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CHAPTER 1

Numbers

Engineers, scientists, and applied mathematicians think about numbers all the
time, but usually in a utilitarian way. We manipulate them, calculate with them,
make plans based on them, drive cars and fly in airplanes whose design depended
on them, and so on. We don’t spend a lot of time thinking about what numbers
“actually are” or “where they come from.” Numbers are just kind of “out there.”
We all have our own ways of visualizing numbers, and we understand on some level
how different sorts of numbers are related. We think of the integers, for example,
as forming a subset of the rational numbers, which in turn form a subset of the real
numbers. And the real numbers constitute a subset of the complex numbers. Once
in a while, it pays to spend some time pondering numbers a bit more deeply than
we usually do. That’s what I’ll attempt in what follows.

Sets, mappings, cardinality, and the natural numbers

First let’s talk about sets. You have to be careful when you define what “set”
means if you want to have a “set theory” that works in the sense that it doesn’t
lead to logical contradictions. For example, if you allow any arbitrary collection of
objects to be a set, then Russell’s Paradox comes into play.

Here’s how Russell’s Paradox goes. Specifying a set entails, in some sense,
listing the elements of the set. So you can think of a set simply as a list. Here’s an
example of a list:

(1) Collegetown Bagels
(2) Radiohead
(3) One teaspoon of salt
(4) Nitroglycerin

Here’s another one:

(1) Sibley Dome
(2) Stella’s
(3) This list
(4) The Foo Fighters
(5) The album Daydream Nation by Sonic Youth

The first list, although it enumerates some rather unrelated things, is not as
unusual as the second list. The second list contains itself as a list item. Let’s
call a list anomalous if it lists itself as an item. Next, define LR as the list of
all non-anomalous lists. Question: is LR anomalous? I.e., does LR list itself as
an item? If LR lists itself as an item, then LR is by definition anomalous — but
that’s a contradiction, since LR lists only non-anomalous lists by construction. On
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6 1. NUMBERS

the other hand, if LR does not list itself as an item, then LR is by definition non-
anomalous — but that, too, is a contradiction, since LR lists all non-anomalous
lists by construction, hence would have to list itself if it were non-anomalous.

Behold Russell’s Paradox. What went wrong? Essentially, we attempted to
define “set” too broadly. It won’t do merely to say that a set is any collection of
objects. Only certain collections of objects can qualify as sets if we are to have
a set theory immune to Russell-type paradoxes. Different stipulations of exactly
what collections to deem sets underlie different approaches to set theory. Many
such different approaches are mathematically viable and several are particularly
popular with working mathematicians. One approach that has become somewhat
of an industry standard is the so-called ZFC axiomatization of set theory. ZFC
stands for “Zermelo-Fraenkel axioms together with the Axiom of Choice.” Search
online for ZFC and see what you hit.

Let’s assume henceforth that we’re employing a working version of set theory
in which all the elementary set operations make sense. We have the empty set φ.
If A and B are two sets, then

A ∪B = {c : c ∈ A or c ∈ B}

and

A ∩B = {c : c ∈ A and c ∈ B} .

Read these last two expressions, respectively, as “the union of A and B is the set of
all c such that c is an element of A or c is an element of B” and “the intersection
of A and B is the set of all c such that c is an element of A and c is an element of
B.” If A and B are sets, the Cartesian product A×B of A and B is the set of all
ordered pairs (a, b) where a ∈ A and b ∈ B. In math speak:

A×B = {(a, b) : a ∈ A and b ∈ B} .

What about numbers? Define the set N of natural numbers as

N = {0, 1, 2, 3, 4, . . .} .

I include zero in N even though most books don’t. Any decent version of set theory
includes N among its sets. But wait, what “is” a natural number? What is 17,
for example? It’s really a concept — “the idea of 17-ness” or something like that.
If you want to define what a number is more concretely, you have many options.
Here, for example, is a way to construct the natural numbers, almost literally, out
of nothing. I first read about it in Rudy Rucker’s remarkable book Infinity and the
Mind, which I recommend strongly to anyone interested in further reading on sets,
numbers, infinity, and related ideas. The empty set φ makes sense to everyone, so
let’s start there. Define the natural number 0 as φ. Then define 1 as {φ} — i.e.,
the set whose only element is the empty set. Define 2 as {{φ}}, 3 as {{{φ}}}, etc.

Rucker motivates this construction of the natural numbers with the idea that
you won’t go far wrong if you adopt the position that “everything in the universe is
a set.” That idea has philosophical merit, and Rucker speaks to it eloquently. We’ll
see how useful it is when discussing and defining the rational, real, and complex
numbers. You may think it’s silly, and that’s okay. You’ll be fine for now as
long as you have a conceptual architecture that accommodates natural numbers
comfortably.
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Now let’s talk about mappings between sets. The notation for a mapping f
from a set A to a set B is

f : A −→ B .

This means that to each a ∈ A there corresponds a unique element of B called
f(a). People also write

a 7→ f(a)

when A and B are clear from the context. A mapping f : A −→ B is
• injective when no two distinct elements of A map to the same element of
B under f . In technical terms: f is injective when for all a1, a2 ∈ A, if
a1 6= a2, then f(a1) 6= f(a2).
• surjective when for every b ∈ B there’s some a ∈ A such that f(a) = b; in

other words, f maps A onto B; i.e. the mapping f “hits” every element
of B.
• bijective when it’s both injective and surjective. A bijective mapping
f : A −→ B establishes a one-to-one correspondence between the elements
of A and the elements of B.

A set A is finite when either A = φ or for some N ∈ N there is a bijective
mapping

f : {0, 1, 2, . . . , N − 1} −→ A ,

and in this case we say that A has cardinality N . By convention, the empty set φ
has cardinality 0. A set A is infinite when A is not finite. What about the word
“cardinality?” The cardinality of a set is, roughly speaking, the size of the set.
If A is a finite set, the cardinality of A is simply the number of elements in A.
Cardinality gets interesting and touchy when you deal with infinite sets, as we’ll
discover shortly.

If A is any set, the power set of A, written P(A) or 2A, is the set of all subsets
of A. In math speak,

P(A) = {S : S ⊂ A} .
Read that last line as, “The power set of A is the set of all S such that S is a subset
of A.” For example, if A = {a1, a2} is any set with two elements, the power set of
A is

{φ, {a1}, {a2}, {a1, a2}} .
For any set A, the empty set φ and A itself are subsets of A, hence elements of
P(A).

The cardinalities of A and P(A) when A is finite bear a simple relationship,
namely: if A has N elements, then P(A) has 2N elements. To see why this is true,
suppose

A = {a1, a2, . . . , aN} .
Let BN be the set of binary strings of length N . A typical element of B takes the
form

b1b2b3 · · · bN ,

where each bi is either 0 or 1. Define a mapping f : P(A) −→ BN as follows: for
each S ∈ P(A), f(S) ∈ BN is the binary string b prescribed by

bi =
{

1 if ai ∈ S
0 if ai /∈ S
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for 1 ≤ i ≤ N . The mapping f is bijective, and, since BN has 2N elements, so does
P(A). Note that f maps the empty set to the string of all 0’s and f maps A to the
string of all 1’s.

We won’t struggle to define exactly what we mean by “the cardinality of A”
when A is infinite. We’ll be more interested in statements about how cardinalities
of different infinite sets compare to each other. Here are the key definitions. Given
any two sets A and B, we say that

• A and B have the same cardinality — which we abbreviate by writing
card(A) = card(B) — when there exists a bijective mapping f : A −→ B.
In other words, A and B have the same cardinality when we can establish
a one-to-one correspondence between the elements of A and the elements
of B.
• A has cardinality less than or equal to that of B — abbreviated card(A) ≤

card(B) — when there exists an injective mapping f : A −→ B.

It’s comforting to note that when A ⊂ B, card(A) ≤ card(B). To see why, observe
that the mapping f : A → B defined by f(a) = a for every a ∈ A is trivially
injective. Observe also that if card(A) = card(B), then card(A) ≤ card(B). Fur-
thermore, it’s easy to show that cardinality comparisons obey the transitive laws

card(A) ≤ card(B) and card(B) ≤ card(C) =⇒ card(A) ≤ card(C)

and

card(A) = card(B) and card(B) = card(C) =⇒ card(A) = card(C) .

I’d like to stress here that the “cardinality” of an infinite set is not a number,
per se. The statement “card(A) ≤ card(B)” is not a relationship between numbers
when A and B are infinite. Rather, it’s a statement about the existence of a
mapping establishing a one-to-one correspondence between A and a subset of B.
It’s true (but not obvious) that, using our definitions, if card(A) ≤ card(B) and
card(B) ≤ card(A), then card(A) = card(B). The Schröder-Bernstein Theorem
establishes this fact. It’s also true that a set A is infinite if and only if card(N) ≤
card(A) — i.e., if and only if there exists an injective mapping f : N −→ A.

Comparing cardinalities of infinite sets generates a whole hierarchy of “levels
of infinity” that we won’t have time to explore. As it happens, the set N of natural
numbers is in some sense the smallest of all infinite sets. We say a set A is countably
infinite when card(A) = card(N) — i.e., there exists a bijective mapping f : N −→
A. A set A is uncountably infinite when card(N) ≤ card(A) but card(N) 6= card(A).
Thus when A is uncountably infinite, we can find an injective mapping from N into
A but not a bijective mapping from N onto A. It turns out that the power set P(A)
of any set A has cardinality strictly greater than the cardinality of A, from which
it follows that uncountably infinite sets of arbitrarily large cardinality exist — for
example, P(N), P(P(N)), etc.

We’ve seen already that the cardinality of the power set P(A) of a nonempty
finite set A is strictly greater than the cardinality of A. Why is the same thing true
when A is infinite? Here’s an argument that has a decidedly Russellian flavor. Let
A be a (possibly infinite) set. Consider the mapping from A into P(A) defined by

a 7→ {a} .
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This is clearly an injective mapping from A into P(A), and we conclude that
card(A) ≤ card(P(A)). So the power set of A has cardinality at least as big as
the cardinality of A.

If we had card(A) = card(P(A)), we’d be able to find a bijective mapping
f : A −→ P(A). Suppose for the moment we have such a mapping. Define a subset
X ⊂ A as follows:

X = {a ∈ A : a /∈ f(a)} .
Read this as, “X is the set of all a in A such that a is not in f(a).” The definition
makes sense because f(a) is a subset of A for every a ∈ A, so we can ask whether a
is an element of f(a). Since the putative mapping f is bijective, we can find some
ao ∈ A so that f(ao) = X. Question: is ao in X? If ao ∈ X, then, by definition of
X, ao /∈ f(ao) = X, so ao /∈ X — a contradiction. Similarly, if ao /∈ X, then, by
definition of X, ao ∈ f(ao) = X, so ao ∈ X — another contradiction. So we have a
paradox-like situation that contradicts the existence of a bijective mapping from A
onto P(A), which means that card(A) 6= card(P(A)) even when A is infinite. Since
card(A) ≤ card(P(A)), it follows that P(A) has strictly greater cardinality than A.

Enough for now about sets and cardinality. Let’s assume we have a grip on N
and talk from now on about natural numbers the way we’ve always talked about
them. A few observations:

• The elements of N have a natural ordering.
• We have two natural commutative and associative algebraic operations on

the elements of N — multiplication and addition. 0 serves as an identity
element for addition, 1 serves as an identity element for multiplication,
and multiplication distributes over addition.
• We have a natural notion of distance between elements of N. If n > m,

the distance between m and n is n−m.
Observe also that no element of N except 0 has an additive inverse in N, and no
element except 1 has a multiplicative inverse in N. Accordingly, N contains a lot
of numbers that we can manipulate in standard ways, but it seems to be missing
some things that would be useful were they present.

The integers and rational numbers

If we throw in additive inverses for all the elements of N — namely, {−1,−2,−3, . . .}
— we get the set of integers, for which Z is the standard notation. The set Z is
countably infinite. To see this, check for yourself that the mapping f : N −→ Z
defined by

f(n) =
{

n/2 if n is even
−(n+ 1)/2 if n is odd

is bijective. Curiously, although Z contains an obvious “natural copy” of N and
would seem a priori to be “twice the size of N,” it is precisely “the same size” as N
from the standpoint of cardinality. That kind of thing happens a lot when you’re
dealing with infinite sets.

The bijection from N onto Z in the preceding paragraph suggests how one might
“define the integers” in a set-theoretic fashion. To wit: 0 is φ; 1 is {{φ}}; −1 is {φ};
2 is {{{{φ}}}}; −2 is {{{φ}}}; etc. Of course, this way of “defining” the integers
would require that we modify our earlier set-theoretic “definition” of the natural
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numbers. I’d rather not belabor this sort of thing, but I’d like you to ponder it
while keeping in mind the “Everything in the universe is a set” doctrine I alluded
to earlier.

Some observations about the integers:
• The elements of Z have a natural ordering.
• We have two natural commutative and associative algebraic operations on

the elements of Z — multiplication and addition. 0 serves as an identity
element for addition, 1 serves as an identity element for multiplication,
and multiplication distributes over addition.
• We have a natural notion of distance between elements of Z. The distance

between any m and n in Z is |n−m|.
• Every element of Z has an additive inverse.

Observe that no element of Z save 1 and −1 has a multiplicative inverse. If we
throw a multiplicative inverse for every element of Z, we get some of the rational
numbers. We get all the rational numbers if we throw in a multiplicative inverse
for every integer and also make sure to throw in enough other things so the set we
construct is closed under addition and multiplication.

The set Q of rational numbers contains all ratios m/n of integers m and n
where n 6= 0. But wait, there’s some ambiguity here. What if m1/n1 = m2/n2?
Furthermore, what do we mean by a “ratio of integers,” anyway? This last question
prompts us yet again to look admiringly, or perhaps with annoyance, upon the
“Everything in the universe is a set” doctrine.

Let’s define Z0 as the set of all nonzero integers. Consider the set

Q̃ = Z× Z0 = {(m,n) : m,n ∈ Z and n 6= 0} .

For any integers mo and no with no 6= 0, define the ratio of mo to no, i.e. the
rational number mo/no, as the following subset of Q̃:

{(m,n) : mno = nmo} .

In this way, we think of a rational number as a set of pairs of integers. Two pairs of
integers lie in the same such set precisely when their “ratios” (in the middle-school
sense) are the same. Mathematicians refer to these sets as equivalence classes of
pairs of integers, where two pairs are equivalent when the products of each pair’s
first element with the other pair’s second element are the same. The bottom line
is that, if you want, you can think of each rational number as a set — a particular
set of integer pairs. In this fashion, the rational numbers have an embodiment as
a subset of P(Q̃), the power set of Q̃. If you think that’s heavy, just wait until we
talk about the reals.

It’s probably a good idea at this point to lighten up on the ontological abstrac-
tion and agree to talk from now on about rational numbers the way we’ve always
talked about them. Some observations about the rational numbers:

• The elements of Q have a natural ordering.
• We have two natural commutative and associative algebraic operations on

the elements of Q — multiplication and addition. 0 serves as an identity
element for addition, 1 serves as an identity element for multiplication,
and multiplication distributes over addition.
• We have a natural notion of distance between elements of Q. If q1 =
m1/n1 and q2 = m2/n2 are rational numbers, the distance between q1
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and q2 is the rational number

|q1 − q2| =
∣∣∣∣m1

n1
− m2

n2

∣∣∣∣ = ∣∣∣∣m1n2 −m2n1

n1n2

∣∣∣∣ .
• Every element of Q has an additive inverse, and every nonzero element of

Q has a multiplicative inverse.
Although we were able to “define” Q abstractly as a set of subsets of pairs of
integers, it makes life easier if we think of Q as containing N and Z as subsets in
the usual way. From this we conclude that card(N) ≤ card(Q) — i.e., the set of
rational numbers is at least countably infinite. One might wonder, since infinitely
many rational numbers lie between any two integers, whether Q is uncountable.

In fact, Q is countable. I’ll demonstrate this fact by first constructing an
injective mapping from Q into Z×Z and then showing that card(Z×Z) = card(N).
Begin by expressing every rational number q = m/n in lowest terms with the
negative sign in the numerator when q < 0. Set f(m/n) = (m,n) for all such
m/n ∈ Q. The mapping f is clearly injective, proving that card(Q) ≤ card(Z×Z).
Next observe that card(Z×Z) = card(N×N) because the mapping g that “doubles
up” the bijection we discovered earlier between N and Z is bijective. Specifically,

g(m,n) =


(m/2, n/2) if m and n are both even

(−(m+ 1)/2, n/2) if m is odd and n is even
(m/2,−(n+ 1)/2) if m is even and n is odd

(−(m+ 1)/2,−(n+ 1)/2) if m and n are both odd.

So far we have
card(Q) ≤ card(Z× Z) = card(N× N) .

Finally, construct a bijective mapping h : N → N × N by “threading” the natural
numbers through the rectangular grid of points (m,n) of natural-number pairs as
in Figure 1. Thus card(N× N) = card(N), and

card(Q) ≤ card(Z× Z) = card(N× N) = card(N) ,

completing the argument that Q is countably infinite.

Convergent sequences, Cauchy sequences, and the real numbers

To understand why we “need” the real numbers, we have to figure out what’s
“missing” from the rational numbers. Building up from N to Z we supplied additive
inverses. To get from Z to Q we supplied multiplicative inverses, among other
things. What about getting the reals from the rationals?

If A is any set, a sequence of elements of A is an ordered list of elements of A
indexed by N. We use the notation {an} to denote such a sequence. So

{an} = a0, a1, a2, a3, . . . .

The an need not all be different; in fact, if A is finite, they can’t be. It’s even possible
for all the an to be the same. We’ll be addressing real and complex sequences
formally in Chapter 3, but for now let’s focus on sequences {qn} of rational numbers.
Here are a few examples. In each case, I give a specification of the nth number in
a sequence {qn}.

• qn = 1
n17+3
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• qn = n2

2n2+1

• qn = (−3)n

• qn = (−1)n

Consider what happens in these sequences as n gets larger and larger. In the first
sequence, qn gets smaller and smaller (i.e. closer to 0) as n increases. In the second
sequence, qn gets closer and closer to 1/2 as n increases. That’s intuitively clear,
but you can also see it from ∣∣∣∣qn − 1

2

∣∣∣∣ = 1
4n2 + 2

,

which obviously gets ever closer to zero as n increases. The terms in the third se-
quence alternate in sign and grow larger and larger in absolute value as n increases.
The fourth sequence just alternates between +1 and −1.

The first two sequences above seem to be “going somewhere” as n increases,
whereas the last two don’t. We say that a sequence {qn} of rational numbers
converges to q̄ ∈ Q when the distance between qn and q̄ approaches zero as n→∞,
in which case we write

lim
n→∞

qn = q̄ .

Here’s a precise mathematical definition of convergence: for every integer K > 0
there exists an integer N > 0 such that |qn − q̄| < 1/K for every n > N . (The
1/K plays the role of “ε” in the usual definition of convergence. I’m being picky
and perhaps pedantic by using 1/K instead of ε because, as yet, we haven’t even
constructed the real numbers.)

A sequence {qn} of rational numbers is called a Cauchy sequence when the
terms in the sequence get closer and closer together as n increases. Specifically,
{qn} is a Cauchy sequence when for every integer K > 0 there exists an integer
N > 0 such that |qm − qn| < 1/K whenever m and n are both bigger than N .
Note that every convergent sequence is necessarily a Cauchy sequence. To see why,
suppose {qn} converges to q̄. This implies that for any K > 0 we can find N > 0
so that |qn − q̄| < 1/2K when n > N . For this choice of N , if m and n are both
bigger than N , we have

|qm − qn| ≤ |qm − q̄|+ |q̄ − qn| <
1
K

.

Since K is arbitrary, we’ve shown that {qn} is a Cauchy sequence.
Unfortunately, not every Cauchy sequence of rational numbers converges to a

rational limit. It feels as if something were missing from Q. When the terms in
{qn} get closer and closer together, squishing in on each other as n gets larger, one
would hope that the sequence would be homing in on something. Here’s a Cauchy
sequence of rational numbers that doesn’t converge to a rational limit (um . . . it’s
supposed to be pieces of the standard decimal expression for π):

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, 3.1415926, . . .

Another Cauchy sequence {qn} of rational numbers that has no rational limit has
nth term

qn =
(

1 +
1
n

)n

.

This last sequence converges to e. You’ll just have to believe me when I tell you
that π and e aren’t rational.
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Accordingly, we need to augment the rational numbers if we want a set of
numbers in which every Cauchy sequence has a limit. The set we come up with
is the real numbers, for which we use the notation R. Roughly speaking, R is just
“the set of all limits of Cauchy sequences of rational numbers.” However, just as
when we defined the rationals as “the set of all ratios of integers,” we really need
to be careful because many different Cauchy sequences can share the same limit.

Here’s one possible abstract construction of the real numbers from sequences of
rationals. First define R̃ as the set of all Cauchy sequences of rational numbers. So,
each element of R̃ is an infinite sequence of rationals. As if that weren’t complicated
enough, divide R̃ up into subsets as follows: sequences {qn} and {rn} are in the
same subset of R̃ whenever limn→∞ |qn − rn| = 0. (Intuitively, sequences {qn} and
{rn} lie in the same subset precisely when they close in on each other as n→∞—
meaning they appear to be “headed for the same limit.” Technically, these subsets
are equivalence classes of Cauchy sequences, where we regard two sequences as
equivalent if they close in on each other.) Each subset we construct in this way
“is,” in some sense, a real number. That number is the limit toward which all the
sequences {qn} in the subset appear to be headed. Again, we’re back to “Everything
in the universe is a set.” A rational number is a set of integer pairs. A real number
is a set of Cauchy sequences of rational numbers. And so on. Sigh.

All right, it’s time once again to let some air out of the balloon and float back
down toward earth. I mean, we all have a gut feeling for the real numbers, right?
To manipulate them, we really don’t need to know “what they are.” In truth, the
“definition” I’ve given for R is only one of many possible, and it doesn’t reflect how
the real numbers emerged historically. What lies ahead will go more smoothly if
we think of the set of rational numbers (and the set of natural numbers, and the
set of integers) as subsets of the set of real numbers in the usual way. So let’s do
that from now on.

Some observations about the real numbers:

• The elements of R have a natural ordering.
• We have two natural commutative operations on the elements of R —

multiplication and addition. 0 serves as an identity element for addition,
1 serves as an identity element for multiplication, and multiplication dis-
tributes over addition.
• We have a natural notion of distance between elements of R. The distance

between any a and b in R is |a− b|.
• Every element of R has an additive inverse, and every nonzero element of

R has a multiplicative inverse.
• Every Cauchy sequence of real numbers has a real-number limit.

The first three observations hold for Q. The last one is new. In technical terms, it
states that the real numbers constitute a complete metric space.

A metric space is just a set A with a distance function that satisfies these
conditions:

• For every a ∈ A and b ∈ A, the distance between a and b is a nonnegative
real number, and the distance between a and b is zero if and only if a = b.

• For every a ∈ A, b ∈ A, and c ∈ A, the distance between a and c is less
than or equal to the sum of the distance between a and b and the distance
between b and c. People call this the triangle inequality.
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In a metric space A with appropriate distance function, we can talk about Cauchy
sequences {an} of elements of A the same way we used standard notions of distance
to talk about Cauchy sequences of real or rational numbers. Cauchy sequences in
A are sequences {an} whose terms get closer and closer together as n increases,
where “closer” is with respect to the distance function on A. A metric space A is
complete when every Cauchy sequence {an} from A has a limit ā ∈ A. The real
numbers turn out to be complete in this way, essentially by construction.

It’s useful to know that every Cauchy sequence of real numbers has a limit, but
it’s not the kind of thing you need to remember how to prove. In fact, you can’t
really prove it from first principles because any way of building the real numbers
from scratch, including the way I outlined in the foregoing, rigs things so that the
set you get is automatically complete. It’s fair to say that every Cauchy sequence of
real numbers has a limit by definition. I’ll have more to say about this in Chapter
3.

What about the cardinality of R? As it happens, R is uncountably infinite. I’ll
present Cantor’s classic proof of that fact in due course.

The complex numbers

So far, we’ve talked about N, Z, Q, and R. What about the complex numbers?
Where did they come from, and why would anyone want to go there? Recall how
Z augments N with additive inverses, Q augments Z with multiplicative inverses,
and R augments Q with limits for all the Cauchy sequences. The real numbers are
indeed complete (in a technical sense, as a metric space). What’s missing?

A polynomial over R of degree n is an expression of the form

a0x
n + a1x

n−1 + a2x
n−2 + · · ·+ an−1x+ an ,

where ai, 0 ≤ i ≤ n, are real numbers with a0 6= 0 and x is a “variable.” We can
think of a polynomial simply as a formal expression involving some numbers and
the letter x, or we can think of it as defining a mapping f : R −→ R by means of

f(x) = a0x
n + a1x

n−1 + a2x
n−2 + · · ·+ an−1x+ an .

