and floating-point arithmetic instructions
– Register and memory data movement instructions
– Control transfer instructions
– System control instructions

• 5.

– Opcode, addresses of operands and destination, next instruction
– Variable length vs. fixed length

3

1. Instruction Set Architecture 1.1. IBM 360 Instruction Set Architecture

1.1. IBM 360 Instruction Set Architecture

• How is data represented?

– 8-bit bytes, 16-bit half-words, 32-bit words, 64-bit double-words
– IBM 360 is why bytes are 8-bits long today!

• Where can data be stored?

– 224 32-bit memory locations
– 16 general-purpose 32-bit registers and 4 floating-point 64-bit registers
– Condition codes, control flags, program counter

• What operations can be done on data?

– Large number of arithmetic, data movement, and control instructions

4

1. Instruction Set Architecture 1.1. IBM 360 Instruction Set Architecture

Model 30 Model 70

Storage 8–64 KB 256–512 KB
Datapath 8-bit 64-bit
Circuit Delay 30 ns/level 5 ns/level
Local Store Main store Transistor registers
Control Store Read only 1µs Conventional circuits

• IBM 360 instruction set architecture completely hid
the underlying technological differences between various models

• Significant Milestone: The first true ISA designed as a
portable hardware-software interface

• IBM 360: 50 years later ...
The zSeries z13 Microprocessor

– 5 GHz in IBM 22 nm SOI
– 4B transistors in 678 mm2

– 17 metal layers
– ≈20K pads
– Eight cores per chip
– Aggressive out-of-order execution
– Four-level cache hierarchy
– On-chip 64MB eDRAM L3 cache
– Off-chip 480MB eDRAM L4 cache
– Can still run IBM 360 code!

J. Warnock, et al., “22nm Next-Generation IBM System-Z Microprocessor,”
Int’l Solid-State Circuits Conference, Feb. 2015.

5

1. Instruction Set Architecture 1.2. MIPS32 Instruction Set Architecture

1.2. MIPS32 Instruction Set Architecture

• How is data represented?

– 8-bit bytes, 16-bit half-words, 32-bit words
– 32-bit single-precision, 64-bit double-precision floating point

• Where can data be stored?

– 232 32-bit memory locations
– 32 general-purpose 32-bit registers, 32 SP (16 DP) floating-point registers
– FP status register, Program counter

• How can data be accessed?

– Register, register indirect, displacement

• What operations can be done on data?

– Large number of arithmetic, data movement, and control instructions

• How are instructions encoded?

– Fixed-length 32-bit instructions

MIPS R2K: 1986, single-issue,
in-order, off-chip caches, 2 µm,

8–15 MHz, 110K transistors, 80 mm2

MIPS R10K: 1996, quad-issue,
out-of-order, on-chip caches, 0.35 µm,
200 MHz, 6.8M transistors, 300 mm2

6

Add Immediate Unsigned Word ADDIU

48 MIPS32® Architecture For Programmers Volume II: The MIPS32® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ADDIU rt, rs, immediate MIPS32

Purpose: Add Immediate Unsigned Word

To add a constant to a 32-bit integer

Description: GPR[rt] ← GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is placed into

GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ← GPR[rs] + sign_extend(immediate)
GPR[rt] ← temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not

trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-

metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 0

ADDIU

001001
rs rt immediate

6 5 5 16

Load Word LW

148 MIPS32® Architecture For Programmers Volume II: The MIPS32® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LW rt, offset(base) MIPS32

Purpose: Load Word

To load a word from memory as a signed value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-

extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the con-

tents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

LW

100011
base rt offset

6 5 5 16

Branch on Not Equal BNE

84 MIPS32® Architecture For Programmers Volume II: The MIPS32® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BNE rs, rt, offset MIPS32

Purpose: Branch on Not Equal

To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] ≠ GPR[rt] then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following

the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the

delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the

delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register

(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BNE

000101
rs rt offset

6 5 5 16

1. Instruction Set Architecture 1.3. PARC Instruction Set Architecture

1.3. PARC Instruction Set Architecture
http://www.csl.cornell.edu/courses/ece4750/handouts

• Subset of MIPS32 with several important differences

– Only little-endian, very simple address translation
– No hi/lo registers, only 32 general purpose registers
– Multiply and divide instructions target general purpose registers
– Only a subset of all MIPS32 instructions
– No branch delay slot

• PARCv1: Very small subset suitable for examples

–
–
–
–

• PARCv2: Subset suitable for executing simple C programs
without system calls (i.e., open, write, read)