A root of such a polynomial is a value of x that maps to zero under f .
The polynomial x2 − 3x + 2 has roots 1 and 2; we can factor the polynomial

as (x − 1)(x − 2). The polynomial x2 + 10x + 25 has only −5 as a root, but −5
has multiplicity 2 as a root because we can factor the polynomial as (x+ 5)2. The
polynomial x2−11 has roots

√
11 and −

√
11; we can factor it as (x−

√
11)(x+

√
11).

The polynomial x2 + 13 has no real roots. To see this, note that x2 + 13 ≥ 13 for
every x ∈ R, so we never have x2 + 13 = 0.

If you take the real numbers and throw in enough extra things so that every
polynomial has at least one root, you get the complex numbers, the standard nota-
tion for which is C. Defining j as

√
−1 — i.e., j and −j are the roots of x2 + 1 —

allows one to express any complex number z in the form

z = a+ jb

where a and b are real numbers known respectively as the real and imaginary parts
of z. You all know how to manipulate complex numbers once you’ve represented
them this way. Set-theoretically, you can think of the complex numbers as “the
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same” as R×R with a special way of multiplying two pairs of real numbers to get
another such pair, namely

(a1, b1)× (a2, b2) = (a1a2 − b1b2, a1b2 + b1a2) .

I’ll demonstrate shortly that the cardinality of R×R, and hence the cardinality of
C, is the same as the cardinality of R. In particular, both R and C are uncountably
infinite.

The Fundamental Theorem of Algebra states that every polynomial over C of
degree n, i.e. any expression of the form

a0z
n + a1z

n−1 + a2z
n−2 + · · ·+ an−1z + an ,

where a0 6= 0 and ai ∈ C, 0 ≤ i ≤ n, has exactly n roots counting multiplicities.
More precisely, we can factor any such polynomial as

a0(z − z1)(z − z2) · · · (z − zn)

where the roots zi are not necessarily all different. The number of times any
given root appears in this factorization is called its multiplicity as a root of the
polynomial. As it happens, if a polynomial over C has real coefficients, its roots
come in complex-conjugate pairs in the sense that if zo = ao + jbo is a root, then
so is z̄o = ao − jbo, the complex conjugate of zo.

So now we have N, Z, Q, R, and C. I’ve tried to indicate how mathematicians
over the years have sought to define and construct these sets of numbers. I do,
however, want to reassure you that as long as you know how to manipulate the
numbers and understand their important properties as I’ve outlined them here,
you’ll be okay just thinking of them in the usual way. What I mean is that, as far
as we’re concerned, it’s fine to think of these sets as standing in the relation

N ⊂ Z ⊂ Q ⊂ R ⊂ C .

When you contemplate this chain of inclusions, try to keep in mind what you gain
each time you move one step to the right in the chain.

Decimal expansions of real numbers

My main goal in the remainder of this chapter is to demonstrate that R, the set of
real numbers, is uncountably infinite. I’ll employ a classic proof technique known
as Cantor’s diagonal argument. Invoking Cantor’s argument requires some other
results about the real numbers that are interesting and useful in their own right.
In particular, decimal expansions of real numbers play a critical role.

Before discussing decimal expansions, I’d like to remind you about an extraordi-
narily handy piece of machinery that you’ve learned about before. It’s the geometric
series. We’ll talk more formally about series in Chapter 3, but for now consider
this expression involving a real or complex number γ:

∞∑
n=0

γn .

The official meaning of the series expression is

lim
N→∞

N−1∑
n=0

γn .



16 1. NUMBERS

Of course, the limit’s existence is not guaranteed. Observe, however, that for any
N > 0 we have

(1− γ)
N−1∑
n=0

γn = 1− γN ,

so that when γ 6= 1
N−1∑
n=0

γn =
1− γN

1− γ
.

If |γ| < 1, the right-hand side converges as N →∞ to 1/(1− γ), and hence so does
the left-hand side. The bottom line is that

∞∑
n=0

γn =
1

1− γ
if |γ| < 1 .

Now let’s talk about decimal expansions of real numbers. We’ll focus on the
open unit interval

(0, 1) = {x ∈ R : 0 < x < 1} .
It turns out that any x ∈ (0, 1) has at least one decimal expansion

x = .a1a2a3a4a5 . . . ,

where each an is a natural number between 0 and 9, inclusive. The expansion
means

x =
∞∑

n=1

an10−n = lim
N→∞

N∑
n=1

an10−n .

A decimal expansion of x is one way of representing x as the limit of a sequence of
rational numbers. If you define

qN =
N∑

n=1

an10−n ,

then each qN is rational and the sequence {qN} is a Cauchy sequence (check this
for yourself) that converges to x as n→∞.

Some decimal expansions terminate; for those expansions, there’s a smallest
M > 0 such that an = 0 for n > M . It happens that if x has a terminating
decimal expansion, then x has at least one other decimal expansion. To wit, suppose
x = .a1a2 . . . aM is a terminating expansion for x with aM 6= 0 and an = 0 for all
n > M . Then a non-terminating expansion for x is

x = .a1a2a3 . . . aM−1(aM − 1)999999 . . . ,

where the 9’s go on forever. The Mth decimal place has aM − 1 in it; in other
words, you decrement the last nonzero decimal place in x’s terminating expansion
by 1, and you replace all the trailing zeroes in x’s terminating expansion by 9’s. As
an example,

.183746285647 = .1837462856469999999999999999999999 . . .

The geometric series makes this work. Re-write the second decimal expansion
above as

a110−1 + a210−2 + · · ·+ aM−110−(M−1) + aM10−M − 10−M +
∞∑

n=M+1

9× 10−n .
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Change the index in the last sum to m = n− (M + 1) and you get(
9× 10−(M+1)

) ∞∑
m=0

10−m =
(
9× 10−(M+1)

) 1
1− 1/10

= 10−M .

So the sum of all the 9-terms in the expansion adds up to 10−M , which cancels the
−10−M in the expansion, which makes the expansion equal to

a110−1 + a210−2 + · · ·+ aM−110−(M−1) + aM10−M ,

which is just our first (terminating) expansion for x. Thus you can expand any
such x either as a terminating decimal or as one that ends in an infinite string of
9’s.

In fact, a strong converse is also true, namely that if a number x between 0
and 1 has more than one decimal expansions, then

• x has exactly two expansions, and
• one expansion terminates, one expansion ends in all 9’s, and the two

expansions are related as above.

Here’s a proof. Suppose x has two expansions

x = .a1a2a3 . . .

and
x = .b1b2b3 . . .

There will be some smallest value of M > 0 so that aM 6= bM ; i.e., the two
expansions will agree for n < M (note that M = 1 is a possibility). Since both
expansions evaluate to x, and since the expansions agree for n < M , we must have

∞∑
n=M

an10−n =
∞∑

n=M

bn10−n .

Suppose without loss of generality that aM > bM . Re-arrange the last equation
to read

(aM − bM )10−M =
∞∑

n=M+1

(bn − an)10−n .

Since aM − bM ≥ 1 and bn − an ≤ 9 for all k, we have

10−M ≤ (aM − bM )10−M =
∞∑

n=M+1

(bn − an)10−n ≤ 9
∞∑

n=M+1

10−n = 10−M ,

where the last equality comes from the geometric series as before. Accordingly,
we have equality along the whole chain of inequalities. But equality holds in the
left inequality only when bM = aM − 1, and equality holds in the right inequality
only when bn − an = 9 for all n > M , which can happen only when an = 0 and
bn = 9 for all n > M . Conclusion: the a-expansion terminates and the b-expansion
ends in all 9’s, and the two expansions are related as stipulated. The two bulleted
assertions follow immediately since it’s clear that no x has two different terminating
expansions.

One remaining loose end: I haven’t supplied a formal proof of the existence of
at least one decimal expansion for each x ∈ (0, 1). Here’s one argument. To find
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a1, all you have to do is shift the decimal place to the right by one digit and take
the lower integer part of the result. Formally,

a1 = b10xc .
To find a2, do this:

a2 = b100(x− a110−1)c .
More generally,

an = b10n(x−
n−1∑
m=1

am10−m)c .

This procedure gives you the digits from one decimal expansion for x. If x has two
decimal expansions, the procedure yields the terminating one.

Cantor’s diagonal argument

The ultimate goal is to show that R is uncountably infinite. Observe first that the
mapping

x 7→ tanπ(x− 1/2) for x ∈ (0, 1)
establishes a bijection between the interval (0, 1) and R, so (0, 1) and R have the
same cardinality and it suffices to show that (0, 1) is uncountably infinite.

Now let’s see why (0, 1) is uncountably infinite. I’ll demonstrate that (0, 1)
contains an uncountably infinite subset C, which will imply in turn that (0, 1) is
itself uncountable because its cardinality is at least as large as C’s. Let C be the
set of values of x ∈ (0, 1) whose decimal expansions contain no 9’s in them. Each
x ∈ C has exactly one decimal expansion. If C were countable, we could define a
bijective mapping f : N→ C. From this mapping we could make an exhaustive list
of C’s elements, like so:

f(0) = .138254736527 . . .
f(1) = .385643772314 . . .
f(2) = .632564026533 . . .
f(3) = .382655341628 . . .

· · ·
Now for Cantor’s sleight of hand. It turns out that no such listing can exhaust

all the decimal expansions of x-values lying in C. How so? Construct a decimal x̂
as follows: for each n, generate the number that appears in the nth decimal place
of x̂ using this recipe: take the number in the nth decimal place of f(n) on the list
above, add 1 to it, and mod out by 9 (example, 8 + 1 mod 9 comes out to be 0).
So, using the list above, x̂ starts out like this:

x̂ = .2037 . . .

The decimal x̂, while a perfectly valid 9-free decimal, is not on the list. If it were
on the list, it would appear as f(no) for some no ∈ N. By construction, the number
in the noth decimal place of x̂ differs from the number in the noth decimal place
of f(no), so x̂ can’t be f(no). The moral of the story is that the putative bijection
f that enabled us to construct the list cannot exist, and C is uncountably infinite.
Hence, so is (0, 1) and so is R.
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C is uncountable, but how big is it?

What kind of subset of the unit interval is C? By that question, I mean, is there a
nice way to describe it geometrically? How “long” is it, or at least what’s the total
length of all the “little pieces” that make it up? The answer is astounding, at least
to me. Certainly, C contains none of the numbers between .9 and 1 because all
those numbers’ decimal expansions lead off with a 9. So, C is contained in (0, .9).
Since numbers in C can’t have a 9 in the second decimal place, C can’t include the
intervals between .09 and .1, between .19 and .2, between .29 and .3, . . . , between
.89 and .9. There are nine such intervals and each has length 10−2. You can keep
this up. You discover that eliminating numbers with a 9 in the third decimal place
requires throwing away 81 intervals of length 10−3, etc., etc.

All told, to pare down the unit interval to C, you throw out a whole bunch of
little intervals the sum of whose lengths is

1
10

+
9

100
+

81
1000

+
93

104
+ · · ·

What do all those terms add up to? If you factor out 1/10, you find that it’s a
geometric series, and that the sum comes out to be

1
10

∞∑
n=0

(9/10)n =
(

1
10

)(
1

1− 9/10

)
= 1 .

In other words, to get down to C, you eliminate from (0, 1) a total length equal to
the length of the entire interval, which is 1. People say for this reason that C is “a
set of measure zero.” On the other hand, C is a huge set, right? It’s uncountably
infinite after all.

It helps to think about it probabilistically. Suppose we build a real number by
choosing its decimal digits one by one at random. If we draw each of 0 through
9 with probability 1/10, what’s the probability that we’ll never draw a 9? It’s
basically (9/10)∞, i.e. zero. So the numbers with no 9’s in their expansions, while
they constitute the uncountable set C, are rare indeed. Ah, the joy of infinity.

The sets R and C have the same cardinality

We noted earlier that C has the same cardinality of R × R, and I promised you a
proof that card(R× R) is the same as card(R). Here’s that proof.

First of all, since (0, 1) has the same cardinality as R, (0, 1)×(0, 1) has the same
cardinality as R× R. For each (x, y) ∈ (0, 1)× (0, 1), pick a decimal expansion for
x and one for y. If either x or y has two expansions, pick the terminating one(s).
Now interleave the digits in the two expansions to get z ∈ (0, 1). For example,

(x, y) = (.382137 . . . , .113535 . . .) 7→ z = .318123153375 . . . .

If you think about it, you’ll see that this defines a bijective mapping from (0, 1)×
(0, 1) onto (0, 1). Thus, those two sets have the same cardinality, and therefore so
do R×R and R. It follows that C has the same cardinality as R. It’s worth noting
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that by interleaving decimal expansions one can show that

card(Rn) = card(R)

for any n > 0.

The power of the continuum

The cardinality of R is known colorfully as the power of the continuum. Where that
cardinality lies in the so-called hierarchy of infinite cardinals is a mystery. A famous
open conjecture regarding card(R) is the Continuum Hypothesis, a discussion of
which would take us too far afield. For now, we’ll have to satisfy ourselves with a
neat characterization of card(R), namely

card(R) = card(P(N)) ;

i.e., the cardinality of the reals is the same as the cardinality of the power set of
the natural numbers. I’ll try to justify that statement here.

Recall that the power set of an N -element set A has cardinality 2N . The key
was a bijective mapping from P(A) onto BN , the set of all binary strings of length
N . We can take a similar approach to investigating the cardinality of P(N).

Let B∞ be the set of all (one-sided) infinite binary strings

b1b2b3b4b5 . . . ,

where each bn is 0 or 1. Define a mapping β : P(N)→ B∞ by setting, for all S ⊂ N,

[β(S)]n =
{

1 if n ∈ S
0 if n /∈ S .

Thus, for any subset S of N, β(S) is a binary string that has 1’s precisely in those
positions corresponding to natural numbers that are in S. Note that the empty set
φ maps under β to the string of all 0’s and the set N maps to the string of all 1’s. It
is clear that β is a bijective mapping. Accordingly, P(N) has the same cardinality
as B∞.

Meanwhile, every x ∈ (0, 1) has at least one binary expansion, which is an
expression of the form

x = .b1b2b3b4 . . .

where each bn is 0 or 1. The meaning of the expansion is

x =
∞∑

n=1

bn2−n .

The theory of binary expansions (existence and not-quite uniqueness) runs parallel
to that of decimal expansions. To summarize:

• Every x ∈ (0, 1) has either one binary expansion or two.
• x ∈ (0, 1) has two binary expansions if and only if x has a terminating

binary expansion. In this case, the non-terminating expansion for x ends
in an infinite string of 1’s. Furthermore, if the last 1 in the terminating
expansion for x occurs at position M , you can find the non-terminating
expansion for x by changing that 1 to a zero and appending the infinite
string of 1’s. For example,

.1011101 = .10111001111111111111 . . . .
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• You can construct a binary expansion for any x ∈ (0, 1) inductively (i.e.
starting from n = 1 and working rightward) via

bn =

⌊
2n(x−

n−1∑
m=1

bm2−m)

⌋
, n ≥ 1.

The upshot is that the interval (0, 1) is in one-to-one correspondence with the
set of all strings in B∞ that don’t end in an infinite sequence of 1’s. Technically,
this means that there exists an injective mapping from (0, 1) into B∞. Since B∞ is
in one-to-one correspondence with P(N), we conclude that there exists an injective
mapping

f : (0, 1) −→ P(N) .
As a consequence, card((0, 1)) ≤ card(P(N)).

It turns out that these cardinalities are actually equal. One clever argument
(which I’m stealing from George Simmons’s book Introduction to Topology and
Modern Analysis) goes as follows. Map each binary string in B∞ to an infinite
sequence of 3’s and 5’s by replacing every 0 with a 3 and every 1 with a 5. (Nothing
is special about 3 and 5, but 9 is forbidden.) Then think of that string of 3’s and
5’s as the decimal expansion of some x ∈ (0, 1). So, for example,

10011011000 . . . 7→ .53355355333 . . . ∈ (0, 1) .

This correspondence defines a mapping

g : P(N) −→ (0, 1)

because P(N) and B∞ are in one-to-one correspondence. The mapping g is injective
because any x expandable decimally in a string of 3’s and 5’s has only one such
expansion.

Accordingly, we have injective mappings going both ways between P(N) and
the interval (0, 1). It follows that card((0, 1)) ≤ card(P(N)) and card(P(N)) ≤
card((0, 1)), so the two sets have the same cardinality. Since card(R) = card(0, 1),
we conclude that

card(R) = card(P(N)) .





CHAPTER 2

Working with Integers: Prime Numbers and
Modular Arithmetic

Understanding the integers is important for both theoretical and practical rea-
sons. Integer-based analogues underpin many seemingly arcane constructions in ab-
stract algebra (the study of groups, rings, fields, and all that). Modular arithmetic
and integer factorization feature prominently in combinatorics and cryptography.
Investigating the integers can also be fun irrespective of potential application or
lack thereof. This chapter covers mainly elementary material, but I hope it works
as a starting point. As you’ll see, getting to the heart of nontrivial applications
requires surprisingly little number theory.

Prime numbers: the basics

Given two natural numbers a and b, we say that b is a divisor of a when a = mb
for some natural number m. The standard notation for “b is a divisor of a” is b|a.
Often we just say “b divides a” for short. Observe that every b ∈ N divides 0 and
that 1 divides every a ∈ N. Note also that if b|a and c|b, then c|a. A natural num-
ber p is prime when the only natural-number divisors of p are 1 and p itself. By
convention, 1 is not a prime number even though it satisfies the technical definition.
The first few prime numbers are 2, 3, 5, 7, 11, and 13. Note that 2 is the only even
prime number. Can you see why?

In what follows, I’ll be using induction a fair amount to prove things. It takes
some practice to get the hang of using inductive arguments, but the effort pays
off. Induction is, among other things, a versatile tool for proving facts about the
natural numbers. Here’s an example of a typical inductive argument. I’ll prove
that every a ∈ N, a > 1, has at least one prime divisor. You start with

• the base case a = 2: clearly, 2 has a prime divisor (2 itself).

Then you move on to

• the induction step: suppose we have shown that every a ≤ n has at least
one prime divisor. Consider a = n+1. If n+1 is prime, we’re done, since
n+ 1 is then a prime divisor of itself. If n+ 1 is not prime, then we can
write

n+ 1 = bc

for some natural numbers b and c with 1 < b, c ≤ n. But since we’ve
shown already that every such b and c has at least one prime divisor, and
since b and c here are both divisors of n+ 1, we conclude that n+ 1 must
have at least one prime divisor.

23
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I hope you see how the induction works. We know that the theorem is true for
n = 2 by the base case. What about n = 3? It’s true for n = 2, and the induction
step shows that if it’s true for n = 2, then it’s true for n = 3; hence it’s also true
for n = 3. What about n = 4? We know now that it’s true for n = 2 and n = 3,
and the induction step enables us to conclude that it’s also true for n = 4. And so
the dominoes fall.

Euclid used the result we just proved to demonstrate that there are infinitely
many prime numbers. His argument proceeds as follows. Suppose that we have a
list of K primes. Index them as p1, p2, . . . , pK . Consider the number

R = 1 + p1p2p3 · · · pK .

Our “theorem” above guarantees that R has at least one prime divisor p, and p
could not possibly be among the pj on our list. If it were on the list, then p would
divide both R and p1p2 · · · pK , implying that

p|(R− p1p2p3 · · · pK) i.e. p|1 ,
which is impossible. So p is not on our list. In particular, our list doesn’t contain
every prime. More trenchantly, nothing about our list is special, so no finite list of
primes can be exhaustive. In other words, infinitely many primes exist.

Two positive natural numbers a and b are said to be relatively prime or coprime
when they have no common divisors except 1. One of the workhorses of number
theory is the following result.

2.1 Theorem: If a and b are positive natural numbers and are coprime, then
there exist integersm and n (note: negative integers allowed) such thatma+nb = 1.

Proof: Define a set I of integers as follows:

I = {k ∈ Z : k = ma+ nb for some m,n ∈ Z} .
I obviously contains some positive elements. Let d ∈ N be the smallest positive
element of I; suppose d = moa+ nob. I’ll show that d = 1.

First of all, since both a and b are in I, d ≤ a and d ≤ b. If d is not a divisor
of a, then since d ≤ a we get a positive remainder r > 0 when we divide d into a.
In other words,

a = jd+ r

for some positive r ∈ N with r < d. But this means that

a = j(moa+ nob) + r

which in turn implies that

r = (1− jmo)a− jnob = m1a+ n1b ,

so r ∈ I, as well. This is a contradiction since r < d and we defined d as the
smallest positive element of I. It follows that d must be a divisor of a after all. A
similar argument shows that d|b, as well. Since a and b are coprime, this means
d = 1. The bottom line is that moa+ nob = 1. �

We can generalize Theorem 2.1 in several useful ways. First, a definition. The
greatest common divisor of two natural numbers a and b is the largest natural
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number that’s a divisor of both a and b. The standard notation for the greatest
common divisor of a and b is gcd(a, b). Note that gcd(p, a) = 1 when p is prime
and p is not a divisor of a. Furthermore, gcd(a, b) = 1 precisely when a and b are
coprime.

Observe that for any positive natural numbers a and b, a = a/ gcd(a, b) and
b = b/ gcd(a, b) are natural numbers and are coprime. Dividing by gcd(a, b) cancels
out any common divisors a and b might have. More rigorously, suppose m divides
both a and b. Then m gcd(a, b) divides both a and b, so m = 1 because gcd(a, b) is
the largest common divisor of a and b by definition. If k > 2 and a1, a2, . . . , ak

are natural numbers, define gcd(a1, a2, . . . , ak) as the largest natural number that
divides all of the aj . You can show easily that a1, a2, . . . , ak have no common
divisors other than 1, where

aj =
aj

gcd(a1, a2, . . . , ak)
for 1 ≤ j ≤ k .

Now for three extensions of Theorem 2.1.
• If a and b are positive natural numbers, there exist integers m and n such

that
ma+ nb = gcd(a, b) .

To see this, form a and b as above and apply Theorem 2.1 to them.
• If a1, a2, . . . , ak are positive natural numbers that have no divisors other

than 1 common to all of them, then there exist integers n1, n2, . . . , nk

such that
n1a1 + n2a2 + · · ·+ nkak = 1 .

To demonstrate this, just mimic the proof of Theorem 2.1.
• If a1, a2, . . . , ak are positive natural numbers, then there exist integers
n1, n2, . . . , nk such that

n1a1 + n2a2 + · · ·+ nkak = gcd(a1, a2, . . . , ak) .

I’ll let you prove this one for yourself.
Another useful property of primes is the following.

2.2 Theorem: If p is prime and p|ab, where a and b are positive natural num-
bers, then p|a or p|b or both.

Proof: Suppose p is not a divisor of a. Then p and a are coprime, since p and
1 are the only divisors of p. By Theorem 2.1, we can find integers m and n so that
ma+ np = 1. Multiply this last equation by b and you get

m(ab) + n(p)b = b .

Since p is a divisor of both expressions in parentheses on the left-hand side, it fol-
lows that p must be a divisor of b. I’ve shown that if p is not a divisor of a, then p
must be a divisor of b. A symmetric argument shows that if p is not a divisor of b,
then p must be a divisor of a. You can conclude that p must be a divisor of either
a or b or both. �
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The intuition behind Theorem 2.2 is that if p is prime and p is a divisor of ab,
you can’t “split up” p into two factors one of which is a divisor of a and one of which
is a divisor of b. A simple inductive argument leads to the following generalization
of Theorem 2.2.

• If p is prime and p is a divisor of a1a2a3 · · · ak, where aj , 1 ≤ j ≤ k, are
all positive natural numbers, then p is a divisor of at least one of the aj ,
1 ≤ j ≤ k.

Prime factorization

It’s time now for what is arguably the most important result concerning primes.

2.3 Theorem: If a is a natural number bigger than 1, then a has a unique
factorization into the product of powers of prime numbers. Specifically, you can
find L > 0 along with distinct primes p1, p2, . . . , pL and positive powers m1, m2,
. . . , mL so that

a = pm1
1 pm2

2 · · · p
mL

L

and, furthermore, the numbers L, pj , 1 ≤ j ≤ L, and mj , 1 ≤ j ≤ L are determined
uniquely by a.

I’ll give a slightly hand-wavey argument for Theorem 2.3, but the gaps in
the argument are easy to fill in. The existence part of Theorem 2.3 is “an easy
induction.” Here’s how it goes. First the base case: clearly a = 2 has a factorization
into the product of positive prime powers (namely, L = 1, p1 = 2, m1 = 1). Now
the induction step: suppose we have shown that every a ≤ n has a factorization of
the form that Theorem 2.3 calls for. Consider a = n+1. If a = n+1 is prime, then
we’re done. If not,, a = n+ 1 factors into a product bc, where 1 < b, c ≤ n. By the
induction assumption, b and c have factorizations into products of positive powers
of distinct primes. Folding these factorizations together yields a factorization of
a = n+1 into positive powers of distinct primes. One concludes, by induction, that
every a > 1 has a factorization into a product of positive powers of distinct primes.

What about uniqueness? Suppose some a > 1 has factorizations

a = pm1
1 pm2

2 · · · p
mL

L = qj1
1 q

j2
2 · · · q

jK

K ,

where all the p’s are distinct primes and all the q’s are distinct primes and all the
m’s and j’s are positive. I’m not assuming anything about relationships between
K, L, the p’s, and the q’s. Consider now p1. Since p1 is a divisor of a, p1 is a
divisor of the product of q-powers. By Theorem 2.2 (or at least its extension), p1

is a divisor either of qj1
1 or of the product

qj2
2 · · · q

jK

K

of the remaining q-powers. If p1 is a divisor of qj1
1 , it’s easy to show by Theorem

2.2 (or its extension) that p1 = q1. If p1 is not a divisor of qj1
1 , then you can move
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one step down the line of q’s and conclude that p1 is a divisor either of qj2
2 or of

the product
qj3
3 · · · q

jK

K .

And so on.
I hope you can see that the end result is that p1 must be one of the q’s — and

the same exact argument works for any of the other pi, 1 ≤ i ≤ L. You can run the
argument the other way to show that any of the q’s has to be one of the p’s. The
bottom line is that a prime appears among the p’s if and only if it appears among
the q’s, so L = K, for one thing, and we can, if necessary, re-number the q’s so that
they match up with their companion p’s, which leads to revised expressions for a:

a = pm1
1 pm2

2 · · · p
mL

L = pj1
1 p

j2
2 · · · p

jL

L .

It remains to show that the powers appearing in the factorizations are equal —
i.e., m1 = j1, m2 = j2, etc. Start with the last identity and for all k divide both
by the smaller power of pk appearing in one of the factorizations. If for some pk

we have mk 6= jk, pk will cancel from one side and remain on the other side. For
example, if we had

p2
1p

3
2p3p

7
4 = p5

1p2p
2
3p

7
4 ,

the cancellation maneuver would lead to

p2
2 = p3

1p3 .

But such an identity is impossible by the same reasoning (applying Theorem 2.2
and its extension) that led to the existence proof above — the same primes would
have to appear on both sides of the identity in order for it to be valid. Ergo, we
have a contradiction, and we conclude that all the powers have to match up, so the
prime-power factorization of a is unique.

Modular integer arithmetic and Euler’s Theorem

Given a positive integer a and an integer k, there exists a unique r with 0 ≤ r < a
for which k = ma+ r for some integer m. If k ≥ 0, r is just the remainder you get
when you divide a into k. If k < 0, you can find r by adding a to k repeatedly until
you hit a natural number between 0 and a − 1. We call this number r the mod-a
value of k, or “k mod a” for short. The notation I’ll be using for it is 〈〈k〉〉a .

My 〈〈k〉〉a notation and other features of the approach I’ll be taking in what
follows are somewhat nonstandard, but I’d like to keep things as concrete as possible
and avoid unnecessary algebraic detours. To test your understanding of the k mod
a concept, make sure you see why 〈〈k〉〉a = k when 0 ≤ k < a; why 〈〈17〉〉11 =
6; why 〈〈ma〉〉a = 0 for every m ∈ Z; and why 〈〈−1〉〉a = a − 1. A standard
twelve-hour clock face embodies a quotidian implementation of mod-12 addition.
If the clock face reads 11:00 now, then 31 hours from now it will read 6:00 because
〈〈11 + 31〉〉12 = 〈〈42〉〉12 = 6.

Taking 〈〈 〉〉a of any expression involving integers is known as modding out by a
or reducing mod a. Conveniently, reducing mod a treats addition and multiplication
respectfully. By this I mean that for any integers k and l

• 〈〈k + l〉〉a = 〈〈 〈〈k〉〉a + 〈〈l〉〉a 〉〉a and
• 〈〈kl〉〉a = 〈〈 〈〈k〉〉a 〈〈l〉〉a 〉〉a .
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To see how these identities arise, suppose k = m1a + r1 and l = m2a + r2 with
0 ≤ r1, r2 < a, so 〈〈k〉〉a = r1 and 〈〈l〉〉a = r2. Then

k + l = (m1 +m2)a+ r1 + r2

and
kl = (m1m2 + r1m2 +m1r2)a+ r1r2 .

Reducing mod a yields

〈〈k + l〉〉a = 〈〈r1 + r2〉〉a = 〈〈 〈〈k〉〉a + 〈〈l〉〉a 〉〉a
and

〈〈kl〉〉a = 〈〈r1r2〉〉a = 〈〈 〈〈k〉〉a 〈〈l〉〉a 〉〉a .

More generally, when performing any integer computation that involves only mul-
tiplication and addition and ends with reduction mod a, you are free to reduce any
intermediate terms mod a if you find it convenient — you’ll still end up with the
same result. For example, if you want to compute

〈〈
k3(l +m)

〉〉
a
, you can first

find 〈〈k〉〉a , then find
〈〈
k2
〉〉

a
=
〈〈
〈〈k〉〉a 2

〉〉
a
, then compute the final result via〈〈

k3(l +m)
〉〉

a
=
〈〈
k
〈〈
k2
〉〉

a
〈〈l +m〉〉a

〉〉
a
.

Given an integer a > 1, let Za = {0, 1, 2, . . . , a − 1}. Thus Za is the set of all
possible mod-a values of integers. For any k and l in Za, 〈〈k + l〉〉a and 〈〈kl〉〉a are
also in Za. Let’s define two operations on Za by

k+ l = 〈〈k + l〉〉a
and

k× l = 〈〈kl〉〉a
for every k and l in Za. Both operations are clearly commutative and associative,
and the “multiplication” operation distributes over the “addition” operation in the
sense that

k× (l+m) = (k× l) + (k×m) for all l and m ∈ Za .

Furthermore, 0 is an identity element for + and 1 is an identity element for × .
The number 0 is clearly its own “additive inverse,” and every positive k ∈ Za has
“additive inverse” a− k because k + (a− k) = a so k+(a− k) = 0.

The set Za endowed with the operations + and × has the algebraic structure
of a commutative ring. Whereas every k ∈ Za has an “additive inverse,” it is
not true in general that every k 6= 0 has a “multiplicative inverse.” Suppose, for
example, that k and a have a common divisor d ∈ Za with d > 1. Suppose a = dq
and k = ld. Then

k× q = 〈〈ldq〉〉a = 〈〈la〉〉a = 0 .
In this case, k cannot have a “multiplicative inverse” m, because then we would
have

0 = m× (k× q) = (m× k)× q = q ,

and we know q 6= 0. If, on the other hand, k and a are coprime, then by Theorem
2.1 we can find integers m and n so that mk + na = 1. Reducing mod a yields
〈〈mk〉〉a = 1, from which it follows that 〈〈m〉〉a × k = 1, so k has “multiplicative
inverse” 〈〈m〉〉a .

Let’s dispense with the quotation marks and agree that when we talk about
addition or multiplication in the context of Za we’re referring to the operation +
or × . We’ve demonstrated that k ∈ Za has a multiplicative inverse if and only
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if k and a are coprime. Denote the set of all such k ∈ Za by Z∗a. The number of
elements of Z∗a is known as φ(a) and the mapping a 7→ φ(a) is called Euler’s phi
function or the totient function. In any event, Z∗a is a subset of Za and happens to
be closed under the operation of × . To see why, note that if k1 and k2 are in Z∗a
with respective multiplicative inverses k−1

1 and k−1
2 , then(

k−1
1 × k

−1
2

)
× (k1× k2) =

(
k−1
1 × k1

)
×
(
k−1
2 × k2

)
= 1 ,

so k1× k2 has multiplicative inverse of k−1
1 × k

−1
2 , and k1× k2 therefore lies in

Z∗a. Furthermore, 1 ∈ Z∗a. Mathematically speaking, Z∗a has the structure of a
commutative group with group operation × and identity element 1.

As we’ll see presently, the following theorem lies at the heart of certain modern
cryptographic schemes. It’s actually a special case of a central result from group
theory, but I’ll prove it using an elementary argument.

2.4 Euler’s Theorem: Let a > 1 be a positive integer and define Z∗a and φ(a)
as in the foregoing. Then every k ∈ Z∗a satisfies〈〈

kφ(a)
〉〉

a
= 1 .

Proof: The theorem is trivially true when k = 1 and also when a = 2, in which
case Z∗a = {1}, so let’s assume that a > 2 and k > 1. Because Z∗a is closed under
the × operation, we know that

〈〈
kj
〉〉

a
∈ Z∗a for every j > 0. Thus

H0 =
{
1, k,

〈〈
k2
〉〉

a
,
〈〈
k3
〉〉

a
, . . .

}
is a subset of Z∗a and is therefore finite. It follows that there exist positive integers
i and j with i > j such that

〈〈
ki
〉〉

a
=
〈〈
kj
〉〉

a
. Multiplying that relation by〈〈(

k−1
)j〉〉

a
, where k−1 is k’s multiplicative inverse, reveals that

〈〈
ki−j

〉〉
a

= 1.

In particular, there exists at least one positive integer s such that 〈〈ks〉〉a = 1.
The smallest such positive integer, which I’ll denote by r, is called the order of k,
mod a. I claim that

H0 =
{
1, k,

〈〈
k2
〉〉

a
, . . . ,

〈〈
kr−1

〉〉
a

}
and that H0 contains exactly r numbers. To see why, note that when 0 < j < r,〈〈
kj
〉〉

a
6= 1 because by construction r is the smallest positive integer j for which〈〈

kj
〉〉

a
= 1. If 0 < i < j < r, we can’t have

〈〈
ki
〉〉

a
=
〈〈
kj
〉〉

a
because multiplying

through by
〈〈
kr−j

〉〉
a

would yield〈〈
kr−(j−i)

〉〉
a

= 〈〈kr〉〉a = 1 ,

implying that a lower power than r of k — namely r − (j − i) — would equal 1
mod a, again contradicting the definition of r. Accordingly, H0 contains exactly r
numbers, each of which is of the form

〈〈
kj
〉〉

a
for some 0 ≤ j < r.

I’ll demonstrate in what follows that r is a divisor of φ(a), from which we can
conclude that

〈〈
kφ(a)

〉〉
a

= 1. To see this, note that if φ(a) = rm for some positive
integer m, then 〈〈

kφ(a)
〉〉

a
= 〈〈(kr)m〉〉a = 〈〈( 〈〈kr〉〉a )m〉〉

a
= 1 .
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The simplest case arises when H0 = Z∗a, in which case r, the number of elements of
H0, is the same as φ(a), the number of elements of Z∗a, so that〈〈

kφ(a)
〉〉

a
= 〈〈kr〉〉a = 1 .

If H0 is a proper subset of Z∗a, we can find n1 ∈ Z∗a that doesn’t lie in H0. Define
H1 via

H1 =
{
n1, 〈〈n1k〉〉a ,

〈〈
n1k

2
〉〉

a
, . . . ,

〈〈
n1k

r−1
〉〉

a

}
.

Then
• H1 contains r distinct numbers. That’s because if we had

〈〈
n1k

i
〉〉

a
=〈〈

n1k
j
〉〉

a
for some 0 ≤ i < j < r, then we could multiply through by the

multiplicative inverse of n1 to obtain
〈〈
ki
〉〉

a
=
〈〈
kj
〉〉

a
, which we know

isn’t true. Furthermore,
• H1 is disjoint from H0. If that weren’t the case, we’d have

〈〈
n1k

i
〉〉

a
=〈〈

kj
〉〉

a
for some i and j with 0 ≤ i, j < r. Multiplying through by〈〈

kr−i
〉〉

a
would yield n1 =

〈〈
kj+r−i

〉〉
a
, implying that n1 ∈ H0, which

we know isn’t true.
Thus the set H0 ∪H1 contains exactly 2r numbers. If that set encompasses all of
Z∗a, then φ(a) = 2r, so 〈〈

kφ(a)
〉〉

a
=
〈〈
k2r
〉〉

a
= 1 .

If H0 ∪H1 is a proper subset of Z∗a, we can find n2 ∈ Z∗a that lies neither in H0 nor
in H1 and form

H2 =
{
n2, 〈〈n2k〉〉a ,

〈〈
n2k

2
〉〉

a
, . . . ,

〈〈
n2k

r−1
〉〉

a

}
.

Reasoning as in the preceding paragraph we can show easily that
• H2 contains r distinct numbers, and
• H0, H1, and H2 are mutually disjoint.

Thus the set H0 ∪H1 ∪H2 contains 3r elements. If that set encompasses all of Z∗a,
then φ(a) = 3r, so 〈〈

kφ(a)
〉〉

a
=
〈〈
k3r
〉〉

a
= 1 .

You can see where this is going. If necessary, we plow on by choosing n3, n4, . . .
, nm−1 and forming mutually disjoint H3, H4, . . . , Hm−1, each of which contains
r numbers, until we’ve exhausted Z∗a in the sense that

Z∗a = H0 ∪H1 ∪H2 ∪ · · ·Hm−1 .

At that point we conclude that φ(a) = mr, so〈〈
kφ(a)

〉〉
a

= 〈〈kmr〉〉a = 1 ,

and we’re done. �

Note that when p is prime, every positive integer k < p is coprime with p, so
φ(p) = p− 1 and

Z∗p = {1, 2, 3, . . . , p− 1} ,
which is simply the set of all nonzero elements of Zp. Taking a = p in Euler’s
Theorem yields the following result, which is easy to prove using basic facts about
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prime numbers.

2.5 Fermat’s Little Theorem: If p > 0 is prime, then
〈〈
kp−1

〉〉
p

= 1 for all
0 < k < p.

Rudimentary cryptography and the notion of a key

Most people first encounter cryptography in the puzzle section of the newspaper.
Presented with a string of letters and spaces such as

U JROQ QWWP ,

the reader is challenged to decipher it into a grammatical piece of English text
under the assumption that each of the letters in the string stands unequivocally
for some other letter. In essence, underlying the so-called cryptogram is a fixed
permutation of the 26-letter English alphabet, and the reader’s job is to figure out
that permutation, or at least enough of it to decipher the given string. The solution
need not be unique. You can check that the string above deciphers to I LOVE EGGS
under one permutation and I HATE EGGS under another. People don’t solve
these puzzles by brute-forcing their way through the 26! possible permutations of
the English alphabet. Statistics of English-letter frequencies and rules of English
narrow the set of feasible solutions. A one-letter word in English must be either I
or A (or maybe O in poetic contexts), and E, T, and O occur most frequently, so
an educated guesser might begin by assuming that U stands for I and Q stands for
E and seeing where that leads. Simple substitution cyphers of the this type have
been around for millennia, and people — not to mention computers — have gotten
good at solving them.

Julius Caesar allegedly used a substitution cypher to encode messages (pre-
sumably in Latin) for the purpose of secure communication. His cypher cycled the
alphabet mod 3 in the sense that D stood for A, E for B, F for C, etc. An adversary
intercepting one of Caesar’s encrypted messages faced the same problem that the
newspaper-puzzle solver faces. You can imagine what quick work a clever modern
human or reasonable computer would make of a message encoded using Caesar’s
cypher. Indeed, computers have changed the game because they can perform brute-
force computations that lie beyond human capabilities. Say, for example, that the
messages you want to send are strings of digits. There are 10! = 3, 628, 800 per-
mutations of the ten digits, and it’s easy to visualize a computer churning through
all of them to decode a message sent encrypted using a simple substitution cypher.
Things are significantly worse if you want to send bit strings, in which case only
one nontrivial substitution cypher exists.

Elaborating on the simple substitution cypher leads to an important crypto-
graphic advance, the polyalphabetic substitution cypher. Such an encryption scheme
encodes different symbols in the message using different substitution cyphers and
decides which substitution cypher to use on each symbol by referring to a key.
Here’s a simple example. Define En, 1 ≤ n ≤ 9, as the substitution cypher for the
English alphabet that cycles the English alphabet mod n, Caesar-style. Let the key
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be k = 14853. Suppose we want to encode the message MODULAR ARITHMETIC
RULES. We write out the key repeatedly atop our message, i.e.

1

M
4

O
8

D
5

U
3

L
1

A
4

R
8

A
5

R
3

I
1

T
4

H
8

M
5

E
3

T
1

I
4

C
8

R
5

U
3

L
1

E
4

S

and then use substitution cypher En to encrypt each letter above which n sits, so
for example we encrypt RULES as ZZOFW. Using long keys and/or many differ-
ent substitution cyphers in a scheme of this kind washes out the statistical and
English-rules evidence that people use to solve simple substitution cyphers, making
decrypting significantly more difficult.

Here’s one more example of a polyalphabetic substitution cypher. Suppose that
the messages we want to send are bit strings and the key k is also a bit string. For
definiteness suppose that k = 110011010. If our message is m = 11100010110011,
we encrypt it by extending the key by repetition to a bit string as long as the mes-
sage and then performing bitwise binary addition, or an XOR operation, between
that string and m. The encrypted message in this case is 001111101010. Imagine
in general that the key k is as long as the messages we want to send, and that we
generate k randomly by flipping a coin for each bit of k. Then no matter how orga-
nized a bit-string message is, the encrypted message will look like a random string
of bits. Note that this XOR-encryption technique is indeed a polyalphabetic sub-
stitution cipher. A 0 in the key directs us to apply the trivial substitution cypher
to the message bit whose coding the 0 regulates, whereas a 1 in the key directs us
to apply the bit-flip substitution cypher to the relevant message bit.

Let’s step back and consider more generally how encryption techniques such as
those I’ve just described might help people communicate securely. We begin with a
set of agents who want to communicate with each other so that an eavesdropper who
intercepts transmissions between the agents won’t be able to determine the semantic
content of the agents’ communications. The agents settle on an encryption scheme,
for example a polyalphabetic substitution cypher with attendant key, and keep
the scheme, particularly the value of the key, secret among themselves. Whatever
scheme they employ should have at least three properties:

• Agents should be able to encrypt messages easily using their knowledge
of the scheme and the value of the key.
• Agents should be able to decrypt encoded messages easily using their

knowledge of the scheme and the value of the key.
• An eavesdropper should not be able to decrypt encoded messages without

knowing the value of the key, even if the eavesdropper knows some other
general features of the encryption scheme (e.g. that the agents are using
substitution cyphers, say)

Polyalphabetic substitution cyphers, especially when they employ many substitu-
tion cyphers and use long keys, meet all three criteria. The renowned Enigma
machine used by the Germans during World War II implemented polyalphabetic
substitution cyphers, and cracking the Germans’ code depended not only on the
work of some brilliant mathematicians, including Alan Turing, but on some lucky
breaks.

The Hellman-Diffie-Merkle (HDM) key-establishment protocol
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Ultra-complex polyalphabetic substitution cyphers and other related encryption
schemes employing keys, while powerful tools for encryption, come encumbered
with a difficult task, namely, delivering the key to all the agents. You can imagine
getting everyone together in a room and agreeing once and for all on the value
of the key, but that won’t work in the real world. Agents leave or get fired from
the group. Sometimes they’re careless. Whatever the cause, keys have a way of
getting out, and the agents will need to re-set the key at least occasionally and
more likely on a regular basis. Agents in far-flung locations can’t be expected to
assemble periodically to do an in-person re-set, so they need to figure out a way
to circulate new key values securely among themselves. But that’s yet another
secure-communication problem layered on top of the one they started with, and
you can visualize how these meta-problems proliferate — shall we use a special
key to encrypt the particular messages in which we circulate the new key? — ad
infinitum.

Martin Hellman and Whitfield Diffie proposed in 1976 a solution based on
modular arithmetic to the key-establishment problem. I’ll describe their scheme
and then attempt to explain in general terms why it’s effective. All agents begin
by agreeing on a large prime number p and a base b ∈ Z∗p. Each agent then picks
privately, and keeps as a secret, a number e ∈ Z∗p. What happens when one agent
wants to communicate with another? Most people call the two communicating
agents Alice and Bob and call the adversarial eavesdropper Eve (see what they did
there?), but I’ll assume Frodo wants to communicate with Sam and doesn’t want
Gollum to hear. Frodo sends Sam 〈〈beF 〉〉p , where eF is Frodo’s private e-value.
When Sam receives that number, he knows Frodo wants to communicate, so Sam
sends Frodo 〈〈beS 〉〉p , where eS is Sam’s e-value. Then Frodo takes what Sam has
sent him and computes 〈〈

〈〈beS 〉〉p
eF

〉〉
p

= 〈〈beF es〉〉p = k

while Sam proceeds similarly with what Frodo sent him and computes〈〈
〈〈beF 〉〉p

eS

〉〉
p

= 〈〈beF es〉〉p = k ,

which is the same k that Frodo computed. Then Frodo and Sam communicate using
their favorite encryption scheme, perhaps a polyalphabetic substitution cypher,
employing k as the key.

Eavesdropper Gollum can’t decipher Frodo’s and Sam’s subsequent communi-
cations unless he knows what encryption scheme they’re using, as indeed he might,
along with the value of k. Figuring out k turns out to be hard for him, even if he
knows the p and b that Frodo and Sam agreed upon to start with. To compute
k, Gollum must solve for at least one of eF and eS having seen only 〈〈beF 〉〉p and
〈〈beS 〉〉p . Even if he knows p and b, he needs to compute the mod-p logarithm to the
base b of a number, and that problem turns out to have worst-case complexity that
grows linearly in p and thus exponentially in the number of bits or digits required
to specify p, which means that if Frodo and Sam pick p large enough, Gollum’s
k-computation problem is computationally intractable.

Hellman and Diffie’s result revolutionized cryptography. Hellman proposed that
Ralph Merkle be credited with important early work leading to the Hellman-Diffie
scheme, which is why Merkle’s name appears alongside theirs. It’s worth noting
two disadvantages to their scheme. First, it requires an initial handshake between
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any two agents who want to communicate — they need to do one back-and-forth to
establish the key value, but after that each of them can fire off one-way messages
at will. Second, it’s vulnerable to a so-called Man-in-the-Middle Attack. Suppose
Saruman knows p and b and intercepts Frodo’s original key-establishment trans-
mission to Sam. Then, posing as Sam, Saruman sends Frodo 〈〈beσ 〉〉p , where eσ is
Saruman’s chosen e-value. Frodo thinks 〈〈beσ 〉〉p is 〈〈beS 〉〉p , and therefore computes
k = 〈〈beσeF 〉〉p , which Saruman also computes, whereupon Frodo and Saruman be-
gin communicating using key k, provided of course that Saruman also knows the
encryption scheme Frodo and Sam plan to use and thus knows how to employ k.
Saruman can also impersonate Frodo and send Sam 〈〈beσ 〉〉p , whereupon Sam and
Saruman establish key 〈〈beSeσ 〉〉p and start communicating. Frodo and Sam then
think they’re talking with each other while Saruman mediates their interaction to
his diabolical delight. To get around the Man-in-the-Middle vulnerability, people
have developed sophisticated protocols for agent authentication that I won’t discuss
here.

Private keys, public keys, and RSA encryption

So far I’ve used the word “key” to refer to a piece of information shared by two
communicating agents and unavailable to an eavesdropper. I’d like to loosen that
characterization a bit and think of a key as being a collection of pieces of infor-
mation, some private to individual agents, some shared between communicating
agents, and some publicly available. When Sam and Frodo establish a key using
HDM, we can think of eF and eS as parts of the key that are private to Frodo and
Sam, respectively, and k = 〈〈beF eS 〉〉p as a part of the key that Frodo and Sam both
know.

A secure-communication scheme involving only private keys is Shamir’s Three-
Pass Protocol, due to Adi Shamir. To understand the basic idea, imagine a lockbox
with two locks. Frodo has the key to one lock and Sam has the key to the other.
When Frodo wants to send a message to Sam, Frodo puts the message in the
unlocked box, locks the lock to which he has the key, and sends the locked box to
Sam. Sam receives the box, locks the other lock, and sends the now double-locked
box back to Frodo. Frodo unlocks his lock and sends the now single-locked box back
to Sam. Finally, Sam unlocks the single locked lock, to which he has the key, and
retrieves the message. Let’s see how Shamir’s protocol implements this ingenious
sequence of actions using modular arithmetic.

Assume that the messages agents want to send are positive integers and that
all agents have agreed on a large prime p. Each agent chooses e and d in Z∗p−1 such
that 〈〈ed〉〉p−1 = 1. Note that such an e and d are easy to choose. For e, an agent
could pick any prime that doesn’t divide p− 1, and then set

d =
〈〈
eφ(p−1)−1

〉〉
p−1

,

which makes 〈〈ed〉〉p−1 = 1 by Euler’s Theorem 2.4. Suppose Frodo wants to send
message m to Sam. We can assume m < p by breaking m into pieces if necessary.
Shamir’s Three-Pass Protocol works as follows.

• Frodo sends Sam 〈〈meF 〉〉p .
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• Sam receives the transmission and sends back to Frodo〈〈
〈〈meF 〉〉p

eS

〉〉
p

= 〈〈meF eS 〉〉p .