– subu, and, or, nor, xor, andi, ori, xori, lui
– slt, sltu, slti, sltiu, sll, srl, sra, srav, srlv, sllv
– bgtz, bltz, bgez, blez
– mfc0, mtc0 (stats_en, core_id, num_cores)

• PARCv3: Subset suitable for executing real C/C++
single-threaded and parallel programs with system calls

– jalr
– div, divu, rem, remu
– lb, lbu, lh, lhu, sb, sh
– movn, movz
– amo.add, amo.and, amo.or, sync
– syscall, eret
– add.s, sub.s, mul.s, div.s, c.<cond>.s, cvt.s.w, trunc.w.s
– mtx, mfx, mtxr, mfxr

10

1. Instruction Set Architecture 1.3. PARC Instruction Set Architecture

PARCv1 instruction assembly, semantics, and encoding

addu rd, rs, rt 6 5 5 5 5 6
R[rd]← R[rs] + R[rt] 000000 rs rt rd 00000 100001
PC← PC+4 31 26 25 21 20 16 15 11 10 6 5 0

addiu rt, rs, imm 6 5 5 16
R[rt]← R[rs] + sext(imm) 001001 rs rt offset
PC← PC+4 31 26 25 21 20 16 15 0

mul rd, rs, rt 6 5 5 5 5 6
R[rd]← R[rs] × R[rt] 011100 rs rt rd 00000 000010
PC← PC+4 31 26 25 21 20 16 15 11 10 6 5 0

lw rt, offset(rs) 6 5 5 16
R[rt]←M[R[rs] + sext(offset)] 100011 rs rt offset
PC← PC+4 31 26 25 21 20 16 15 0

sw rt, offset(rs) 6 5 5 16
M[R[rs] + sext(offset)]← R[rt] 101011 rs rt offset
PC← PC+4 31 26 25 21 20 16 15 0

j targ 6 26
PC← { (PC + 4)[31:28], targ, 00 } 000010 targ

31 26 25 0

jal targ 6 26
R[31]← PC + 4; 000011 targ
PC← { (PC + 4)[31:28], targ, 00 } 31 26 25 0

jr rs 6 5 5 5 5 6
PC← R[rs] 000000 rs 00000 00000 00000 001000

31 26 25 21 20 16 15 11 10 6 5 0

bne rs, rt, offset 6 5 5 16
if (R[rs] != R[rt]) 000101 rs rt offset
PC← (PC + 4 + (4× sext(offset)) 31 26 25 21 20 16 15 0

11

2. Processor Functional-Level Model 2.2. Transactions and Steps

2. Processor Functional-Level Model

Program
Counter

Instr
Mem Register

File

Data
Mem

Instruction
Semantics

A
rc

h
it

ec
tu

ra
l

St
at

e

Instruction and data memory
usually combined into a
single unified memory

2.1. Transactions and Steps

• We can think of each instruction as a transaction
• Executing a transaction involves a sequence of steps

addu addiu mul lw sw j jal jr bne

Fetch Instruction

Decode Instruction

Read Registers

Register Arithmetic

Read Memory

Write Memory

Write Registers

Update PC

12

2. Processor Functional-Level Model 2.2. Simple Assembly Example

2.2. Simple Assembly Example

Static Asm Sequence Instruction Semantics

loop: lw r1, 0(r2)

addu r3, r3, r1

addiu r2, r2, 4

bne r1, r0, loop

Worksheet illustrating processor functional-level model

PC Instr Mem Reg File Data Mem

0x1000

r0

r1

r2

r3

r31

0x2000

addu r3, r3, r1

addiu r2, r2, 4

bne r1, r0, loop

lw r1, 0(r2)

0

13

47

0

0x2004

0x2008

Table illustrating processor functional-level model

PC Dynamic Asm Sequence r1 r2 r3

lw r1, 0(r2)

addu r3, r3, r1

addiu r2, r2, 4

bne r1, r0, loop

lw r1, 0(r2)

addu r3, r3, r1

13

2. Processor Functional-Level Model 2.3. PARCv1 VVAdd Asm and C Program

2.3. PARCv1 Vector-Vector Add Assembly and C Program

C code for doing element-wise vector addition.

Equivalent PARCv1 assembly code. Recall that arguments are passed in
r4–r7, return value is stored to r2, and return address is stored in r31.

Note that we are ignoring the fact that our assembly code will not function correctly if n
<= 0. Our assembly code would need an additional check before entering the loop to
ensure that n > 0. Unless otherwise stated, we will assume in this course that array
bounds are greater than zero to simplify our analysis.