• Frodo receives Sam’s transmission and sends back to Sam〈〈
〈〈meF eS 〉〉p

dF

〉〉
p

=
〈〈
meF dF eS

〉〉
p

=
〈〈
m(l(p−1)+1)eS

〉〉
p

for some l ∈ N

=
〈〈〈〈

ml(p−1)
〉〉

p
〈〈meS 〉〉p

〉〉
p

= 〈〈meS 〉〉p ,

where the second line holds because 〈〈eF dF 〉〉p−1 = 1 and the fourth line
holds because〈〈

ml(p−1)
〉〉

p
=
〈〈 〈〈

mp−1
〉〉

p
l
〉〉

p
= 1 ,

since by Fermat’s Little Theorem 2.5 we have
〈〈
mp−1

〉〉
p

= 1.
• Finally, Sam computes m by taking what he receives from Frodo and

computing〈〈
〈〈meS 〉〉p

dS

〉〉
p

=
〈〈
meSdS

〉〉
p

=
〈〈
mj(p−1)+1

〉〉
p

for some j ∈ N

= 〈〈m〉〉p = m ,

where Fermat’s Little Theorem proves the third line.
Gollum the eavesdropper sees the message m raised to various powers mod p,

but he has no way of determining m without knowing at least one of Frodo’s and
Sam’s d-values. If he knows p and can figure out one of their e-values from what he
sees, he could easily calculate the corresponding d. As in the case of HDM, figuring
out an e-value requires computing logarithms mod p. Gollum sees m = 〈〈meF 〉〉p
and

〈〈meF eS 〉〉p = 〈〈meS 〉〉p ,

so obtaining eS entails taking the mod p logarithm to the base m of something,
which is computationally intractable for large p. Like HDM, Shamir’s Three-Pass
Protocol is vulnerable to a Man-in-the-Middle Attack. If Saruman knows p and
chooses eσ and dσ appropriately, he can intercept Frodo’s initial transmission, im-
personate Sam via a return message, and finally receive 〈〈meσ 〉〉p , allowing him to
compute m. The Three-Pass Protocol also requires three transmissions per mes-
sage sent and, unlike HDM, doesn’t allow for one-way transmissions after an initial
handshake.

We owe the last encryption scheme I’ll discuss to Ronald Rivest, Adi Shamir,
and Leonard Adelman. RSA encryption, as it’s known, features both public and
private keys. To set things up, each agent

• picks two large primes p and q with p 6= q and keeps these private;
• picks e and d in Z∗(p−1)(q−1) so that 〈〈ed〉〉(p−1)(q−1) = 1;
• publishes e along with N = pq, while keeping d private.
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An agent’s published (e,N)-pair is the agent’s public RSA key, and all agents’
public RSA keys appear in some sort of directory.

If Gandalf wants to send a message m ∈ N to Frodo, Gandalf looks up Frodo’s
public RSA key (eF , NF ) and sends Frodo 〈〈meF 〉〉NF

. Here I’m assuming that
m < NF , which Gandalf can guarantee by breaking m into pieces if necessary.
Upon receiving Gandalf’s transmission, Frodo computes〈〈(

〈〈meF 〉〉NF

)dF
〉〉

NF

=
〈〈
meF dF

〉〉
NF

=
〈〈
ml(p−1)(q−1)+1

〉〉
pq

for some l ∈ N ,

where to minimize subscripts I’ve denoted Frodo’s chosen primes by p and q so
that NF = pq. Observe now that φ(pq) = (p − 1)(q − 1) because Zpq contains pq
elements, and the only ones not coprime with pq are multiples of p (exactly q−1 of
those) and multiples of q (exactly p− 1 of those), and 0 is the only number in Zpq

that’s a multiple of both p and q, whereby φ(pq), the number of elements in Z∗pq, is

φ(p, q) = pq − (p+ q − 1) = (p− 1)(q − 1) .

Thus by Euler’s Theorem 2.4 we have〈〈
ml(p−1)(q−1)

〉〉
pq

=

〈〈(〈〈
mφ(pq)

〉〉
pq

)l
〉〉

pq

= 1 .

It follows that 〈〈
ml(p−1)(q−1)+1

〉〉
pq

= 〈〈m〉〉pq = m .

I’ve glossed over one detail: for Euler’s Theorem to apply, we need m ∈ Z∗pq. For
large p and q, the fraction of m-values in Zpq that don’t lie in Z∗pq is small and
therefore easily avoided.

How does RSA foil eavesdroppers? Saruman sees Gandalf’s encrypted mes-
sage to Frodo. Saruman knows Frodo’s publicly available (e,N)-pair and knows
that Gandalf’s transmission takes the form 〈〈me〉〉N . To decrypt the transmission,
Saruman needs Frodo’s d-value, which only Frodo knows. Saruman could figure
out d easily if he knew (p − 1)(q − 1), which would require that he knew p and
q. Knowing N = pq, as it happens, doesn’t help Saruman compute p and q indi-
vidually. Prime factorization, even of a number known to be the product of two
primes, has complexity that grows linearly in the size of the number and hence
exponentially in then number of bits required to specify the number. For large N ,
the calculation is intractable. Furthermore, RSA possesses a significant advantage
over the other two secure-communication schemes we’ve investigated. RSA requires
no initial handshake or real-time back-and-forth between agents. Any agent can
send a message anytime to any other agent whose public RSA key appears in the
directory.

Finally, to wrap things up, you may have been wondering about the computa-
tions the agents must perform to encrypt and decrypt transmissions in the schemes
I’ve described. For the schemes to be useful these computations need to be quick
and easy relative to the tasks confronting eavesdroppers. All encryption and decryp-
tion computations take the form 〈〈nr〉〉l for possibly rather large positive integers
n, r, and l. As it happens, fast algorithms for calculating such modular powers
exist. One such algorithm, the method of repeated squares, modularizes the well
known computer-science technique of exponentiation by squaring.



CHAPTER 3

Working with Real and Complex Numbers

My main purpose in this chapter is to summarize fairly briskly the central
results on sequences and series of real and complex numbers. We’ve touched on
some of the concepts already (e.g. convergent sequences, Cauchy sequences, etc.)
in Chapter 1, but I think it’s useful to collect everything in one place in a kind of
bulleted-list format. The lack of a lot of intervening text makes at times for some
high-density mathematics, but I hope the layout will facilitate easy reference.

To start with, I’ll assume you have some basic familiarity with the real numbers
R and the complex numbers C. I’ll assume you understand the algebra of complex
numbers at a standard pre-calculus level (real and imaginary parts, addition and
multiplication, magnitude and argument, etc.). I’ll cleave to electrical-engineering
convention and use notation j for

√
−1. For a real number a, |a| denotes the

absolute value of a; for a complex number c, |c| denotes the magnitude of c. So if
c = a+ jb, with a and b in R, then

|c| =
√
a2 + b2 .

The distance between two real numbers a and b is the absolute value of a− b and
the distance between two complex numbers c1 and c2 is the magnitude of c1 − c2.
To avoid having to type “real or complex numbers” a zillion times, I’ll use the
notation F to denote the phrase “R or C.” The “F” is supposed to mean “field.”

Sequences and their convergence

A sequence in F is an ordered list of elements of F indexed by N. We use notation
such as {an} or {cn} to denote such a sequence. So, for example,

{an} = a0, a1, a2, a3, . . . .

We say that a sequence {cn} in F converges to c̄ ∈ F when the distance between cn
and c̄ approaches zero as n→∞. In this case, we write

lim
n→∞

cn = c̄ .

A precise mathematical definition of convergence: {cn} converges to c̄ when for
every ε > 0 there exists an integer N > 0 such that |cn − c̄| < ε for every n > N .
It turns out that a sequence of complex numbers converges if and only if its real-
part and imaginary-part sequences both converge, in which case the limit of the
real parts is the real part of the limit, and the limit of the imaginary parts is the
imaginary part of the limit.

37
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3.1 Fact: A sequence {cn = an + jbn} in C, where an and bn are real for all n,
converges to c̄ = ā+ jb̄ ∈ C, where ā and b̄ are real, if and only if the real sequences
{an} and {bn} converge respectively to ā and b̄ in R.

Proof: First of all, for every n ∈ N,

|cn − c̄| =
√
|an − ā|2 + |bn − b̄|2 ,

If {cn} converges to c̄, then for every ε > 0 we can find N > 0 so that |cn − c̄| < ε
when n > N . Hence for n > N , we have√

|an − ā|2 + |bn − b̄|2 < ε ,

which implies that both |an− ā| < ε and |bn− b̄| < ε for every n > N . Accordingly,
{an} converges to ā and {bn} converges to b̄.

Conversely, if {an} converges to ā and {bn} converges to b̄, then for every ε > 0
we can find N > 0 so that both |an − ā| < ε/

√
2 and |bn − b̄| < ε/

√
2 when n > N .

Hence for n > N , we have

|cn − c̄| <
√
ε2/2 + ε2/2 = ε .

Accordingly, {cn} converges to c̄. �

A sequence {cn} in F is called a Cauchy sequence when the terms in the se-
quence get closer and closer together as n increases. Specifically, {cn} is a Cauchy
sequence when for every ε > 0 there exists an integer N > 0 such that |cm− cn| < ε
whenever m and n are both bigger than N .

3.2 Fact: A sequence {cn} in F is a Cauchy sequence if and only if it is a
convergent sequence.

“Proof:” I’ve put quotes around the word Proof because you really can’t prove
from first principles that every Cauchy sequence converges. As I noted in Chapter
1, the real and complex numbers are just set up so that every Cauchy sequence
converges. The converse — that every convergent sequence is Cauchy — is easy to
demonstrate.

Suppose, then, that {cn} converges to c̄. Then for every ε > 0 we can find some
N > 0 such that |cn − c̄| < ε/2 when n > N . So if m and n are both bigger than
N , we have

|cm − cn| = |cm − c̄+ c̄− cn| ≤ |cm − c̄|+ |c̄− cn| < ε/2 + ε/2 = ε .

We have shown: if {cn} converges, then for every ε > 0 there exists N > 0 such
that |cm − cn| < ε whenever m and n are both bigger than N , which means that
{cn} is a Cauchy sequence. �
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Series and their convergence

If {cn} is a sequence in F, the infinite series with nth term cn is the formal expression
∞∑

n=0

cn .

Associated with that expression is another sequence in F, the sequence {sn} of
partial sums defined by

sn =
n∑

m=0

cm

for each n ∈ N. We say that the infinite series
∑∞

n=0 cn converges when the
sequence {sn} of partial sums is a convergent sequence in F, in which case we say
that the sum of the series is limn→∞ sn.

We’ll also encounter two-sided infinite series of the form
∞∑

n=−∞
cn ,

where {cn : n ∈ Z} is a sequence in F whose index n extends infinitely in both
directions. A two-sided infinite series converges when both of the series

∞∑
n=0

cn

and
−1∑

n=−∞
cn =

∞∑
m=1

c−m

converge. In this case, the sum of the doubly infinite series is the sum of the sums
of the two one-sided series. This convergence condition is not the same as requiring
that the sequence {sn} of partial sums defined by

sn =
n∑

m=−n

converges. Consider, for example, the two-sided series wherein cn = n for all n ∈ Z.
For that series, sn = 0 for every n, but the series does not converge by our definition.

If {cn} is a (one-sided) sequence in F, {cn} is said to be summable when the
infinite series

∑∞
n=0 cn converges, and {cn} is said to be absolutely summable when

the infinite series
∑∞

n=0 |cn| converges. Similarly, if {cn} is a two-sided sequence
in F, {cn} is summable when

∑∞
n=−∞ cn converges and absolutely summable when∑∞

n=−∞ |cn| converges. Many sequences are summable but not absolutely summa-
ble. An example is the sequence {cn = (−1)n/(n+1)}. It turns out that the infinite
series

∞∑
n=0

cn = 1− 1/2 + 1/3− 1/4 + · · ·

converges to ln(2), but the infinite series
∞∑

n=0

|cn| = 1 + 1/2 + 1/3 + 1/4 + · · ·
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does not converge. If you Google on “alternating harmonic series” you can read
more about this example. In contrast, every absolutely summable sequence is sum-
mable, as the following quite useful result asserts.

3.3 Fact: If a one- or two-sided sequence {cn} in F is absolutely summable,
then {cn} is also summable.

Proof: First suppose {cn} is one-sided and let sn =
∑n

m=0 cn and s̃n =∑n
m=0 |cn|. Assume that {cn} is absolutely summable. Then the sequence {s̃n}

converges. By Fact 3.2, {s̃n} is a Cauchy sequence. Now consider the sequence
{sn}. Let m and n be natural numbers and assume without loss of generality that
n ≥ m. Then

|sm − sn| =

∣∣∣∣∣
n∑

l=m+1

cl

∣∣∣∣∣ ≤
n∑

l=m+1

|cl| = |s̃m − s̃n| .

Since {s̃n} is a Cauchy sequence, given ε > 0 we can find N ∈ N such that when
m and n are bigger than N , we have |s̃m − s̃n| < ε. For that same N , we therefore
have |sm − sn| < ε when m and n are bigger than N . It follows that {sn} itself
is a Cauchy sequence, which converges by Fact 3.2, and we conclude that {cn} is
summable.

If {cn} is an absolutely summable two-sided sequence, apply the foregoing ar-
gument to each of the two one-sided sequences {cn : n ≥ 0} and {c−n : n > 0} to
prove their summability, from which it follows that {cn} is summable. �

Upper and lower bounds

Mathematical models for real-world phenomena are rarely if ever exact. Engineers
and applied scientists working with such models need to be able to estimate quanti-
tatively how inexact the models are. Developing these estimates requires bounding
things. Even theoretical results about mathematical models make assertions about
upper and lower bounds on quantities of interest. I’m talking about statements
like “If you employ such-and-such a communication scheme, your probability of
a one-bit error is bounded from above by .001.” Or, “If your input amplitude is
bounded from above by R, your output will be bounded from above by ΓR.” So
it’s important to develop a facility for working with bounds.

An upper bound for a set A ⊂ R is a real number v̄ such that a ≤ v̄ for every
a ∈ A. Similarly, a lower bound for A ⊂ R is a real number v ∈ R such that a ≥ v
for every a ∈ A. A set of real numbers is bounded from above when it has an upper
bound and bounded from below when it has a lower bound. A set is simply bounded
when it has both an upper bound and a lower bound.

If B ⊂ A, then every upper or lower bound for A is also an upper or lower
bound for B, so if A is bounded from above or below, then B is too. It’s also easy
to see that A ⊂ R is bounded if and only if A is a subset of some bounded interval.
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The idea is that A is bounded if and only if A ⊂ [v, v̄] where v and v̄ are lower and
upper bounds for A. Bounded intervals themselves are archetypal bounded sets.

Every finite set A ⊂ R has upper and lower bounds v̄ and v that are elements
of A. These are the maximum and minimum elements in A, and we denote them
by max(A) and min(A). Infinite bounded sets don’t necessarily have maxima and
minima. Canonical examples are open intervals such as (3, 7). On the other hand,
max([0, 1]) = 1 and min([0, 1]) = 0.

A property of real numbers analogous to the “every Cauchy sequence converges”
property is the so-called least upper bound property. It’s analogous to the Cauchy
thing in the sense that you can’t really prove it since the real numbers are “rigged”
so that it holds. In fact, as we’ll see in Theorem 3.9 below, these two special built-in
features of real numbers are equivalent in the sense that one holds if and only if
the other does. The basic idea is that every bounded set of real numbers, even if it
lacks a maximum and/or minimum, has upper and lower bounds that are “tight”
in some sense.

3.4 Fact: If A ⊂ R is bounded from above, A has a least upper bound. In
other words, if A is bounded from above there exists an upper bound ¯̄v for A such
that ¯̄v ≤ v̄ for every upper bound v̄ for A. We write sup(A) for the least upper
bound ¯̄v. “Sup” stands for “supremum.” If A ⊂ R is bounded from below, A has
a greatest lower bound. In other words, if A is bounded from below there exists
a lower bound v for A such that v ≥ v for every lower bound v for A. We write
inf(A) for the greatest lower bound v. “inf” stands for “infimum.” �

Least upper bounds are sort of like maxima and greatest lower bounds are sort
of like minima. If a set A does indeed have a maximum, then that maximum is
equal to sup(A). Similarly, if A has a minimum, then that minimum is equal to
inf(A). It’s instructive to prove these assertions, and I suggest you try your hand
at it and see how it applies to the closed interval [0, 1]. As for the open interval
A = (3, 7), it’s clear that every v̄ ≥ 7 is an upper bound for A and every v ≤ 3 is a
lower bound for A. Furthermore, no number less than 7 is an upper bound and no
number greater than 3 is a lower bound. It follows that sup(A) = 7 and inf(A) = 3.

Working with bounds takes some practice and can be tricky. I’d like now
to explore in some detail an example I’ve found helpful to study carefully and
understand thoroughly. A well traveled aphorism in optimization theory asserts
that “the max of the min is no greater than the min of the max.” What does this
mean? First let’s suppose we have an (m × n) real matrix P . The entries in P
constitute a finite set, so max({Pij}) and min({Pij}) exist — they’re the largest
and smallest entries in P . Consider now the following two procedures. The first
procedure first identifies the smallest entry in each row of P (say, by circling it),
and then maximizes over all the circled entries, one of which sits in each of P ’s
rows. The second procedure first circles the largest entry in each column of P , and
then minimizes over all the circled entries, one of which sits in each of P ’s columns.

Formally, the first procedure computes

(1) max ({min ({Pij : 1 ≤ j ≤ n}) : 1 ≤ i ≤ m})
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and the second procedure computes

(2) min ({max ({Pij : 1 ≤ i ≤ m}) : 1 ≤ j ≤ n}) .
Common abbreviations for these are maxi minj Pij and minj maxi Pij respectively.
In (1), the inner minimization computes, for each i, the smallest element in row i of
P . The outer maximization then computes the maximum of all these row minima.
The inner maximization in (2) computes, for each j, the largest element in column
j of P , and the outer minimization then computes the minimum of all these column
maxima. For every i and j we have

min({Pij : 1 ≤ j ≤ n}) ≤ Pij ≤ max({Pij : 1 ≤ i ≤ m}) .
This is shorthand formn inequalities. The term on the far left depends only on i and
the term on the far right depends only on j and we can vary i and j independently.
It follows that every “column min” is less than or equal to every “row max,” so
the maximum of the column mins, namely (1), cannot exceed the minimum of the
column maxes (2).

The following parable might sharpen your intuition. Imagine that we’ve en-
trusted two competitors, a maximizer and a minimizer, with selecting an element
of P . The maximizer wants the selected element to be big, and her job is to pick
the row containing the element. The minimizer wants the selected element to be
small, and his job is to pick the column containing the element. They don’t pick
simultaneously; instead, one goes first and the other follows. You might expect
that each competitor is happier when he or she goes first than when he or she goes
second. In (1), the minimizer goes first and gets an outcome more pleasing to him
(i.e. smaller) than when the maximizer goes first in (2), leading to an outcome more
pleasing to her (i.e. larger) than in (1).

Going first affords a competitor the opportunity to narrow down the choices
available to the competitor who goes second. Try it yourself on a few matrices and
you’ll see what’s going on. Then find a friend and play the game where the two of
you make your choices simultaneously. Do it a few times and see whether the same
outcome arises every time.

The “max min ≤ min max” result extends to sup and inf. Suppose A and B
are sets of real numbers and f : A×B → R is a function. Suppose that the range
of f lies within some bounded set C ⊂ R. For each a ∈ A, set

Ca = {c ∈ C : c = f(a, b) for some b ∈ B} .
Since C is bounded, so is Ca, and in particular Ca has a greatest lower bound.
Define a function g : A→ R by

g(a) = inf(Ca) .

Note that g(a) ≤ f(a, b) for every a ∈ A and b ∈ B. Now given b ∈ B, set

Cb = {c ∈ C : c = f(a, b) for some a ∈ A} .
Cb is also a bounded set and therefore has a least upper bound. Define h : Cb → R
by

h(b) = sup(Cb) .
Then f(a, b) ≤ h(b) for every a ∈ A and b ∈ B.

We’ve arrived at the following chain of inequalities.

g(a) ≤ f(a, b) ≤ h(b) for all a ∈ A , b ∈ B .
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Now set
D1 = {d ∈ R : d = g(a) for some a ∈ A}

and
D2 = {d ∈ R : d = h(b) for some b ∈ B} .

Our chain of inequalities shows that every number in D2 is an upper bound for D1

It follows that sup(D1) is a lower bound for D2; otherwise sup(D1) would exceed
some number in D2, which is impossible since sup(D1) cannot exceed any upper
bound for D1. Since sup(D1) is a lower bound for D2, it cannot exceed the greatest
lower bound for D2, so

sup(D1) ≤ inf(D2) .
People summarize this discussion with the inequality

sup
a∈A

(
inf
b∈B

f(a, b)
)
≤ inf

b∈B

(
sup
a∈A

f(a, b)
)
.

In words, if you first “max out” f(a, b) over a for each fixed b, and then take the
“min” over b of all those “max” values, you get something at least as big as you
would if you reversed the process by “minimizing” f(a, b) over b for each fixed a and
then “maxing” out over a all the “min” values you obtained. It’s worth considering
a simple example. Suppose A = B = (0, 1) and

f(a, b) =
{

1 if a ≥ b
0 if a < b .

With notation as above, Ca = Cb = {0, 1} for every a and b ∈ (0, 1). So g(a) = 0 for
every a and h(b) = 1 for every b. Hence D1 = {0} and D2 = {1}, and sup(D1) = 0
while inf(D2) = 1.

Monotonic sequences

From Fact 3.4 we get two extremely useful results.

3.5 Fact: Every sequence {an} of real numbers that is bounded from above
and monotonically increasing — i.e., an ≤ an+1 for all n ∈ N — has a limit ā, and
ā = sup({an}).

Proof: Let ¯̄v = sup({an}). Note that for every ε > 0 we can find some No ∈ N
such that

|aNo − ¯̄v| = ¯̄v − aNo < ε .

Otherwise, all the {an} would be at least ε below ¯̄v, meaning that ¯̄v−ε would be an
upper bound for {an}, which is impossible since ¯̄v is the least upper bound. Now,
since an ≥ aNo

for all n > No, we conclude that

|an − ¯̄v| = ¯̄v − an < ε

for every n > No. To recap, we’ve shown that for every ε > 0 there exists No > 0
such that |an − v̄| < ε for all n > No. This means that limn→∞ an = ¯̄v. So the
sequence does have a limit ā, and ā = ¯̄v, the least upper bound of the numbers in
the sequence. �
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Similarly:

3.6 Fact: Every sequence {an} of real numbers that is bounded from below
and monotonically decreasing — i.e., an ≥ an+1 for all n ∈ N — has a limit ā, and
ā = inf({an}). �

Fact 3.5 and Fact 3.3 taken together underpin a powerful criterion for summa-
bility of one-and two-sided sequences. To demonstrate that a sequence {cn} is
summable, then by Fact 3.3 it suffices to show that {cn} is absolutely summable.
But how do we do that? Absent a “candidate limit” for

∑
n |cn|, how can we show

the series converges? We’ll make frequent use of the following result.

3.7 Fact: Let {cn} be a (one-sided) sequence from F, where F is R or C. {cn}
is absolutely summable if and only if the sequence {s̃n} defined by

s̃n =
n∑

m=0

|cm|

is bounded from above, i.e., if and only if there exists some R > 0 such that s̃n ≤ R
for every n ≥ 0. If {cn} is a two-sided sequence, {cn} is absolutely summable if
and only if the sequence {s̃n} defined by

s̃n =
n∑

m=−n

|cm|

is bounded from above.

Proof: Note that in either case {s̃n} is a monotonically increasing sequence of
real numbers. By Fact 3.5, if it is bounded from above, it converges. Hence if {s̃n}
is bounded from above, it converges, so {cn} is absolutely summable. Conversely,
if {cn} is absolutely summable, then {s̃n} converges, so it’s bounded from above
because it increases monotonically to its limit, which is therefore an upper bound
for {s̃n}. �

I’ll leave as exercises proofs of the following two assertions about least upper
bounds and greatest lower bounds, which follow swiftly from the definitions.

• If A ⊂ R is bounded from above, we can find a sequence {an} of numbers
in A so that

lim
n→∞

an = sup(A) .

Furthermore, we can choose {an} to be monotonically increasing.
• If A ⊂ R is bounded from below, we can find a sequence {an} of numbers

in A so that
lim

n→∞
an = inf(A) .
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Furthermore, we can choose {an} to be monotonically decreasing.
Two considerably more sophisticated verities from real-number lore are
• For any a ∈ R, there exists a sequence {qn} of rational numbers such that

lim
n→∞

qn = a .

Furthermore, we can choose the sequence {qn} to be monotonically in-
creasing or decreasing.
• Any a ∈ R has the following characterizations:

a = sup({q ∈ Q : q ≤ a})

and
a = inf({q ∈ Q : q ≥ a}) .

These last two items address approximating real numbers with rational numbers,
which is important in applications involving the sort of finite-precision arithmetic
one encounters when working with computers interfacing with the “real” world. In
a very . . . real . . . sense, both results hold by construction — i.e., the real numbers
are rigged so that both are true automatically. Nonetheless, they’re good ones to
remember and know how to use.

lim sup and lim inf

Facts 3.4, 3.5, and 3.6 have important consequences for bounded sequences. Sup-
pose {an} is bounded sequence of real numbers satisfying |an| ≤ R for some R > 0
and every n ∈ N. Consider the associated sequences {ān} and {an} with nth terms

ān = sup({am : m ≥ n}) and an = inf({am : m ≥ n}) .

Fact 3.4 guarantees the existence of ān and an for every n ∈ N. Observe that
ān ≥ −R and an ≤ R for every n ∈ N. Furthermore, {ān} is a monotonically
decreasing sequence and {an} is a monotonically increasing sequence. To see this,
note that for each n

{am : m ≥ n+ 1} ⊂ {am : m ≥ n} ,

so the sup of the set on the right is an upper bound for the smaller set on the left
and is therefore at least as large as the left-hand set’s sup. Accordingly, ān+1 ≤ ān

and an+1 ≥ an for every n ∈ N.
Facts 3.5 and 3.6 imply that {ān} and {an} both converge. We denote these

sequences’ limits by
lim sup

n→∞
an = lim

n→∞
ān

and
lim inf
n→∞

an = lim
n→∞

an .

People generally call these things the “lim sup” and “lim inf” of the sequence {an}.
These quantities exist for any bounded sequence, even a non-convergent one. While
every convergent sequence is bounded, not every bounded sequence converges. How
can you tell whether a given bounded sequence does converge?
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3.8 Fact: A bounded sequence {an} of real numbers converges to limit ā if
and only if

lim sup
n→∞

an = lim inf
n→∞

an = ā .

Proof: First suppose that {an} converges to limit ā. For any ε > 0 you can
find N ∈ N such that when n > N we have |an − ā| < ε/2. This means that
all the numbers an for n > N lie inside the open interval of width ε centered on
ā. Accordingly, when n > N , | sup({am : m ≥ n}) − ā| < ε and | inf({am : m ≥
n})− ā| < ε. Since ε was arbitrary, we conclude that

lim
n→∞

(sup{am : m ≥ n}) = lim sup
n→∞

an = ā

and
lim

n→∞
(inf{am : m ≥ n}) = lim inf

n→∞
an = ā ,

Conversely, if lim supn→∞ an = lim infn→∞ an = ā, we know that for any ε > 0
there exists N ∈ N such that all the numbers an for n > N lie in the open interval
of width ε centered on ā. This is the same as saying that |an − ā| < ε for n > N .
It follows that limn→∞ an = ā since ε was arbitrary. �

When applying Fact 3.8 to demonstrate convergence of a sequence {an}, peo-
ple often prove only that lim sup an ≤ lim inf an. The strategy works because
lim inf an ≤ lim sup an already, under any circumstances. To see why, just note
that an ≤ ān for every n, so the limiting value of an, which is lim inf an, cannot
exceed the limiting value of ān, which is lim sup an.

Equivalence of the two mysterious properties of R

I have emphasized that the real numbers are “rigged” so that every Cauchy se-
quence converges (Fact 3.2) and so that every set of real numbers bounded from
above (or below) has a least upper (or greatest lower) bound (Fact 3.4). It turns
out that these facts are logically equivalent in the sense that each one implies the
other. Here is a formal statement of the result.

3.9 Theorem: The following two properties of the real numbers are equivalent
in the sense that one implies the other:

• Every Cauchy sequence of real numbers converges (Fact 3.2)
• Every set of real numbers bounded from above has a least upper bound

and every set of real numbers bounded from below has a greatest lower
bound (Fact 3.4).

Proof: First let’s assume Fact 3.4 and prove that every Cauchy sequence
converges. Keep in mind that Fact 3.4 is enough to prove the existence of lim sup
and lim inf of a bounded sequence. If {an} is a Cauchy sequence, given ε > 0 we
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can find N ∈ N such that |an − am| < ε/3 when m and n are both bigger than N .
This implies not only that {an} is a bounded sequence but that some fixed interval
of length ε/3 contains every an for n > N . Furthermore, for every m and n bigger
than N , we have |vn − wm| ≤ ε/3, where

vn = sup ({ak : k ≥ n})

and
wm = inf ({ak : k ≥ m}) .

Since
lim

n→∞
vn = ¯̄a = lim sup

n→∞
an

and
lim

m→∞
wm = a = lim inf

n→∞
an ,

we can find m and n large enough so, in addition, |vn− ¯̄a| < ε/3 and |wm−a| < ε/3.
It follows that

|¯̄a− a| ≤ |¯̄a− vn|+ |vn − wm|+ |wm − a| < ε .

We have shown that |¯̄a−a| < ε for every ε > 0, and the only way that could happen
is for ¯̄a = a. Fact 3.8 implies in turn that {an} converges.

Now for the converse. Assume that every Cauchy sequence converges. Let A
be a set of real numbers bounded from above; I’ll show that A has a least upper
hound. (The argument for the existence of inf(A) when A is bounded from below
proceeds similarly.) First let v̄ be an upper bound for A. If v̄ is the least upper
bound for A, then we’re done. If not, there exists some largest n0 ∈ N for which
v̄0 = v̄−n0 is an upper bound for A but v̄− (n0 +1) is not. If v̄0 is the least upper
bound for A, then we’re done. If not, there exists some smallest n1 ∈ N such that

v̄1 = v̄0 − 2−n1

is an upper bound for A. Note that n1 ≥ 1. If v̄1 is the least upper bound for A,
then we’re done. If not, then there exists some smallest n2 ∈ N such that

v̄2 = v̄1 − 2−n2

is an upper bound for A. Note that v̄0 − 2−n2 is also an upper bound for A, so
n2 ≥ n1 by definition of n1. In fact, n2 > n1, since if n2 = n1, we would have
v̄2 = v̄0 − 2−(n1−1), again contradicting the definition of n1. Observe that n2 ≥ 2
because n1 ≥ 1. If v̄2 is the least upper bound for A, then we’re done; otherwise
there exists some smallest n3 ∈ N such that

v̄2 = v̄2 − 2−n3

is an upper bound for A. It is easy to show that n3 > n2 and hence that n3 ≥ 3 in
the same way we showed that n2 > n1.

Continuing in this fashion, we get a sequence of upper bounds

v̄m = v̄0 −
m∑

k=1

2−nk

of upper bounds for A where nk ≥ k for all k. If any of the v̄m is the least upper
bound for A, then we’re done. Otherwise, the sequence {v̄m} is an infinite sequence
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of upper bounds for A. It is a Cauchy sequence because, assuming l > m > N ,

|v̄m − v̄l| =
l∑

k=m+1

2−nk <
∞∑

k=N

2−k = 2−N+1 ,

which we can make as small as we want by choosing N large enough. Note that I
used the fact that nk ≥ k for all k. So {v̄m} converges to a limit ¯̄v, which I claim
is the least upper bound for A. ¯̄v is an upper bound for A because every v̄m is.
If ¯̄v weren’t the least upper bound for A, we could find m ∈ N such that ¯̄v − 2−m

is an upper bound for A. This would imply that v̄m+1 − 2−m is also an upper
bound for A, which is impossible by construction of nm+1, taking into account that
nm+1 ≥ m+ 1. �



CHAPTER 4

Linear Algebra I

You’ve been exposed to linear algebra on some level, but I’m uncomfortable
with the approach that many “math for engineers” linear algebra courses take to
the subject. In my experience they tend to zigzag awkwardly between talk about
abstract vector spaces, linear mappings, and bases on the one hand and matrices,
linear equations, and Fn on the other. The abstract theory is beautiful and, if
packaged well, easy to understand. Some recent books, for example Sheldon Axler’s
excellent if audaciously titled Linear Algebra Done Right, present treatments in the
same spirit as the one I offer here, although far more comprehensive. Axler goes
through some minor contortions to avoid any non-essential invocation of matrices
and thereby achieves a pristinely “coordinate-free” exposition. In what follows, I’ll
be somewhat less uncompromising, but not much less.

Vector spaces

As usual, F is R or C. A vector space over F is a set V on which are defined two
operations. The addition operation takes any v and w in V and produces another
element v + w of V . The scalar multiplication operation takes any co ∈ F and
v ∈ V and produces another element cov of V . We call the elements of V vectors.
Addition is commutative and associative, and V contains an identity element 0 —
the zero vector — for addition. Scalar multiplication distributes over addition and
also has these three properties: 0v = 0 for every v ∈V; 1v = v for every v ∈ V ; and
c1(c2v) = (c1c2)v for every c1, c2 ∈ F and every v ∈ V . I’ll always write −v for
(−1)v. I’ll also use the symbol 0 to denote both 0 ∈ F and 0 ∈ V and hope that
the context makes things clear. For example, in the equation 0v = 0 the left-hand
zero has to be in F and the right-hand zero has to be in V .

Here are a few examples of vector spaces. Let 0 be the number 0 in F and set
V = {0}. Then V is a vector space over F with addition and scalar multiplication
defined as ordinary addition and multiplication in F. A less trivial example is Fn,
the set of all column n-vectors with entries from F. Addition and scalar multipli-
cation on Fn are defined entry-wise. Observe that Cn is also a vector space over R
with addition and scalar multiplication defined in the usual way. Finally, let FZ be
the set of all two-sided infinite sequences with elements from F. A typical v ∈ FZ

looks like

. . . , α−2 , α−1 , α0 , α1 , α2 , α3 , . . . ,

where αm ∈ F for all m ∈ Z. If co ∈ F, then cov is

. . . , coα−2 , coα−1 , coα0 , coα1 , coα2 , coα3 , . . . .

49
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If w ∈ FZ looks like v above except with β’s instead of α’s, then v + w is

. . . , α−2 + β−2 , α−1 + β−1 , α0 + β0 , α1 + β1 , α2 + β2 , α3 + β3 , . . . .

The vector space FZ will feature prominently in our discussion of discrete-time
signals and systems.

If V is a vector space over F, a linear combination of vectors in V is an expres-
sion of the form

c1v1 + c2v2 + · · ·+ cmvm ,

where cj ∈ F and vj ∈ V for 1 ≤ j ≤ m. Any linear combination, of course,
specifies a vector in V . A subspace of V is a subset W of V with the following
property: every linear combination of vectors in W is also a vector in W . In other
words, W is a subspace of V if and only if W is closed under the taking of linear
combinations. Saying that W is a subspace of V is the same as saying that W is
itself a vector space with the same vector operations that make V a vector space.
Note that every subspace W contains the zero vector because W is closed under
scalar multiplication, in particular multiplication by the scalar 0.

The subsets {0} and V of any vector space V are subspaces of V . A more
interesting example is the subspace W of Rn consisting of all v ∈ Rn that satisfy
cT v = 0 for some c ∈ Rn. Please check for yourself that this W , known as a
hyperplane in Rn, is indeed closed under the taking of linear combinations (it’s
easy). If n = 3 and you think of vectors in R3 as little arrows emanating from
the origin, the hyperplane W is the set of arrows perpendicular to the arrow c.
The word hyperplane describes a lot of other subsets of Rn that aren’t subspaces.
For example, given c ∈ Rn, the set H of all v ∈ Rn satisfying cT v = 17 is also
a hyperplane in Rn but is not a subspace. For one thing, H is missing the zero
vector, and you can verify readily that H is not closed under addition.

Every vector space V other than {0} is uncountably infinite. To see why, let v
be any nonzero vector in V and note that all the vectors in the uncountably infinite
set {cov : co ∈ F} are different. On the other hand, intuition tells us that F3 is
somehow bigger or richer than F2 and that FZ is richer than Fn for any n. Making
“size comparisons” between vector spaces requires a measuring device more refined
than cardinality, and developing such a device is our next mission.

Spanning sets, finite dimensionality, and linear independence

If S is a subset of a vector space V , the span of S, which I’ll denote by span(S),
is the set of all linear combinations of vectors in S. span(S) is a subspace of V
because any linear combination of linear combinations of vectors in V is another
linear combination of vectors in V and therefore in span(S). If span(S) = V , we
say that S is a spanning set for V or that S spans V . Observe that V itself is a
spanning set for V .

A spanning set S for a vector space V , at least potentially, supplies a stripped-
down characterization of V , namely as the set of all linear combinations of vectors in
S. The smaller the spanning set, the sleeker the characterization — in particular, V
itself as a spanning set for V is not helpful in this regard. But consider the extreme
case where every vector in V is a scalar multiple of some single vector vo ∈ V . Then
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we can describe V succinctly as “the set of all scalar multiples of vo.” In this case,
{vo} is a spanning set for V .

Every vector space other than {0} has many infinite spanning sets, but only
some vector spaces have finite spanning sets. A vector space V with at least one
finite spanning set is called finite-dimensional. Succinctly characterizing a finite-
dimensional V entails finding spanning sets for V that are as small as possible.
I’ll now describe two procedures aimed at constructing small spanning sets for a
finite-dimensional vector space V . I’ll assume throughout that V 6= {0}, since that
vector space’s only spanning set is {0}.

Procedure 1: If V is finite-dimensional and S = {v1, . . . , vm} is a spanning
set for V , you might be able to construct a smaller spanning set by removing un-
necessary vectors from S. Suppose, for example, that one of the vectors in S —
say vm — can be written as a linear combination of the others. If you eliminate
vm from S, the resulting smaller set still spans V because any linear combination
of all the vectors can be re-written as a linear combination of v1, . . . , vm−1 by
substituting for every appearance of vm its expression as a linear combination of
the other m− 1 vectors. If none of the vectors in S is a linear combination of the
others, the set Ŝ you obtain by removing any vector from S will no longer span V
— in particular, the vector you’ve removed won’t be in span(Ŝ). �

Saying that one vector in S can be written as a linear combination of the others
is the same as saying that the vectors in S are linearly dependent in the sense that
there exist c1, . . . , cm in F at least one of which is nonzero that satisfy

c1v1 + c2v2 + · · ·+ cmvm = 0 .

Expressing one vector in S as a linear combination of the others leads directly to
such a relation. Conversely, if such a relation holds, you can divide out a nonzero
ck and solve for the corresponding vk as a linear combination of the other vectors.
We call a set of vectors linearly independent when it is not linearly dependent. I’ll
use interchangeably the terminologies “v1, . . . , vm are linearly (in)dependent” and
“S = {v1, . . . , vm} is a linearly (in)dependent set.”

From Procedure 1 we can draw three significant conclusions. First, if S is a
spanning set for V and the vectors in S are linearly dependent, then you can gen-
erate a smaller spanning set for V by removing a vector from S. Second, if the
vectors in S are linearly independent, you can’t remove a vector from S and have
a spanning set left over. Furthermore, since a linearly dependent spanning set S
can be reduced by one vector, you can start with such an S, remove an unneces-
sary vector, check the resulting smaller spanning set for linear dependence, remove
another vector if necessary, and so on. The process can’t go on forever since S is
finite. Eventually you’ll end up with a linearly independent spanning set for V .
Behold our third and most important conclusion: every finite-dimensional vector
space has a linearly independent spanning set.

Procedure 2: You could also consider trying to build a linearly independent
spanning set for V from the ground up. Start with any nonzero v1 ∈ V and form
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{v1}. If that set spans V , you’re done. If not, find v2 ∈ V not in span({v1}). Then
{v1, v2} will be a linearly independent set. If this set spans V , you’re done. If not,
find v3 outside span({v1, v2}), etc. All the sets you construct using this procedure
are linearly independent as the following inductive argument shows. Certainly
{v1} is a linearly independent set. Suppose now that Sk = {v1, . . . , vk} is linearly
independent and that vk+1 is not in span(Sk). If Sk+1 = {v1, . . . , vk+1} were
linearly dependent, we could write

c1v1 + c2v2 + · · · ckvk + ck+1vk+1 = 0

where at least one coefficients is nonzero. We can’t have ck+1 = 0 because that
would contradict linear independence of Sk. Accordingly, we can divide out by ck+1

and solve for vk+1 as a linear combination of the other vectors, which contradicts
vk+1 /∈ span(Sk). It follows that Sk+1 = {v1, . . . , vk+1} is a linearly independent
set. With any luck, Sk will be a spanning set for V for k sufficiently large. �

All optimism aside, what we’ve established so far does not guarantee that Pro-
cedure 2 will lead eventually to a linearly independent spanning set for V . For
example, might the procedure fail to terminate? Might some infelicitous choice of
v1 or unfortunate selection of vk+1 somewhere along the way lead to ever larger
linearly independent subsets of V that don’t span V ? More benignly, might some
starting vector v1 or selection routine for vk+1 give rise to linearly independent
spanning sets larger than those arising from other starting vectors and selection
routines? A similar question dogs Procedure 1, which we know terminates in a
linearly independent spanning set for V . Might some fortuitous initial spanning set
S or some clever ordering of vector removals lead to smaller linearly independent
spanning sets than other choices of S and sequencings of vector removals? The an-
swer to all these questions is No. Proving that statement requires some additional
work.

Bases and dimension

The next result marks my only appeal to the “mundane” language of linear equa-
tions. I could dodge it for the sake of purity, but it’s so fundamental and so handy
to know that I feel compelled to include it. It crystallizes the storied mantra that
an underdetermined set of homogeneous linear equations has a nontrivial solution.

4.1 Lemma: Let F be R or C. If n > m, the system of equations

c11x1 + c12x2 + c13x3 + · · ·+ c1nxn = 0
c21x1 + c22x2 + c23x3 + · · ·+ c2nxn = 0
c31x1 + c32x2 + c33x3 + · · ·+ c3nxn = 0

· · · = · · ·
· · · = · · ·

cm1x1 + cm2x2 + cm3x3 + · · ·+ cmnxn = 0 ,
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where cij ∈ F for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, has a solution x1, x2, . . . , xn where
at least one xj , 1 ≤ j ≤ n, is nonzero.

Proof: Fix k > 0 and suppose n = m+k. The proof proceeds by induction on
m. If m = 1, you have one equation in k + 1 unknowns. If c11 = 0, set x1 = 1 and
xj = 0 for all j > 1 and you have a nonzero solution to the equation. If c11 6= 0, set
x2 = 1, x1 = −c12/c11, and xj = 0 for all other j and you have a nonzero solution.
That takes care of the case m = 1.

Now suppose we’ve proven the result for m equations in m + k unknowns.
Consider the case of m + 1 equations in n = m + 1 + k unknowns. If all the x1-
coefficients — i.e. all the ci1 for 1 ≤ i ≤ m+1 — are zero, setting x1 = 1 and xj = 0
for j > 1 yields a nonzero solution to the system of equations. If not all the ci1 are
zero, re-order the equations if necessary so c11 6= 0 and replace the m+1 equations
with the equivalent set of equations you obtain by leaving the first equation alone
and replacing each other equation i with

(equation i) − (ci1/c11)× (equation 1) .

The new set of equations is equivalent to the old one because the equation-replacement
procedure is reversible, so any solution to the new set of equations is also a solution
to the original set.

None of the equations 2 through m + 1 in the new set has an x1-term. Ac-
cordingly, these equations constitute a set of m equations in the n − 1 = m + k
unknowns x2, x3, . . . , xn. By the induction assumption, these equations have a
solution dj , 2 ≤ j ≤ m+ k + 1, where not all of the dj are zero. Finish the job by
solving for x1 from the first equation by dividing out c11, i.e.

x1 = − (1/c11) (c12d2 + c13d3 + · · ·+ c1ndn) .

So the conclusion of lemma is true for m = 1 and is true for m+ 1 when it is true
for m, and by induction it is therefore true for all m. �

Lemma 4.1 makes it easy to prove the following central result.

4.2 Lemma: Let V be a finite-dimensional vector space over F. If S =
{v1, v2, . . . , vm} is a spanning set for V and {w1, w2, . . . , wn} is a linearly inde-
pendent set, then n ≤ m.

Proof: Since S spans V , we can find cij , 1 ≤ i ≤ m and 1 ≤ j ≤ n, such that

wj =
m∑

i=1

cijvi for 1 ≤ j ≤ n .

Suppose now that n > m, contrary to what we want to prove. By Lemma 4.1 we
can find dj , 1 ≤ j ≤ n, not all zero that

n∑
j=1

cijdj = 0 for 1 ≤ i ≤ m .
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It follows that
n∑

j=1

djwj =
n∑

j=1

dj

(
m∑

i=1

cijvi

)
=

m∑
i=1

 n∑
j=1

cijdj

 vi = 0 ,

which contradicts linear independence of the wj . We must conclude that the start-
ing assumption n > m was incorrect, so n ≤ m. �

Lemma 4.2 is a key that unlocks many doors. We saw earlier that any finite-
dimensional vector space V 6= {0} has a linearly independent spanning set, but we
wondered whether linearly independent spanning sets of different sizes might exist.
If S1 and S2 are two linearly independent spanning sets, then Lemma 4.2 tells us
that

• because S1 is a spanning set and S2 is a linearly independent set, S1

contains at least as many vectors as S2, and
• because S2 is a spanning set and S1 is a linearly independent set, S2

contains at least as many vectors as S1.
Conclusion: any two linearly independent spanning sets for V contain the same
number of vectors. That number is called the dimension of V , and I’ll often denote
it by dim(V ).

Carrying on, we can deduce that linearly independent subsets of a finite-
dimensional vector space V can get only so large. If V has dimension n, then
V has a spanning set containing n vectors, so by Lemma 4.2 no linearly indepen-
dent subset of V can contain more than n vectors. As a consequence, a vector space
V that has arbitrarily large linearly independent sets must be infinite-dimensional.

Furthermore, spanning sets of a finite-dimensional V can get only so small. If
V has dimension n, then V has a linearly independent subset (a spanning set, in
fact) containing n vectors, so by Lemma 4.2 no spanning set for V can contain
fewer than n vectors. Thus the dimension of V is both the largest possible size of
a linearly independent set and the smallest possible size of a spanning set.

A basis for an n-dimensional vector space V is an ordered n-tuple (v1, v2, . . . , vn)
of vectors in V with the property that {v1, v2, . . . , vn} is a linearly independent span-
ning set for V . The fact that bases are ordered distinguishes them from linearly
independent spanning sets. For example, if (v1, v2) is a basis for a 2-dimensional
V , then (v2, v1) is technically a different basis. In any event, “basis” is almost
synonymous with “linearly independent spanning set.”

Observe that if (v1, v2, . . . , vn) is a basis for V , then every v ∈ V can be written
as a linear combination of the vj because {v1, . . . , vn} spans V . What’s more, v’s
expansion in terms of the basis vectors is unique. If v had two such expansions,
then subtracting one from the other would lead to a linear-dependence relation
between the vectors in the basis, which is impossible since the vectors are linearly
independent.

The following result, which we have proven over the course of the foregoing
discussion, anchors the theory of finite-dimensional vector spaces.

4.3 Theorem: If V 6= {0} is a finite-dimensional vector space over F, then V
has a basis. Any two bases for V contain the same number of vectors. That number
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is called the dimension of V . If V has dimension n, then no linearly independent
subset of V contains more than n vectors and no spanning set for V contains fewer
than n vectors. If (v1, . . . , vn) is a basis for V , then every v ∈ V can be written in
exactly one way as a linear combination of v1, . . . , vn. �

Procedure 2, which I described earlier, was targeted at building a linearly inde-
pendent spanning set for a finite-dimensional V by starting with {v1} and adding
vectors while maintaining linear independence of the vectors at each step. It was not
obvious a priori that Procedure 2 would necessarily terminate. Now, in the light
of Theorem 4.3, we know that the procedure does indeed terminate in a linearly
independent spanning set for V . If V has dimension n, then once we’ve arrived via
Procedure 2 at a linearly independent set Sn = {v1, v2, . . . , vn}, we know that Sn

must span V or else we could find a linearly independent subset of V with n + 1
vectors in it, contradicting dim(V ) = n. This “basis construction” procedure is
important and I’ll make frequent use of it.

4.4 Theorem: If {v1, v2, . . . , vk} is a linearly independent subset of an n-
dimensional vector space V and k < n, we can find n − k vectors vk+1, . . . , vn so
that (v1, v2, . . . , vn) is a basis for V .

Proof: We’ve really pretty much proven this already, but here’s what’s going
on in a nutshell. Since k < n, the set can’t span V by Theorem 4.3, and we can
therefore add vectors to the set one at a time using Procedure 2, all the while
maintaining linear independence. Eventually we will reach a linearly independent
spanning set for V , which must contain n vectors by Theorem 4.3. Ordering the
vectors in this last set yields a basis for V . �

As you probably know, the dimension of Fn is n. To prove this formally, let
ei ∈ Fn be the vector with ith element 1 and all other elements zero. I’ll show that
(e1, . . . , en) is a basis for Fn. First, for v ∈ Fn, let [v]i be the ith entry in v. Note
that

v =
n∑

i=1

[v]iei .

Since v is an arbitrary vector in Fn, {e1, . . . , en} spans Fn. Furthermore, for any
c1, . . . , cn in F, the linear combination

c1e
1 + · · ·+ cne

n

has ith entry ci, and hence is zero if only if ci = 0 for all i. It follows that {e1, . . . , en}
is a linearly independent set as well as a spanning set for Fn, and (e1, . . . , en) is
therefore a basis for Fn.