14

2. Processor Functional-Level Model 2.4. PARCv1 Mystery Asm and C Program

2.4. PARCv1 Mystery Assembly and C Program

What is the C code corresponding to the PARCv1 assembly shown be-
low? Assume assembly implements a function.

addiu r12, r0, 0

loop:
lw r13, 0(r4)
bne r13, r6, foo
addiu r2, r12, 0
jr r31

foo:
addiu r4, r4, 4
addiu r12, r12, 1
bne r12, r5, loop

addiu r2, r0, -1
jr r31

15

3. Processor/Laundry Analogy 3.1. Arch vs. µArch vs. VLSI Impl

3. Processor/Laundry Analogy
• Processor

– Instructions are “transactions” that execute on a processor
– Architecture: defines the hardware/software interface
– Microarchitecture: how hardware executes sequence of instructions

• Laundry

– Cleaning a load of laundry is a “transaction”
– Architecture: high-level specification, dirty clothes in, clean clothes out
– Microarchitecture: how laundry room actually processes multiple loads

3.1. Arch vs. µArch vs. VLSI Impl

ARM Architecture ARM VLSI Implementation

Samsung Exynos Octa

NVIDIA Tegra 2

ARM
Microarchitecture

16

3. Processor/Laundry Analogy 3.2. Processor Microarchitectural Design Patterns

3.2. Processor Microarchitectural Design Patterns

7pm 8pm 9pm 10pm 11pm 12am 1am 2am 3am

7pm 8pm 9pm

Anne's
Load

Ben's
Load

Cathy's
Load

Dave's
Load

Fixed Time Slot Laundry (Single-Cycle Processors)

Pipelined Laundry
10pm

0 hr 1 h 2 hr

Anne's
Load

Ben's
Load

Cathy's
Load

Dave's
Load

Four Types of Transactions

2.0 hr

Transaction
Latency

1.0 hr

1.5 hr

2.0 hr

Anne requires all four steps

Ben is messy, leaves unfolded
clothes in his laundry basket

Cathy does not have a bureau,
leaves folded clothes in basket

Dave requires all four steps

Transaction
Steps

Washing
(30 min)

Drying
(30 min)

Folding
(30 min)

Storing
(30 min)

7pm 8pm 9pm 10pm 11pm 12am 1am

Anne's
Load

Ben's
Load

Cathy's
Load

Dave's
Load

Variable Time Slot Laundry (FSM Processors)

17

3. Processor/Laundry Analogy 3.3. Transaction Diagrams

3.3. Transaction Diagrams

W: Washing D: Drying F: Folding S: Storing

Key Concepts

• Transaction latency is the time to
complete a single transaction

• Execution time or total latency is
the time to complete a sequence
of transactions

• Throughput is the number of
transactions executed per unit time

18

4. Analyzing Processor Performance

4. Analyzing Processor Performance

Time
Program

=
Instructions

Program
× Cycles

Instruction
× Time

Cycles

• Instructions / program depends on source code, compiler, ISA
• Cycles / instruction (CPI) depends on ISA, microarchitecture
• Time / cycle depends upon microarchitecture and implementation

Using our first-order equation for processor performance and
a functional-level model, the execution time is just the

number of dynamic instructions.

Microarchitecture CPI Cycle Time

Single-Cycle Processor 1 long
FSM Processor >1 short
Pipelined Processor ≈1 short

Students often confuse “Cycle Time” with the execution time
of a sequence of transactions measured in cycles.

“Cycle Time” is the clock period or the inverse of the clock frequency.

19

4. Analyzing Processor Performance

Estimating dynamic instruction count

Estimate the dynamic instruction count for the vector-vector add exam-
ple assuming n is 64?

loop:
lw r12, 0(r4)
lw r13, 0(r5)
addu r14, r12, r13
sw r14, 0(r6)
addiu r4, r4, 4
addiu r5, r5, 4
addiu r6, r6, 4
addiu r7, r7, -1
bne r7, r0, loop
jr r31

Estimate the dynamic instruction count for the mystery program assum-
ing n is 64 and that we find a match on the final element.

addiu r12, r0, 0
loop:
lw r13, 0(r4)
bne r13, r6, foo
addiu r2, r12, 0
jr r31

foo:
addiu r4, r4, 4
addiu r12, r12, 1
bne r12, r5, loop
addiu r2, r0, -1
jr r31

20