What about FZ? For each i ∈ Z, let ei be the sequence with a 1 in the ith
position and a zero in every other position. Given n > 0 along with c1, . . . cn in
F, the sequence

v = c1e
1 + c2e

2 + · · ·+ cne
n
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has zeroes in every position i save 1 ≤ i ≤ n, and ci appears in position i for
i in that range. So v = 0 if and only if ci = 0 for 1 ≤ i ≤ n, proving that
{e1, . . . , en} is a linearly independent set. It follows that for every n > 0 FZ has
a linearly independent subset containing n vectors and, by Theorem 4.3, FZ is not
finite-dimensional. FZ is arguably the archetypal infinite-dimensional vector space.

If W is a subspace of an n-dimensional vector space V , then W is also finite-
dimensional. If W weren’t finite-dimensional, then we could build arbitrarily large
linearly independent subsets of W , one vector at a time. These would also be
linearly independent subsets of V , and some would contain more than dim(V )
vectors, and we know such sets can’t exist because of Theorem 4.3. Since W is
finite-dimensional, if W 6= {0} it has a basis (w1, . . . , wk), and k ≤ dim(V ) by
Theorem 4.3. It follows dim(W ) ≤ dim(V ).

Finally, Theorem 4.3 implies that the only n-dimensional subspace of an n-
dimensional vector space V is V itself. Suppose (w1, . . . , wn) is a basis for such a
subspace W . If W 6= V , we can find wn+1 ∈ V not expressible as a linear com-
bination of the other wj , making {w1, . . . , wn, wn+1} an impossibly large linearly
independent subset of V . Accordingly, W = V .

Vector sums and disjoint subspaces

The vector sum of a collection W1, . . . , Wk of subspaces of a vector space V is the
subspace of V defined by

W1 + · · ·+Wk = span(W1 ∪ · · · ∪Wk) .

This is one of several equivalent ways to define the vector sum of the Wj . Another
is

W1 + · · ·+Wk = {w1 + · · ·+ wk : wj ∈Wj for 1 ≤ j ≤ k} .
The definitions are equivalent because any vector in the span of the union of the
Wj , being a linear combination of vectors from the Wj , can be parsed as the sum
of k vectors, one from each subspace Wj . Conversely, any such k-fold sum must
certainly lie in the span of the union of the Wj .

For each j,
Wj ⊂W1 + · · ·+Wk ,

so every Wj is a subspace of the vector sum of the Wj . The vector sum is in fact
the smallest subspace of V containing all the Wj . These containment relations
imply that the dimension of the vector sum of the Wj is at least as large as the
dimensions of all the Wj when all the subspaces are finite-dimensional. Typically,
the dimension of the vector sum exceeds all the dimensions of the Wj . More on
that in a moment.

The vector sum provides a means for assembling larger subspaces of V from
smaller ones. Simply taking the union of subspaces won’t do. For example, if v1 and
v2 are nonzero linearly independent vectors in V and we set W1 = span({v1}) and
W2 = span({v2}), then W1 ∪W2 is not a subspace of V because it does not contain
v1 + v2. On the other hand, the intersection of any collection of subspaces of V is a
subspace of V . This is because any linear combination of vectors in W1 ∩ · · · ∩Wk

is a linear combination of vectors in Wj for every j and hence a member of Wj for
every j and hence a member of the intersection of the Wj .
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Since every subspace of V contains the zero vector, the intersection of any
collection of subspaces of V is nonempty. If W1 ∩ W2 = {0}, meaning that the
intersection of W1 and W2 is as empty as possible, we call W1 and W2 disjoint
subspaces of V . More generally, if k > 2 and W1, . . . , Wk are subspaces of V , we
say that the Wj are mutually disjoint when each Wj is disjoint from the vector sum
of the other k− 1 subspaces. Mutual disjointness is a condition far more restrictive
than pairwise disjointness, which requires only that Wi and Wj be disjoint for any
i 6= j. For example, if V is 2-dimensional with basis (v1, v2), the three subspaces
span({v1}), span({v2}), and span({v1 + v2}) are pairwise disjoint but not mutually
disjoint because the vector sum of any two of them is the entire vector space V .
Here is a convenient criterion for mutual disjointness.

4.5 Lemma: Subspaces W1, . . . , Wk of a vector space V over F are mutually
disjoint if and only if the relation

w1 + · · ·+ wk = 0

with wj ∈Wj for all j holds only when wj = 0 for all j.

Proof: Note first that if the subspaces aren’t mutually disjoint, then there
exists some i and some vector w 6= 0 lying in both Wi and the vector sum of the
other subspaces. For convenience, suppose i = 1. Setting w1 = w and x = −w
yields a relation w1 +x = 0 featuring nonzero vectors w1 in W1 and x in the vector
sum W2 + · · ·+Wk. We can write x as w2 + · · ·+wk with wj ∈Wj for 2 ≤ j ≤ k,
yielding a relation

w1 + w2 + · · ·+ wk = 0

between vectors some of which are nonzero. Conversely, if such a relation holds,
assuming without loss of generality that w1 6= 0, we have

w1 = −w2 − · · · − wk ,

and the single nonzero vector represented differently by the two sides of this last
equation must lie in both W1 and in W2+· · ·+Wk, so the subspaces aren’t mutually
disjoint. �

Suppose that Wj , 1 ≤ j ≤ k, are finite-dimensional subspaces of a vector space
V . Let Wj have dimension dj and suppose you’ve chosen a basis for each Wj . If
you form a set S of vectors by merging the vectors in all these bases, the set S will
contain

∑k
j=1 dj vectors that span W1 + · · ·+Wk. Accordingly, by Theorem 4.3,

dim(W1 + · · ·+Wk) ≤ d1 + · · ·+ dk = dim(W1) + · · ·+ dim(Wk) .

As it happens, this inequality holds with equality if and only if the Wj are mutually
disjoint.

4.6 Theorem: If W1, . . . , Wk be finite-dimensional subspaces of a vector
space V over F, then

dim(W1 + · · ·+Wk) ≤ dim(W1) + · · ·+ dim(Wk)
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with equality if and only if the Wj are mutually disjoint.

Proof: I’ve demonstrated already that the inequality always holds. Choose
for each Wj a basis (wj

1, . . . , w
j
dj

), where dj = dim(Wj). Merging all these bases
together yields a set S containing d1 + · · · + dk vectors that span W1 + · · · +Wk.
If the Wj are mutually disjoint, then S is a linearly independent set. To see why,
suppose some linear combination of the vectors in S is zero. We can re-write the
linear combination in the form

w1 + w2 + · · ·+ wk

where wj is for each j a linear combination of the chosen basis vectors for Wj . By
mutual disjointness, wj = 0 for all j. Since the basis vectors for Wj are linearly
independent, wj = 0 implies that all the coefficients in the linear combination
yielding wj are zero. Since this last assertion holds for all j, all the coefficients
in the original linear combination of vectors in S are zero. It follows that S is
a linearly independent spanning set for W1 + · · · + Wk, which consequently has
dimension d1 + · · ·+ dk.

Conversely, if the Wj are not mutually disjoint, then by Lemma 4.5 we can find
a relation the form

w1 + w2 + · · ·+ wk = 0

where wj ∈ Wj for all j with at least one wj nonzero. We can write each wj as
a linear combination of the chosen basis vectors for Wj , so the relation yields a
nontrivial linear combination of the vectors in S totaling zero, implying that S is a
linearly dependent set. Since S is a linearly dependent spanning set for the vector
sum W1+ · · ·+Wk, the dimension of the vector sum must be lower than the number
of vectors in S, which is d1 + · · · dk. �

A sharper result holds when k = 2. If W1 and W2 are disjoint, then

dim(W1 +W2) = dim(W1) + dim(W2)

by Theorem 4.6. If W1 and W2 are not disjoint, then

dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2) .

To prove this identity, let (v1, . . . , vd) is a basis forW1∩W2. Use Theorem 4.4 to gen-
erate a basis (v1, . . . , vd, w

1
1, . . . , w

1
m−d) forW1 and a basis (v1, . . . , vd, w

2
1, . . . , w

2
n−d)

for W2. Then
S = {w1

1, . . . , w
1
n−d, v1, . . . , vd, w

2
1, . . . , w

2
n−d}

spans W2 + W2 because it contains spanning sets for both Wj . S is also linearly
independent. A relation

c11w
1
1 + · · ·+ c1m−dw

1
m−d + b1v1 + · · ·+ bdvd + c21w

2
1 + · · ·+ c2n−dw

1
m−d = 0

yields

c11w
1
1 + · · ·+ c1m−dw

1
m−d + b1v1 + · · ·+ bdvd = −c21w2

1 − · · · − c2n−dw
1
m−d .

The left-hand side lies in W1 and the right-hand side lies in W2, so the right-hand
side must lie in W1 ∩W2 and hence be representable as a linear combination of v1,
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. . . , vd which is impossible because the vj and the w2
i are linearly independent. It

follows that S is a linearly independent spanning set for W1 +W2, so

(w1
1, . . . , w

1
m−d, v1, . . . , vd, w

2
1, . . . , w

2
n−d)

is a basis for W1 +W2, and W1 +W2 therefore has dimension

(m− d) + d+ (n− d) = dim(W1) + dim(W2)− dim(W1 ∩W2)

by Theorem 4.3.

Linear mappings, range, and nullspace

If V and W are vector spaces over F, a mapping T : V →W is linear when

T (v1 + v2) = T (v1) + T (v2)

for every v1 and v2 in V , and

T (cov) = coT (v)

for every v ∈ V and co ∈ F. From this definition it follows that a linear mapping T
satisfies T (0) = 0 and respects arbitrary linear combinations in the sense that

T (c1v1 + · · ·+ ckvk) = c1T (v1) + · · ·+ ckT (vk)

for every k > 0, every c1, . . . , ck in F, and every v1, . . . , vk in V . The simplest
linear mapping from V to W is the zero mapping, which sends every v ∈ V to
0 ∈ W . If W = V , the identity mapping, which sends every v ∈ V to v itself, is
another particularly simple example of a linear mapping from V to W .

Like all mappings, linear mappings can be composed to yield other mappings.
What’s special about linear mappings is that their compositions are also linear. If
T : V →W and S : W → X are linear mappings between vector spaces over F, the
composition ST is the mapping from V to X defined by

ST (v) = S(T (v)) for all v ∈ V .

It is easy to show that ST is indeed linear. If T is a linear mapping from V to V , we
can compose T with itself repeatedly and obtain the linear mapping T k : V → V
defined each every k > 0 as the k-fold composition of T with itself. By convention,
T 0 is the identity mapping.

Associated with any linear mapping T : V →W are two important subspaces.
• The range of T which I’ll denote by range(T ), is the set of all w ∈ W

such that T (v) = w for some v ∈ V . Observe that if w1, . . . , wk are in
range(T ) and vj ∈ V satisfies T (vj) = wj for 1 ≤ j ≤ k, then

T (c1v1 + · · · ckvk) = c1T (v1) + · · ·+ ckT (vk)
= c1w1 + · · · ckwk ,

so c1w1 + · · · + ckwk is also in range(T ) for every c1, . . . , ck in F. So
range(T ) is indeed a subspace of W because it is closed under the taking
of linear combinations.
• The nullspace of T , which I’ll denote by nullspace(T ), is the set of all
v ∈ V such that T (v) = 0. Note that if v1, . . . , vk are in nullspace(T ),
then

T (c1v1 + · · ·+ ckvk) = c1T (v1) + · · ·+ ckT (vk) = 0 ,
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so c1v1 + · · ·+ ckvk is also in nullspace(T ) for every c1, . . . , ck in F. The
nullspace of T is therefore a subspace of V because it is closed under the
taking of linear combinations.

Evidently, T is surjective if and only if range(T ) = W . Injectivity of T has a
nice characterization in terms of nullspace(T ).

4.7 Fact: Let V and W be vector spaces over F and let T : V →W be a linear
mapping. T is injective if and only if nullspace(T ) = {0}.

Proof: If T is injective, then any nonzero v ∈ V has to map under T to
something different from what 0 maps to, which is 0. Accordingly, if v 6= 0 then
T (v) 6= 0, so nullspace(T ) = {0}. Conversely, if nullspace(T ) 6= {0}, we can find
some vo 6= 0 in nullspace(T ). By definition of nullspace, T (vo) = 0, so two different
vectors map to the zero vector in W , implying that T is not injective. �

If V and W are vector spaces and T : V →W is a bijective mapping, an inverse
mapping S : W → V exists regardless of whether T is linear. The mapping S has
the following description: for every w ∈ W , S(w) is the unique v ∈ V satisfying
T (v) = w. Note that S satisfies S(T (v)) = v for every v ∈ V and T (S(w)) = w for
every w ∈W . If T is a linear mapping, the inverse mapping S is also linear.

4.8 Theorem: Let V and W be vector spaces over F. A linear mapping
T : V →W is bijective if and only if T is linearly invertible in the sense that there
exists a linear mapping S : W → V such that S(T (v)) = v for every v ∈ V and
T (S(w)) = w for all w ∈W .

Proof: If T is invertible with linear inverse S, then T (S(w)) = w for all w ∈W
implies that T is surjective, since every w ∈ W is in range(T ). Furthermore, if
T (v) = 0, then S(T (v)) = v implies that v = 0, so nullspace(T ) = {0} and T is
injective by Fact 4.7. We conclude that if T is invertible, then T is bijective.

Conversely, suppose T is bijective and let S be the resulting inverse mapping
from S to V . We need to show that S is linear. If w1, . . . , wk are vectors in W
and vj ∈ V is the unique vector in V that maps under T to wj for 1 ≤ j ≤ k, we
know that S(wj) = vj for 1 ≤ j ≤ k. Since T is linear, c1v1 + · · · + ckvk maps to
c1w1 + · · ·+ ckwk for every c1, . . . , ck in F. Accordingly,

S(c1w1 + · · ·+ ckwk) = c1v1 + · · ·+ ckvk

= c1S(w1) + · · ·+ ckS(wk) ,

and S is therefore linear. Observe that if V = W , so T and S map V to itself, the
composed mappings ST and TS are both the identity mapping on V . �

An injective linear mapping T : V →W maps linearly independent sets in V to
linearly independent sets in W . To see why, let v1, . . . , vk be linearly independent
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vectors in V . If

0 = c1T (v1) + · · ·+ ckT (vk) = T (c1v1 + · · ·+ ckvk) ,

then c1v1 + · · ·+ckvk must lie in the nullspace of T , and hence must be zero by Fact
4.7. Since the vj are linearly independent, all the cj must be zero, and we conclude
that T (v1), . . . , T (vk) are linearly independent. When V is infinite-dimensional
and W is finite-dimensional, V contains arbitrarily large linearly independent sets
while W ’s linearly independent sets are limited in size by Theorem 4.3. Thus no
injective linear mapping T : V → W exists. We can say a lot more when V is
finite-dimensional.

4.9 Theorem: Let V andW be vector spaces over F with V finite-dimensional.
If T : V →W is a linear mapping, then

dim(nullspace(T )) + dim(range(T )) = dim(V ) ,

where by convention dim({0}) = 0.

Proof: Suppose V has dimension n and nullspace(T ) has dimension d. Let
(v1, . . . , vd) be a basis for nullspace(T ). By Theorem 4.4, we can find vectors
vd+1, . . . , vn so that (v1, . . . , vd, vd+1, . . . , vn) is a basis for V . I claim that
(T (vd+1), . . . , T (vn)) is a basis for range(T ). First of all, the vectors T (vj), d+1 ≤
j ≤ n, span range(T ). That’s because since (v1, . . . , vn) is a basis for V , every
w ∈ range(T ) can be written as

T (c1v1 + · · ·+ cnvn) = c1T (v1) + · · · cdT (vd) + cd+1T (vd+1) + · · ·+ cnT (vn)
= cd+1T (vd+1) + · · ·+ cnT (vn)

for some c1, . . . cn in F, where the last equality holds because vj ∈ nullspace(T )
for 1 ≤ j ≤ d. Second, the vectors T (vj), d+ 1 ≤ j ≤ n, are linearly independent.
That’s because if

0 = cd+1T (vd+1) + · · ·+ cnT (vn) = T (cd+1vd+1 + · · ·+ cnvn) ,

then cd+1vd+1 + · · ·+ cnvn lies in the nullspace of T , and hence can be written as
a linear combination of v1, . . . , vd, which leads to a relation of the form

c1v1 + · · ·+ cdvd + cd+1vd+1 + · · ·+ cnvn = 0 ,

and all the cj are therefore zero by linear independence of the vj .
The bottom line is that {vd+1, . . . , vn} is a linearly independent spanning set for

range(T ). It follows that range(T ) has dimension n− d, so dim(V ) = d+(n− d) =
dim(nullspace(T )) + dim(range(T )). �

We noted earlier that there exists no injective linear mapping from an infinite-
dimensional vector space to a finite-dimensional vector space. Theorem 4.9 makes
possible some additional related assertions. First of all, since the dimension of
range(T ) is bounded from above by the dimension of V , no surjective linear mapping
T : V →W exists when V is finite-dimensional and W is infinite-dimensional. The
relationship between the dimensions of V and W also restricts what kinds of linear
mappings T : V → W can exist when both V and W are finite-dimensional. A
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linear mapping T : V → W cannot be injective if dim(V ) > dim(W ) because in
that case

dim(nullspace(T )) = dim(V )− dim(range(T )) ≥ dim(V )− dim(W ) > 0 ,

so nullspace(T ) 6= {0} and T is not injective by Fact 4.7. Similarly, T cannot be
surjective if dim(V ) < dim(W ). Theorem 4.9 implies in this case that

dim(range(T )) = dim(V )− dim(nullspace(T )) < dim(W ) ,

meaning that range(T ) 6= W , precluding surjectivity of T . Since a bijective mapping
is both injective and surjective, it follows that a linear mapping T : V → W can’t
be bijective unless dim(V ) = dim(W ).

Perhaps the most striking corollary of Theorem 4.9 is the following fundamen-
tal result about linear mappings between finite-dimensional vector spaces.

4.10 Theorem: If V and W are vector spaces over F with the same finite
dimension, then the following conditions on a linear mapping T : V → W are
equivalent in the sense that any one of them implies the other three:

• T is bijective
• T is injective
• T is surjective
• T is linearly invertible in the sense that there exists a linear mapping
S : W → V such that S(T (v)) = v for every v ∈ V and T (S(w)) = w for
all w ∈W .

Proof: For convenience, let n = dim(V ) = dim(W ). Theorem 4.8 establishes
the equivalence of bijectivity and linear invertibility af T . Bijectivity implies both
injectivity and surjectivity by definition. If T is injective, then nullspace(T ) = {0},
so dim(range(T )) = n by Theorem 4.9. SinceW also has dimension n, it follows that
range(T ) is an n-dimensional subspace of the n-dimensional vector space W , hence
range(T ) = W and T is surjective. Accordingly, injectivity implies surjectivity, and
bijectivity follows because it’s just the conjunction of injectivity and surjectivity.
Finally, assume T is surjective. Then range(T ) = W , so by Theorem 4.9 we have

dim(nullspace(T )) + n = n .

It follows that nullspace(T ) = {0} and T is injective by Fact 4.7. Thus surjectivity
implies injectivity, and bijectivity holds again because it’s just the conjunction of
injectivity and surjectivity. �

If you’re reading carefully, you’ve noticed that I’ve demonstrated only what
kinds of linear mappings can’t exist between finite-dimensional vector spaces whose
dimensions bear various relationships. For example, I’ve shown only that a bijective
linear mapping T : V → W can’t exist unless dim(V ) = dim(W ). In fact, plenty
such mappings exist. If (v1, . . . , vn) is a any basis for V and (w1, . . . , wn) is any basis
for W , then there exists a unique bijective linear mapping T : V → W satisfying
T (vj) = wj for 1 ≤ j ≤ n. This is because every v ∈ V can be written in exactly
one way as a linear combination of the vj by Theorem 4.3, so we can define T
unambiguously by

T (c1v1 + · · ·+ cnvn) = c1w1 + · · ·+ cnwn
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for every c1, . . . , cn in F.
Similarly, if (w1, . . . , wm) is a basis for W and n < m, the exact same prescrip-

tion provides an injective mapping T : V → W . If on the other hand n > m, you
get a surjective mapping T : V →W by setting

T (c1v1 + · · ·+ cnvn) = c1w1 + · · ·+ cmwm

for every c1, . . . , cn in F. Note that this last mapping sends each vj for m+ 1 ≤
j ≤ n to zero. In fact,

nullspace(T ) = span({vm+1, . . . , vn}) .
The foregoing examples employ a useful technique for constructing a linear

mapping from V to W when V is finite-dimensional, namely defining the linear
mapping on basis for V and extending it to all of V by linearity. Specifying what a
linear mapping does to the vectors in a basis for V specifies the mapping completely
because every vector in V has a unique representation as a linear combination of
the basis vectors, and the linear mapping must respect that linear combination.
More precisely, if (v1, . . . , vn) is a basis for V and w1, . . . , wn are any vectors in
W , there exists a unique linear mapping T : V → W such that T (vj) = wj for
1 ≤ j ≤ n. Where does T send an arbitrary v ∈ V ? First find the unique cj ,
1 ≤ j ≤ n, for which

v = c1v1 + · · ·+ cnvn ,

and then you know by linearity that

T (v) = c1w1 + · · ·+ cnwn .

If V and W are vector spaces over F, let Hom(V,W ) be the set of all linear
mappings from V toW . “Hom” is short for “homomorphism,” which means roughly
“something that preserves form.” Hom(V,W ) is itself a vector space over F. The
zero vector in Hom(V,W ) is the zero mapping from V to W . The vector operations
arise as follows. If T1 and T2 are in Hom(V,W ), define the linear mapping T1 + T2

by
(T1 + T2)(v) = T1(v) + T2(v) for all v ∈ V .

If T ∈ Hom(V,W ) and co ∈ F, define the linear mapping coT by

(coT )(v) = co(T (v)) for all v ∈ V .

If V and W are finite-dimensional, then so in Hom(V,W ).

4.11 Theorem: If V and W are vector spaces over F with dim(V ) = n and
dim(W ) = m, then Hom(V,W ) has dimension mn.

Proof: Let (v1, . . . , vn) be a basis for V and (w1, . . . , wm) a basis for W . Define
linear mappings Eij ∈ Hom(V,W ) for 1 ≤ i ≤ m and 1 ≤ j ≤ n as follows.

Eij(vk) =
{
wi if k = j
0 if k 6= j .

In other words, Eij sends vj to wi and sends all the other basis vectors vk to zero.
Defining the Eij on a basis for V , as we’ve observed, specifies them completely. I
claim that

{Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
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is a linearly independent spanning set for Hom(V,W ), which therefore has dimen-
sion mn.

To prove that the Eij span Hom(V,W ), we must show how to express any
T ∈ Hom(V,W ) as a linear combination of the Eij . Given such a T , we can write
each T (vj) uniquely as a linear combination of the wi. In other words, we can find
tij in F such that

T (vj) = t1jw1 + · · ·+ tmjwm

for each j, 1 ≤ j ≤ n. I’ll leave it for you to show that

T =
m∑

i=1

n∑
j=1

tijEij

and conclude that the Eij span Hom(V,W ).
As for linear independence of the Eij , suppose

0 =
m∑

i=1

n∑
j=1

cijEij .

Apply the linear mapping on the right-hand side of this relation to vk and you
discover that

0 =

 m∑
i=1

n∑
j=1

cijEij

 (vk)

=
m∑

i=1

n∑
j=1

cijEij(vk)

=
m∑

i=1

cikwi ,

which proves that cik = 0 for all i because the wi are linearly independent. Since
that maneuver works for every k, it follows that cik = 0 for all i and k, and the Eij

are therefore linearly independent. �

Norms and their associated convergence notions

A norm on a vector space V over F is a mapping

v 7→ ‖v‖
from V into R with three properties. First of all, ‖v‖ ≥ 0 for all v ∈ V and ‖v‖ = 0
if and only if v = 0. Second, ‖cov‖ = |co|‖v‖ for all v ∈ V and co ∈ F. Finally, we
have the so-called triangle inequality

‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

I’ll refer to ‖v‖ as the norm of v.
Given a norm on V , you can think of ‖v‖ as representing the length of v as

measured by that norm. The norm in turn spawns a distance function on V : the
distance between v and w is ‖v − w‖. Along with the distance function comes a
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notion of convergence: a sequence {vn} in V converges to v ∈ V with respect to the
given norm when

lim
n→∞

‖vn − v‖ = 0 .

In analogy with real and complex numbers, a sequence {vn} in V is a Cauchy
sequence with respect to the given norm when for every ε > 0 there exists an N > 0
such that ‖vm − vn‖ < ε when m and n are bigger than N .

Every sequence in V that converges with respect to a given norm on V is a
Cauchy sequence with respect to the given norm. The proof of that statement is
essentially identical to the proof of the corresponding statement in Fact 3.2. In
contrast to real- and complex-number sequences, a sequence in V that’s Cauchy
with respect to a given norm need not be convergent with respect to that norm.
Further complicating the convergence analysis of vector sequences is the fact that
you can define many workable norms on a single vector space, none of which has the
cachet associated with absolute value and magnitude for R and C. A sequence in
V might well be convergent or Cauchy with respect one norm and not with respect
to another.

Suppose that ‖ ‖a and ‖ ‖b are two norms on a vector space V and that there
exists R > 0 such that

‖v‖b ≤ R‖v‖a for all v ∈ V .

I claim that if a sequence {vn} converges to v with respect to ‖ ‖a then it also
converges to v with respect to ‖ ‖b. To see this, suppose ε > 0 is given. If {vn}
converges with respect to ‖ ‖a, we can find N > 0 such that

‖vn − v‖a < ε/R

when n > N . It follows that

‖vn − v‖b ≤ R‖vn − v‖a < ε

when n > N , and {vn} therefore converges with respect to ‖ ‖b since ε was arbitrary.
Similarly, if a sequence {vn} is Cauchy with respect to ‖ ‖a then it is also Cauchy
with respect to ‖ ‖b. Again, given ε > 0 we can find N > 0 such that

‖vn − vm‖a < ε/R

when m and n are bigger than N . It follows that

‖vn − vm‖b ≤ R‖vn − vm‖a < ε

when m and n are bigger than N , and {vn} is therefore Cauchy with respect to
‖ ‖b since ε was arbitrary.

Two norms ‖ ‖a and ‖ ‖b on V are equivalent when there exist constants Q
and R such that

‖v‖b ≤ R‖v‖a for all v ∈ V
and

‖v‖a ≤ Q‖v‖b for all v ∈ V
The discussion in the preceding paragraph reveals that two equivalent norms give
rise to the same convergent sequences in the sense that a sequence {vn} converges
to v with respect to one of the norms if and only if it converges to v with respect to
the other. In Chapter 5 we’ll meet examples of non-equivalent norms on infinite-
dimensional vector spaces of signals. Non-equivalent norms and their attendant
difficulties turn out not to be issues in finite-dimensional vector spaces. I won’t
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prove that result, but it’s a good one to know.

4.12 Theorem: If V be a finite-dimensional vector space over F, then any
two norms on V are equivalent. Consequently, a sequence {vn} converges to v with
respect to some norm on V if and only if it converges to v with respect to every
norm on V . �

To give Theorem 4.12 something to work with, I’ll present three popular norms
available an any n-dimensional vector space V once you’ve chosen a basis (v1, . . . , vn)
for V . We know from Theorem 4.3 that every v ∈ V has a unique representation
as a linear combination

v = [v]1v1 + · · ·+ [v]nvn ,

where [v]j ∈ F for 1 ≤ j ≤ n. Define the max norm or infinity norm of v with
respect to the given basis by

‖v‖∞ = max ({|[v]j | : 1 ≤ j ≤ n}) .

Define the sum norm or 1-norm of v with respect to the given basis by

‖v‖1 =
n∑

j=1

|[v]j | .

Define the Euclidean norm or 2-norm of v with respect to the given basis by

‖v‖2 =

 n∑
j=1

|[v]j |2
1/2

.

It’s fairly straightforward to show that these are all norms on V . The only
tricky part is proving the triangle inequality for the 2-norm, a task that I’ll set
aside until Chapter 9. We know from Theorem 4.12 that all three of these norms
are equivalent, but let’s prove it by hand. It’s pretty obvious that

‖v‖∞ ≤ ‖v‖1 for all v ∈ V

and that

‖v‖1 ≤ n‖v‖∞ for all v ∈ V ,

so the sum norm and max norms are equivalent. Meanwhile,

‖v‖2∞ ≤
n∑

j=1

|[v]j |2 = ‖v‖22 for all v ∈ V ,

so ‖v‖∞ ≤ ‖v‖2 for all v, and

‖v‖22 ≤ n‖v‖2∞ for all v ∈ V ,
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so ‖v‖2 ≤
√
n‖v‖∞ for all v, proving that the 2-norm and max norm are equivalent.

Furthermore,

‖v‖22 =
n∑

j=1

|[vj ]|2

≤

 n∑
j=1

|[v]j |

2

= ‖v‖21 ,

so ‖v‖2 ≤ ‖v‖1 for all v ∈ V . Finally,

‖v‖1 ≤ n‖v‖∞ ≤ n‖v‖2 for all v ∈ V ,

so the sum norm and 2-norm are equivalent.





CHAPTER 5

Discrete-time Signals and Convolution

It’s time to put some of the material from Chapter 3 to work. I think you’ll
begin to appreciate the central role that the basic facts about sequences, series, and
convergence play in the study of mathematical models whose critical importance
to modern applications is beyond dispute. Indeed, discrete-time signals constitute
the currency mediating all transactions in the digital world we inhabit.

Discrete-time signals and their elementary properties

We view the integers Z as a mathematical model for “discrete time.” Integer n
corresponds to “time n.” Integer 0 corresponds to “time 0.” If m > n, then “time
m is later than time n.” It’s not generally helpful to think of these “integer times”
as being embedded somehow in a familiar “continuous time axis” or as having
standard time units such as seconds or milliseconds or whatever. Integer times are
just indices with a natural ordering.

Having settled on Z to model discrete time, let’s define an F-valued discrete-
time signal as a function with domain Z that takes values in F — i.e., a discrete-time
signal is some x : Z→ F. As usual, F is either R or C. If you want, you can view a
typical F-valued discrete-time signal x as a two-sided infinite sequence of numbers
from F, i.e.

. . . , x(−3), x(−2), x(−1), x(0), x(1), x(2), . . .

where x(n) ∈ F for all n ∈ Z. Think of x(n) as the value of the signal x at time
n. I’ll denote the set of all F-valued discrete-time signals by FZ. When discussing
a discrete-time signal x : Z → F, I’ll be consistent in using x to denote the whole
signal and x(n) to denote the value of x at the specific time n.

I won’t list a whole bunch of examples of signals, but three special signals
deserve mention. The zero signal is the signal x with specification x(n) = 0 for
every n ∈ Z. The discrete-time unit impulse is the signal δ with specification

δ(n) =
{

1 if n = 0
0 if n 6= 0 .

The discrete-time unit step is the signal u with specification

u(n) =
{

1 if n ≥ 0
0 if n < 0 .

I’ll always use notation 0 for the zero signal, δ for the unit impulse, and u for the
unit step.

A signal x is right-sided when there exists N1 ∈ Z such that x(n) = 0 when
n < N1. A signal x is left-sided when there exists N2 ∈ Z such that x(n) = 0 when

69
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n > N2. A signal x has finite duration when there exist integers N1 and N2 such
that x(n) = 0 when n < N1 and x(n) = 0 when n > N2. Clearly, a signal has
finite duration if and only if it is both right- and left-sided. The unit step and unit
impulse are archetypal right-sided and finite-duration signals, respectively.

The set FZ of all discrete-time signals has a natural vector-space structure.
The zero signal is the zero vector, and linear combinations of signals are defined
pointwise in the sense that if x1 and x2 are two signals in FZ and c1 and c2 are
scalars in F, then the signal y = c1x1 + c2x2 has specification

(3) y(n) = c1x1(n) + c2x2(n) for all n ∈ Z .

Observe that the set of all right-sided signals is a subspace of FZ under these vector
operations. In other words, the set of right-sided signals is closed under the taking
of linear combinations. The same is true of the set of left-sided signals and the set
of finite-duration signals. I suggest you prove these facts for yourself.

Also defined on the vector space FZ is the operation of time shifting. Given
x ∈ FZ and ko ∈ Z, define Shiftko(x) as the signal with specification

Shiftko
(x)(n) = x(n− ko) for all n ∈ Z .

I’ll let you check that Shiftko
is a linear operation on FZ for every ko ∈ Z in the

sense that
Shiftko

(c1x1 + c2x2) = c1Shiftko
(x1) + c2Shiftko

(x2)

for every x1 and x2 in FZ and every c1 and c2 in F. When ko > 0, you can view
Shiftko

(x) as “x delayed by time ko.” In this case, if you could graph Shiftko
(x)(n)

as a function of n it would look just like the graph of x(n) as a function of n shifted
to the right by ko. Observe that the set of right-sided signals, the set of left-sided
signals, and the set of finite-duration signals are all closed under shifting in the
sense that Shiftko(x) has finite duration or is right- or left-sided when x has the
same property.

Bounded and absolutely summable signals: the spaces l∞ and l1

We say that x ∈ FZ is a bounded signal when there exists R > 0 such that |x(n)| ≤ R
for every n ∈ Z. The infinity norm of a bounded signal x is defined by

‖x‖∞ = sup{|x(n)| : n ∈ Z} .

We use the notation l∞ for the set of all bounded signals in FZ. As it happens,
l∞ is a subspace of FZ in the sense that it is closed under the taking of linear
combinations as in (3). To see this, note that if y = c1x1 + c2x2, where x1 and x2

are in l∞ and c1 and c2 are in F, then

|y(n)| = |c1x1(n) + c2x2(n)| ≤ |c1||x1(n)|+ |c2||x2(n)| for all n ∈ Z ,

so
|y(n)| ≤ |c1|‖x1‖∞ + |c2|‖x2‖∞ for all n ∈ Z

by definition of the infinity norm. It follows that y is bounded and that

‖y‖∞ ≤ |c1|‖x1‖∞ + |c2|‖x2‖∞ .
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One further comment: the infinity norm is actually a norm on the vector space l∞

in the technical sense, and this is easy to demonstrate (the triangle inequality, for
example, follows from a manipulation like the one above with c1 = c2 = 1).

We say that x ∈ FZ is an absolutely summable signal when
∑∞

n=−∞ |x(n)|
converges. The 1-norm of an absolutely summable signal x is defined by

‖x‖1 =
∞∑

n=−∞
|x(n)| .

We use the notation l1 for the set of all absolutely summable signals in FZ.
Like l∞, the set l1 is a subspace of FZ in the sense that it is closed under the

taking of linear combinations via (3). Moreover, the 1-norm is indeed a norm on
l1. These assertions are direct consequences of Fact 3.7. To see at least partly how
that goes, suppose x1 and x2 are in l1 and c1 and c2 are in F. Set y = c1x1 + c2x2.
Then for every N ∈ Z

N∑
n=−N

|y(n)| =
N∑

n=−N

(|c1x1(n) + c2x2(n)|) ≤ |c1|
N∑

n=−N

|x1(n)|+ |c2|
N∑

n=−N

|x2(n)| .

The two sums on the right-hand side are bounded from above respectively by ‖x1‖1
and ‖x2‖1, so

N∑
n=−N

|y(n)| ≤ |c1|‖x1‖1 + |c2|‖x2‖1 = R for all N ∈ Z .

Fact 3.7 implies that the sequence {y(n)} is absolutely summable, so y ∈ l1.
Observe that an absolutely summable signal must be bounded — in other

words, l1 ⊂ l∞. Observe also that every finite-duration signal is both bounded
and absolutely summable. Often we refer to a signal x ∈ l∞ as “an l∞-signal”
and x ∈ l1 as “an l1-signal.” Since l1 is a subspace of l∞, both the 1-norm and
the infinity norm are serviceable norms on l1. In Chapter 4 during the discussion
leading up to Theorem 4.12, I promised you an example of non-equivalent norms
on an infinite-dimensional vector space, and this is it. Here is a sequence {xk} of
l1 signals that converges to 0 in the infinity norm but not in the 1-norm. For each
k > 0, let xk be the l1-signal with specification

xk(n) =
{

1/k 0 ≤ n < k
0 otherwise.

Since ‖xk‖∞ = 1/k for all k > 0, the sequence {xk} converges to 0 in the infinity
norm. On the other hand, ‖xk‖1 = 1 for all k > 0, so {xk} does not converge to 0
in the 1-norm.

It turns out that l1 and l∞ are particular instantiations of what are known as
the lp-spaces of discrete-time signals. Given a real number p ≥ 1, let lp be the set
of all x ∈ FZ for which

∞∑
n=−∞

|x(n)|p

converges. It turns out that lp is a subspace of FZ and that the prescription

‖x‖p =

( ∞∑
n=−∞

|x(n)|p
)1/p

for all x ∈ lp
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defines a norm on lp.
Of special importance among the lp-spaces is l2, which will play a major role

in our discussion of Fourier series as orthogonal expansions. l2 is the set of square
summable signals. You might wonder how the lp-spaces stand in relation to one
another. I noted above that l1 ⊂ l∞. It turns out that if p ≤ q, then lp ⊂ lq, and
that lp ⊂ l∞ for every real number p ≥ 1. In particular,

l1 ⊂ l2 ⊂ l∞ .

The right-hand inclusion is easy to verify. The left-hand inclusion follows from the
following bit of trickery. First note that if x ∈ l1, then |x(n)| > 1 can hold for at
most finitely many n; otherwise, x would not be an absolutely summable signal.
Let R1 be the sum of all |x(n)|2 with |x(n)| > 1. For all other n, |x(n)|2 ≤ |x(n)|.
You can conclude that for every N ∈ Z,

N∑
n=−N

|x(n)|2 ≤ R1 +
N∑

n=−N

|x(n)| ≤ R1 + ‖x‖1 .

While this upper bound is quite crude, it’s enough to imply via Fact 3.7 that x ∈ l2.
And finally, a word on notation and pronunciation. The “l” in lp is the first

letter of the last name of Henri Lebesgue, a great French mathematician of the early
twentieth century. lp is pronounced like “ell pea” or “little ell pea.” The reason
for the latter is that the continuous-time versions of these spaces, the so-called Lp-
spaces, came first, and Lp is always pronounced “ell pea.”

Convolution

Given two signals x1 and x2 in FZ, the convolution of x1 and x2, if it exists, is the
signal x ∈ FZ with specification

(4) x(n) =
∞∑

k=−∞

x1(k)x2(n− k) , n ∈ Z .

Some notations I’ll be using for the convolution of x1 and x2 are x1 ∗ x2 and
Conv(x1, x2). Alternative terminologies for the convolution of x1 and x2 are “the
convolution of x1 with x2” and “x1 convolved with x2.” In accordance with our
notation for discrete-time signals, x1 ∗ x2 denotes a “whole signal” and x1 ∗ x2(n)
denotes the value of that signal at time n, so we can rewrite (4) as

x1 ∗ x2(n) =
∞∑

k=−∞

x1(k)x2(n− k) , n ∈ Z .

The convolution of x1 and x2 exists if and only if the sum in (4) converges for every
n ∈ Z. The sum is a series that’s potentially “infinite in both directions” such as
the ones we met during our discussion of l1, and we handle it accordingly.

Let’s begin with an elementary observation about convolution. If x1 ∗x2 exists,
then the sum in (4) converges for every n ∈ Z. Change the index of summation as
follows:

x1∗x2(n) =
∞∑

k=−∞

x1(k)x2(n−k) =
∞∑

m=−∞
x1(n−m)x2(m) =

∞∑
k=−∞

x1(n−k)x2(k) .
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Setting m = n−k yields the middle equality. To get the last, re-name the “dummy
index of summation” m as k. The bottom line is that on the right-hand side of
equation (4), it doesn’t matter where we put the k and where we put the (n − k)
— the result is the same. One could dignify this observation by saying something
along the lines of, “convolution, defined by (4), is a commutative operation in the
sense that if x1 ∗ x2 exists, then x1 ∗ x2 = x2 ∗ x1.” That’s fine, but it’s a bit
unnecessary in my view.

A slightly less elementary observation about convolution is that it is an associa-
tive operation in the sense that if x1∗(x2∗x3) exists, then so does (x1∗x2)∗x3, and
vice versa, and both convolutions are the same. Proving this fact is an exercise in
summation manipulation. I’ll be cavalier about interchanging orders of summation
here, but the interchanges are legal since all the sums converge. Assuming that
x1 ∗ (x2 ∗ x3) exists, we have

x1 ∗ (x2 ∗ x3)(n) =
∞∑

k=−∞

x1(k)(x2 ∗ x3(n− k))

=
∞∑

k=−∞

x1(k)

( ∞∑
m=−∞

x2(m)x3((n− k)−m)

)

=
∞∑

k=−∞

x1(k)

( ∞∑
m=−∞

x2((n− k)−m)x3(m)

)

=
∞∑

m=−∞

( ∞∑
k=−∞

x1(k)x2((n−m)− k)

)
x3(m)

=
∞∑

m=−∞
(x1 ∗ x2(n−m))x3(m)

= (x1 ∗ x2) ∗ x3(n) .

The equalities hold for every n ∈ Z, so

x1 ∗ (x2 ∗ x3) = (x1 ∗ x2) ∗ x3 .

(Note: to get the third equality in the chain above, I used the “commutativity”
of convolution that I alluded to earlier, which allowed me to switch the roles of
(n− k)−m and m.)

Convolution is also bilinear in the sense that

x1 ∗ (c2x2 + c3x3) = c2x1 ∗ x2 + c3x1 ∗ x3

and
(c1x1 + c2x2) ∗ x3 = c1x1 ∗ x3 + c2x2 ∗ x3

for every c1, c2, and c3 in F. I’m assuming here that all the indicated convolutions
exist, and existence is our next order of business.

Criteria for existence of convolutions

Given x1 and x2 in FZ, how can we tell whether x1 ∗ x2 exists? Note that equation
(4) is really shorthand for an infinite list of equations — one for each n ∈ Z — and
each of those equations involves an infinite sum whose existence is an issue. Aside
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from checking for convergence of each of these infinitely many infinite sums, how
might we proceed? In what follows, I’ll state and prove several useful criteria for
the existence of x1 ∗ x2.

Here’s an example of signals x1 and x2 whose convolution fails to exist. Let x1

be the constant signal whose value is 13 for every n ∈ Z, i.e.

x1(n) = 13 for all n ∈ Z .

Let x2 = u, the discrete-time unit step, which has specification

u(n) =
{

1 if n ≥ 0
0 if n < 0 .

Attempting to compute x1 ∗ x2(n) using (4) leads to

x1 ∗ x2(n) =
∞∑

k=−∞

x1(k)x2(n− k) =
∞∑

k=−∞

13u(n− k) =
n∑

k=−∞

13 =∞ .

The third equality holds because u(n− k) = 0 when k > n and u(n− k) = 1 when
k ≤ n. The last equality holds because the sum of an infinite number of 13’s does
not converge.

Now for something more positive. Certain restrictions on x1 and x2 guarantee
that x1 ∗ x2 exists. Below I demonstrate the validity of four useful criteria each of
which provides a sufficient condition for x1 ∗ x2 to exist.

5.1 Criterion: If either x1 or x2 has finite duration, then x1 ∗ x2 exists. If
both x1 and x2 have finite duration, then x1 ∗ x2 also has finite duration.

Proof: In this case, the sum in (4) has finitely many nonzero terms for every
n ∈ Z, which means convergence is not an issue. To see this, suppose that x1 has
finite duration and that x1(n) = 0 when n < N1 and when n > N2. Then

∞∑
k=−∞

x1(k)x2(n− k) =
N2∑

k=N1

x1(k)x2(n− k)

for every n ∈ Z. A similar argument applies when x2 has finite duration. The
bottom line is that the sums in (4) converge for every n ∈ Z, so x1 ∗ x2 exists.

Suppose that both x1 and x2 have finite duration; specifically, assume x1(n) = 0
when n < N1 and when n > N2 and that x2(n) = 0 when n < M1 and when
n > M2. We still have

x1 ∗ x2(n) =
∞∑

k=−∞

x1(k)x2(n− k) =
N2∑

k=N1

x1(k)x2(n− k) .

If n < N1 + M1, then n − k < M1 for every k in the range of summation, which
means that x2(n − k) = 0 for all such k and the sum is therefore zero. In other
words, x1∗x2(n) = 0 when n < N1+M1. Similarly, if n > N2+M2, then n−k > M2

for all k in the range of summation, meaning that x2(n− k) = 0 for all such k and
the sum is zero once again, implying that x1 ∗ x2(n) = 0 when n > N2 +M2. We
conclude that x1 ∗ x2 has finite duration. �
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It follows from Criterion 5.1 that for any x ∈ FZ, the convolution δ ∗ x exists.
Indeed, as I noted earlier, δ is arguably the archetypal finite-duration signal. Of
great importance is the fact that δ ∗ x = x for every x ∈ FZ, so that δ serves as an
identity element for the operation of convolution. To see this, note that for every
n ∈ Z

δ ∗ x(n) =
∞∑

k=−∞

δ(k)x(n− k) = x(n− 0) = x(n)

since δ(k) = 0 when k 6= 0 and δ(0) = 1.

5.2 Criterion: If x1 and x2 are both right-sided or both left-sided, then x1∗x2

exists. Furthermore, in this case x1 ∗ x2 has the same “sidedness” as x1 and x2.

Proof: I’ll present the argument only in the case when both signals are right-
sided; the left-sided version is similar. Suppose, then, that x1(n) = 0 when n < N1

and x2(n) = 0 when n < M1. Then
∞∑

k=−∞

x1(k)x2(n− k) =
∞∑

k=N1

x1(k)x2(n− k)

=
{ ∑n−M1

k=N1
x1(k)x2(n− k) if n ≥ N1 +M1

0 if n < N1 +M1 .

The first equality holds because x1(n) = 0 when n < N1. The second is a bit
more involved. First, note that if n < N1 + M1, then n − k < M1 for every k in
the range of summation, so x2(n− k) = 0 for all such k, and every term in the sum
is zero. If n ≥ N1 + M1, then the sum features x2(n − N1), x2(n − N1 − 1), etc.
Some of these might be nonzero, but x2(n − k) = 0 for all the k-values satisfying
n−k < M1, which is the same as k > n−M1. So the terms in the sum correspond-
ing with k-values in the range n−M1 < k <∞ are all zero. This argument proves
that x1 ∗ x2 exists (since all the sums in (4) have finitely many nonzero terms) and
that x1 ∗ x2 is right-sided (since x1 ∗ x2(n) = 0 when n < N1 +M1). �

5.3 Criterion: Given two signals x1 and x2, if one signal is bounded and
the other is absolutely summable, then x1 ∗ x2 exists and is a bounded signal.
Furthermore, the infinity norm of x1 ∗ x2 satisfies

‖x1 ∗ x2‖∞ ≤ ‖the l1 signal‖1 ‖the l∞ signal‖∞ .

Proof: I’ll prove this in the case that x1 is an l1 signal and x2 is an l∞ signal.
Given n ∈ Z, we can conclude from Fact 3.3 and Fact 3.7 that the sum in (4)
converges if we can find R > 0 such that

K∑
k=−K

|x1(k)| |x2(n− k)| ≤ R

for every K ∈ Z. Since |x2(n− k)| ≤ ‖x2‖∞ for every n and k,
K∑

k=−K

|x1(k)| |x2(n− k)| ≤

(
K∑

n=−K

|x1(k)|

)
‖x2‖∞ .
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The sum in parentheses is, in turn, bounded from above by ‖x1‖1, from which it
follows that

K∑
k=−K

|x1(k)| |x2(n− k)| ≤ ‖x1‖1 ‖x2‖∞ ,

implying not only that the sum in (4) converges for every n ∈ Z (so x1 ∗ x2 exists),
but also that

|x1 ∗ x2(n)| ≤ ‖x1‖1 ‖x2‖∞
for every n ∈ Z. It follows that x1 ∗ x2 is a bounded signal (i.e. an l∞-signal), and
that ‖x1 ∗ x2‖∞ ≤ ‖x1‖1 ‖x2‖∞. �

5.4 Criterion: If x1 and x2 are both square-summable signals, then x1 ∗ x2

exists and is a bounded signal. Furthermore, the infinity norm of x1 ∗ x2 satisfies

‖x1 ∗ x2‖∞ ≤
‖x1‖22 + ‖x2‖22

2
.

Proof: I’ll proceed as in the proof of Criterion 5.3. Again, given n ∈ Z, we
can conclude from Fact 3.3 and Fact 3.7 that the sum in (4) converges if we can
find R > 0 such that

K∑
k=−K

|x1(k)| |x2(n− k)| ≤ R

for every K ∈ Z. From (|x1(k)| − |x2(n− k)|)2 ≥ 0 it follows directly that

|x1(k)||x2(n− k)| ≤
|x1(k)|2 + |x2(n− k)2|

2
for all k ∈ Z .

Thus
K∑

k=−K

|x1(k)| |x2(n− k)| ≤
1
2

K∑
k=−K

|x1(k)|2 +
1
2

K∑
k=−K

|x2(n− k)|2

≤ ‖x1‖22 + ‖x2‖22
2

for all K ∈ Z .

It follows that the sum in (4) converges for every n ∈ Z, so x1 ∗ x2 exists, and also
that for every n ∈ Z

|x1 ∗ x2(n)| = lim
K→∞

∣∣∣∣∣
K∑

k=−K

x1(k)x2(n− k)

∣∣∣∣∣
≤ lim

K→∞

K∑
k=−K

|x1(k)||x2(n− k)|

≤ ‖x1‖22 + ‖x2‖22
2

,

whereby ‖x1 ∗ x2‖∞ ≤
(
‖x1‖22 + ‖x2‖22

)
/2. �

In Chapter 9 we’ll see how the Schwarz Inequality enables us to tighten the upper
bound on ‖x1 ∗ x2‖∞ in Criterion 5.4.



5. DISCRETE-TIME SIGNALS AND CONVOLUTION 77

5.5 Criterion: If x1 and x2 are both absolutely summable signals, then x1 ∗x2

exists and is an absolutely summable signal. Furthermore, the 1-norm of x1 ∗ x2

satisfies

‖x1 ∗ x2‖1 ≤ ‖x1‖1 ‖x2‖1 .

Proof: The existence of x1 ∗ x2 in this case follows directly from Criterion
5.3 because every absolutely summable signal, as we have noted, is also bounded.
Proving that x1 ∗ x2 is an l1-signal takes a little more work.

Given N ∈ Z,

N∑
n=−N

|x1 ∗ x2(n)| =
N∑

n=−N

∣∣∣∣∣
∞∑

k=−∞

x1(k)x2(n− k)

∣∣∣∣∣
≤

N∑
n=−N

∞∑
k=−∞

|x1(k)| |x2(n− k)|

=
∞∑

k=−∞

(
|x1(k)|

N∑
n=−N

|x2(n− k)|

)
.

Interchanging the order of summation is legal because the sum over n is finite and
the sum over k converges for every n. The inner sum on the last line is bounded
from above by ‖x2‖1, which implies that

N∑
n=−N

|x1 ∗ x2(n)| ≤

( ∞∑
k=−∞

|x1(k)|

)
‖x2‖1 = ‖x1‖1 ‖x2‖1 .

This inequality holds for everyN ∈ Z, and Fact 3.7 implies not only that
∑∞

n=−∞ |x1∗
x2(n)| converges (meaning that x1 ∗ x2 is an absolutely summable signal) but also
that

‖x1 ∗ x2‖1 ≤ ‖x1‖1 ‖x2‖1 ,

which completes the proof. �

Criterion 5.5 demonstrates that l1 is closed under the taking of convolutions.
Accordingly, l1 is a vector space equipped with a commutative and associative
“multiplication” operation (namely convolution) that behaves appropriately with
respect the vector-space operations on l1. Such a vector space is called a commu-
tative algebra, and people often characterize l1 as a “convolution algebra.”

Examples

It’s worth computing a few example convolutions by hand. All the calculations
proceed similarly, as you’ll see.
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5.6 Example: x1 = x2 = u. Since x1 and x2 are both right-sided, Criterion
5.2 applies, so x1 ∗ x2 exists. For any n ∈ Z,

x1 ∗ x2(n) =
∞∑

k=−∞

u(k)u(n− k) =
∞∑

k=0

u(n− k) ;

the last equality holds because u(k) = 1 for k ≥ 0 and u(k) = 0 for k < 0. If n < 0,
u(n− k) = 0 for every k in the range of summation 0 ≤ k ≤ ∞, so the whole sum
is zero when n < 0. When n ≥ 0, u(n− k) = 1 when 0 ≤ k ≤ n and u(n− k) = 0
when n < k <∞. It follows that

x1 ∗ x2(n) =
{

0 if n < 0∑n
k=0 1 = n+ 1 if n ≥ 0 .

Another way of writing this last equation is

x1 ∗ x2(n) = (n+ 1)u(n)

for every n ∈ Z. If you think about what x1 ∗x2 looks like in this case, you can see
why people say that “the convolution of two unit steps is a ramp.”

5.7 Example: x1 = u and x2 is the signal with specification

x2(n) =
{

3−n n ≥ 0
0 n < 0 .

Note that x2(n) = 3−nu(n) for every n ∈ Z. Again, Criterion 5.2 applies since both
x1 and x2 are right-sided. In fact, Criterion 5.3 also applies since x1 is bounded
and x2 is absolutely summable, which is easy to check (hint: geometric series). To
compute x1 ∗ x2, follow a procedure similar to the one we followed in the previous
example. For any n ∈ Z,

x1 ∗ x2(n) =
∞∑

k=−∞

u(k)3−(n−k)u(n− k) =
∞∑

k=0

3−(n−k)u(n− k) ,

where the last equality holds because u(k) = 1 for k ≥ 0 and u(k) = 0 for k < 0.
If n < 0, u(n − k) = 0 for every k in the range of summation 0 ≤ k ≤ ∞, so the
whole sum is zero when n < 0. When n ≥ 0, u(n − k) = 1 when 0 ≤ k ≤ n and
u(n− k) = 0 when n < k <∞. It follows that

x1 ∗ x2(n) =
{

0 if n < 0∑n
k=0 3−(n−k) if n ≥ 0 .

Using simple geometric-series reasoning, it follows that

x1 ∗ x2(n) =
{

0 if n < 0
3
2 −

1
23−n if n ≥ 0 .

Another way of writing this last equation is

x1 ∗ x2(n) =
(

3
2
− 1

2
3−n

)
u(n)

for every n ∈ Z.
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5.8 Example: x1 = u and x2 is the signal with specification

x2(n) = 3−|n| =
{

3−n if n ≥ 0
3n if n < 0 .

Note that we can also specify x2 for every n ∈ Z via

x2(n) = 3−nu(n) + 3nu(−n− 1) .

Note also that x1 is an l∞ signal and x2 is an l1-signal, so Criterion 5.3 guarantees
that x1 ∗ x2 exists. It helps to set x3(n) = 3−nu(n) and x4(n) = 3nu(−n − 1)
because we computed x1 ∗ x3 in the previous example. Now let’s find x1 ∗ x4.

By definition, for any n ∈ Z,

x1 ∗ x4(n) =
∞∑

k=−∞

u(k)3n−ku(−(n− k)− 1) =
∞∑

k=0

3n−ku(−n+ k − 1)

where the last equality holds because u(k) = 1 for k ≥ 0 and u(k) = 0 for k < 0. If
n < 0, then u(−n+ k − 1) = 1 for all k in the range of summation 0 ≤ k < ∞. If
n ≥ 0, then u(−n + k − 1) = 0 for 0 ≤ k < n + 1 and u(−n + k − 1) = 1 for all k
in the range n+ 1 ≤ k <∞. Accordingly,

x1 ∗ x4(n) =
{ ∑∞

k=0 3n−k if n < 0∑∞
k=n+1 3n−k if n ≥ 0 .

Geometric-series manipulation reveals that

x1 ∗ x4(n) =
{

3
23n if n < 0
1
2 if n ≥ 0 .

Plugging the result of the previous example into the equation x1∗x2 = x1∗x3+x1∗x4

yields the following specification for x1 ∗ x2:

x1 ∗ x2(n) =
{

3
23n if n < 0

2− 1
23−n if n ≥ 0 .

Alternatively, for every n ∈ Z,

x1 ∗ x2(n) =
(

2− 1
2
3−n

)
u(n) +

3
2
3nu(−n− 1) .

Just for completeness, I’d like to show you another way to do this example.
Interchanging k and n− k in equation (4) yields

x1 ∗ x2(n) =
∞∑

k=−∞

u(n− k)3−|k| =
n∑

k=−∞

3−|k|

for every n ∈ Z. The last equality holds because the u(n− k) merely chops of the
top of the sum at k = n. As a result,

x1 ∗ x2(n) =
{ ∑n

k=−∞ 3k if n < 0∑−1
k=−∞ 3k +

∑n
k=0 3−k if n ≥ 0 .

Fortunately, as you can check, this turns out to be the same answer in a slightly
different form.

5.9 Example: x1 = u and x2 is the signal with specification x2(n) = 3n for
all n ∈ Z. I’m including this example partly because it satisfies none of the criteria
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we’ve discussed for convolution existence. Those criteria, in other words, aren’t
exhaustive. Here, x1 is bounded and right-sided, but x2 is neither right-sided nor
absolutely summable. Nonetheless, x1 ∗ x2 exists. For every n ∈ Z,

x1 ∗ x2(n) =
∞∑

k=−∞

u(k)3n−k = 3n
∞∑

k=0

3−k =
3
2
3n .

It’s of interest to note that x2(n) and x1 ∗x2(n) both take the form (constant)×3n.



CHAPTER 6

Discrete-time LTI Systems

Linear time-invariant systems serve as effective models for a variety of real-
world processes that arise in applications. The models are useful not only in elec-
trical and computer engineering — particularly in the areas of signal processing,
communication, and control — but in other fields of science and engineering includ-
ing mechanical engineering, operations research, economics, and even biology. The
ideas are more transparent in the context of discrete-time models, which is why we
start there.

Definition and examples

As in Chapter 5, the integers Z model discrete time. A discrete-time signal over F
is a function x with domain Z that takes values in F. As usual, F is either R or C.
Alternatively and equivalently, a discrete-time signal is a doubly infinite sequence
{x(n)} where x(n) ∈ F for all n ∈ Z. Think of x(n) as the value of the signal x at
time n. As in Chapter 5, I denote the set of all discrete-time signals by FZ.

The real-world processes we’re interested in modeling take discrete-time input
signals and generate discrete-time output signals. An appealing way to represent
such a process is as a mapping

S : X −→ FZ

where X is a subset of FZ that represents the set of possible input signals for the
system. The idea of the mapping S is that when x ∈ X is the input signal to the
system, S(x) ∈ FZ is the output signal that arises. One usually assumes that the
input space X is “rich enough” to include a lot of signals of interest. We’ll always
require that X contain at least all the finite-duration signals and also that X be
closed under shifting in the sense that when x ∈ X and ko ∈ Z, the signal Shiftko

(x)
is also in X.

As we saw in Chapters 4 and 5, FZ has a natural vector-space structure with
componentwise addition and scalar multiplication. If a system’s input set X is
closed under the taking of linear combinations — i.e. is a subspace of the vector
space FZ — and S : X → FZ is a linear mapping, we call the system linear. Fur-
thermore, if the system has the property that shifting its input signal by time-shift
ko always gives rise to the same time-shift ko in the system’s output, we call the
system time-invariant. Here is the formal definitions.

6.1 Definition: A discrete-time input-output linear time-invariant system over
F consists of the following:

81
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• A subset X of FZ representing the system’s set of possible input signals.
X is a subspace of FZ that contains all the finite-duration signals and
is shift-invariant in the sense that if x ∈ X then Shiftko

(x) ∈ X for all
ko ∈ Z.
• A mapping S : X → FZ that is linear, i.e.

S(c1x1 + c2x2) = c1S(x1) + c2S(x2) for all x1, x2 ∈ X and c1, c2 ∈ F

and shift-invariant, i.e.

S(Shiftko
(x)) = Shiftko

(S(x)) for all x ∈ X and ko ∈ Z .

“LTI” always means “linear time-invariant.” I’ll always use “LTI system” to
mean “input-output LTI system.” Now for some examples of discrete-time LTI
systems. The zero system has input space X = FZ and system mapping S : X → FZ

defined by S(x) = 0 for all x ∈ X, where 0 here denotes the zero signal. The identity
system also has input space X = FZ, but its system mapping S has specification
S(x) = x for all x ∈ X. For any k1 ∈ Z, the pure k1-shift system has input space
X = FZ and system mapping S defined by S(x) = Shiftk1(x) for every x ∈ X. I’ll
leave it to you to show that all three of these systems are LTI.

A slightly more interesting example is a system I call the causal sliding-window
M -fold averager. For this system, the input space X is again FZ. The mapping
S : X → FZ takes each input signal x ∈ X to the output signal S(x) ∈ FZ whose
value at time n is the average of the previous M values of x including x(n). In
equation form,

S(x)(n) =
1
M

M−1∑
k=0

x(n− k)

for every x ∈ X and n ∈ Z. The sliding-window averager is ubiquitous in signal-
processing applications. It has a way of smoothing out local rapid variations in
inputs. You can show fairly easily that the system is LTI. Observe that we could
also describe the sliding-window averager’s system mapping S via

S(x) =
1
M

M−1∑
k=0

Shiftk(x) for all x ∈ X .

This “whole-signal” description of S, at least for me, makes it slightly less obvious
exactly what the system does to an input signal x.

Another LTI system one encounters frequently in applications is the discrete-
time integrator. This system takes an input signal x and outputs the signal S(x)
with specification

S(x)(n) =
n∑

m=−∞
x(m) =

∞∑
k=0

x(n− k) for every n ∈ Z .

The input space X contains precisely all those signals x for which the sums in the
last equation converge for every n ∈ Z. The sum defining S(x)(n) is a bit like a
discrete-time version of the “integral of x from time −∞ up to time n,” which helps
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explain the name of the system. Like the sliding-window averager, the discrete-time
integrator’s system mapping S admits a “whole-signal” description, namely

S(x) =
∞∑

k=0

Shiftk(x) for all x ∈ X ,

which in my view obscures the system’s function.
Removing from Definition 6.1 the linearity and shift-invariance conditions on

the mapping S leaves us with the definition of an input-output system that’s not
necessarily linear or time-invariant. What do such systems look like? Sometimes
the lack of linearity and/or time-invariance is obvious. For example, if the system
takes any input x ∈ FZ to output S(x) with specification

S(x)(n) =
1
M

M−1∑
k=0

x3(n− k) for all n ∈ Z ,

then linearity clearly fails to hold. On the other hand, if S(x) has specification

S(x)(n) = 3 +
1
M

M−1∑
k=0

x(n− k) for all n ∈ Z ,

you might not recognize S as nonlinear right away. But keep in mind that S(x) = 0
must hold when S is linear, and S(0) for this example is the constant signal with
value 3 for every n ∈ Z. Both of these systems are time-invariant in the sense that

S (Shiftko(x)) = Shiftko(S(x))

for all ko and x, as is the system that takes any input signal x and puts out the
signal S(x) with specification

S(x) =
max ({x(n− k) : 0 ≤ k < 5}) + min ({x(n− k) : 0 ≤ k < 5})

2
for all n ∈ Z. This system, another kind of sliding-window averager, takes the
average of the maximum and minimum input values in a window of length 5 instead
of the average of all input values lying in the window. You can see it’s not linear
by setting x1 = δ + Shift1(δ) and x2 = Shift3(δ) + Shift4(δ) and noting that

S(x1 + x2)(5) = S(x1)(5) = S(x2)(5) = 1/2 .

What about linear systems for which time-invariance fails? Consider the fol-
lowing modification of the sliding-window 2-fold averager: for every x ∈ FZ, S(x)
has specification

S(x)(n) =
n

2
(x(n) + x(n− 1)) for all n ∈ Z .

You can check that S(δ)(1) = 1/2 and S(δ)(n) = 0 for all other n ∈ Z. Meanwhile,
S(Shift1)(δ) has specification

S(Shift1(δ))(n) =

 1/2 when n = 1
1 when n = 2
0 otherwise,

so S(Shift1(δ)) 6= Shift1(S(δ)) and the system isn’t time-invariant, although it’s
linear. Another linear but not time-invariant system, known as a decimator, comes
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up frequently in digital signal processing. It takes an input signal x ∈ FZ and
generates output signal S(x) with specification

S(x)(n) = x(7n) for all n ∈ Z ,

where I’ve chosen 7 just for definiteness — any positive integer would do. The
system takes all the input values at times that are multiples of 7 and “compresses”
them into the signal S(x). Meanwhile, the system ignores all the other input values.
Note that S(δ) = δ but S(Shift1(δ)) = 0, so time-invariance fails. An easy way to
see that the system annihilates Shift1(δ) is to note that Shift1(δ)(n) = 0 when n is
any multiple of 7. Observe also that

S(Shift7(x)) = Shift1(S(x)) for all x ∈ FZ ,

so the system maps a shift by 7 in the input to a shift by 1 in the output.

Impulse response and FIR systems

By virtue of Definition 6.1, the input space X of any LTI system contains every
finite-duration signal and therefore contains the impulse δ. Thus it makes sense to
talk about h = S(δ), the output that arises when δ is the input. We call h the
system’s impulse response for obvious reasons.

To appreciate the critical importance of a system’s impulse response, observe
first that you can write any finite-duration signal x ∈ FZ as a finite linear combi-
nation of shifted impulses, namely

x =
∞∑

k=−∞

x(k)Shiftk(δ) ,

where the sum has finitely many nonzero terms because x has finite duration.
Suppose we use x as input signal for some LTI system with input space X and
system mapping S : X → FZ. Then

S(x) = S

( ∞∑
k=−∞

x(k)Shiftk(δ)

)

=
∞∑

k=−∞

x(k)S(Shiftk(δ))

=
∞∑

k=−∞

x(k)Shiftk(S(δ))

=
∞∑

k=−∞

x(k)Shiftk(h) ,

where h = S(δ) is the impulse response of the system. The equality on the second
line holds because the sum inside the parentheses on the first line has finitely
many terms, so we can, by linearity of the system, interchange S and the linear
combination with impunity. Note that the x(k)-terms play the role of coefficients
in a linear combination of shifted impulse signals — i.e. the shifted impulses are
whole signals and the x(k)-terms are just numbers. The equality on the third line
follows from time-invariance of the system.
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Evaluating at time n ∈ Z the terms at the beginning and end of the previous
equation yields

S(x)(n) =
∞∑

k=−∞

x(k)Shiftk(h)(n)

=
∞∑

k=−∞

x(k)h(n− k)

for every n ∈ Z. But this is the same as

S(x) = h ∗ x .
In other words, the response of the system to any finite-duration input signal x is
the convolution of the system’s impulse response h with x. This fact is sufficiently
important to dignify as a theorem.

6.2 Theorem: Given a LTI system with input space X and system mapping
S : X → FZ, let h = S(δ) be the system’s impulse response. Then S(x) = h ∗ x for
every finite-duration signal x ∈ X. �

Theorem 6.2 comes close to asserting that every LTI system is “convolutional”
in the sense that S(x) = h ∗ x for every input signal x ∈ X. Strictly speaking,
however, Theorem 6.2 applies only to finite-duration input signals. As it happens,
all the LTI systems we’ll encounter in applications will satisfy a stronger “for all
x ∈ X (finite-duration or not)” version of Theorem 6.2. What does it take for a
system to be sufficiently well behaved for the stronger result to apply? To get some
insight, it’s helpful to examine an example system that’s not well behaved in this
sense.

Let X ⊂ FZ be the set of all signals x for which limm→∞ x(m) exists. X is
closed under linear combinations and is therefore a subspace of FZ. X is also closed
under time-shifting, and X contains all the finite-duration signals since each such
signal x satisfies limm→∞ x(m) = 0. For every x ∈ X, define S : X → FZ to be the
constant signal whose value at every n ∈ Z is given by

S(x)(n) = lim
m→∞

x(m) .

S is clearly a linear mapping, and S(Shiftko(x)) = S(x) = Shiftko(S(x)) for every
x ∈ X, so we have a LTI system here. Its impulse response h is the constant signal
whose value at every time n ∈ Z is

h(n) = S(δ)(n) = lim
m→∞

δ(m) = 0 .

In other words, h is the zero signal. Certainly, S(x) = h ∗ x = 0 for every finite-
duration signal x, but S(x) 6= h ∗ x for any x ∈ X satisfying limm→∞ x(m) 6= 0.

Roughly speaking, what we need to assume about a LTI system for the stronger
version of Theorem 6.2 to hold is that the response of the system to an infinite-
duration input signal x is, in some sense, the “limit” of the system’s response to
finite-duration “approximations” of x. I don’t want to sweat about the meanings
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of “approximation” and “limit,” but the sort of condition I’m thinking of is along
the following lines. For x ∈ X and positive integers M and N , let TruncM,N (x) be
the finite-duration signal with specification

TruncM,N (x)(n) =
{
x(n) if −M ≤ n ≤ N

0 otherwise.

TruncM,N (x) is a finite-duration truncation of the signal x. If it is true for every
x ∈ X that

lim
M,N→∞

S (TruncM,N (x)) = S(x) ,

with an appropriate definition of “limit,” then the system will be such that S(x) =
h ∗ x for every x ∈ X. Observe that the system in the example above does not
satisfy this limiting condition.

Henceforth, we’ll assume that all the LTI systems we deal with satisfy the
stronger version of Theorem 6.2. In other words, we’ll assume always that any
system under consideration is such that S(x) = h ∗ x for every input signal x ∈ X,
where h is the system’s impulse response. We’ll assume in addition that the input
space X is “as large as possible” in the sense that it contains every signal whose
convolution with h exists. Let’s denote by Dh the set of all x ∈ FZ for which
the convolution h ∗ x exists. Since we’ll stipulate that a LTI system with impulse
response h has input space X = Dh, we’d better check to make sure Dh has the
constraints that Definition 6.1 imposes on input spaces.

It’s easy to show that Dh is closed under linear combinations (i.e. is a sub-
space of FZ). Furthermore, Dh contains all the finite-duration signals since by
convolution-existence Criterion 5.1 h ∗ x exists for every finite-duration signal x.
Dh is also closed under time shifting. To see this, note that for any ko ∈ Z we have,
for every n ∈ Z,

h ∗ (Shiftko(x))(n) =
∞∑

k=−∞

h(k)Shiftko(x)(n− k)

=
∞∑

k=−∞

h(k)x(n− k − ko)

=
∞∑

k=−∞

h(k)x((n− ko)− k)

= h ∗ x(n− ko)
= Shiftko

(h ∗ x)(n) .

Since x ∈ Dh, h ∗ x exists, so Shiftko
(h ∗ x)(n) is well defined for every n ∈ Z. The

chain of equalities above demonstrates that h ∗ (Shiftko(x))(n) is also well defined
for every n ∈ Z. We conclude that Shiftko(x) ∈ Dh if x ∈ Dh. Since Dh is closed
under linear combination and time-shifting and includes all the finite-duration sig-
nals, it is a suitable input space for a LTI system. Let’s formalize the foregoing
discussion as follows.

6.3 Standing Assumption: Every LTI system we deal with has system map-
ping S specified by S(x) = h ∗ x for every input signal x, where h = S(δ) is the
system’s impulse response. Furthermore, the system’s input space X is Dh, the set
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of all x ∈ FZ for which h ∗ x exists.

The impulse response h, as a consequence, tells the entire story about any
system we care to study. The system’s input space is X = Dh, and finding S(x)
for any input x simply requires convolving h with x. Not only is h the “response
of the system to an impulse,” it’s “what you convolve with inputs to get outputs.”
Observe that Standing Assumption 6.3 has a flip side of sorts. If h ∈ FZ is any
signal, you can define a LTI system satisfying Standing Assumption 6.3 as follows:
let the system’s input space X be Dh and define the system mapping S : Dh → FZ

via S(x) = h ∗ x for every x ∈ X. The system so constructed has impulse response
h since S(δ) = h ∗ δ = h, the last equality holding because δ serves as an identity
element for convolution.

Let’s figure out the impulse responses of our example systems. In each case,
we use the definition of the system mapping S to compute h = S(δ). The zero
system’s impulse response is clearly h = 0, the zero signal. For the identity system,
since S(x) = x for every input signal x, it follows that S(δ) = δ. Thus the impulse
response of the identity system is h = δ. Since for the pure k1-shift system we have
S(x) = Shiftk1(x) for every x, h = S(δ) = Shiftk1(δ). In other words, h is the signal
with specification

h(n) =
{

1 if n = k1

0 otherwise.
The causal sliding-window M -fold averager is a little more interesting. Its

impulse response h = S(δ) is the signal whose value at time n is

h(n) =
1
M

M−1∑
k=0

δ(n− k)

for every n ∈ Z. Thinking about δ, you see that h(n) is equal to 1/M precisely
when the value of n is such that k = n lies in the range of the sum on the right-hand
side; otherwise, h(n) = 0. Accordingly,

h(n) =
{

1
M when 0 ≤ n ≤M − 1
0 otherwise.

For the discrete-time integrator, h = S(δ) is the signal whose value at time n is

h(n) =
n∑

k=−∞

δ(k)

for every n ∈ Z. Because δ(k) = 0 for every k < 0, h(n) = 0 for every n < 0.
Because δ(0) = 1 and δ(k) = 0 for k > 0, h(n) = 1 for every n ≥ 0, since for
each such n the sum defining h(n) contains exactly one 1 and all the rest zeroes.
Accordingly,

h(n) =
{

1 for n ≥ 0
0 for n < 0 .

Alternatively, h is the discrete-time unit step u.
Note that the impulse response of each of the first four example systems is

actually a finite-duration signal. A discrete-time I/O system with a finite-duration
impulse response is an FIR system. The abbreviation stands for “finite impulse
response” and the terminology is standard, although I’m not fond of it. I’d prefer
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“FDIR” (for finite-duration impulse response), but whatever. Now for a simple
observation: if h has finite duration, then h ∗x exists for every x ∈ FZ by Criterion
5.1. Accordingly, Dh = FZ, so any FIR system admits any signal x ∈ FZ as an
input. For FIR systems, then, the set X of all admissible inputs is FZ itself.

Causality and BIBO stability

Since the impulse response h determines the entire input-output behavior of a
LTI system satisfying Standing Assumption 6.3, one might expect that important
“system properties” have embodiments as “properties of the signal h,” and that
is indeed the case. Two instances of this correspondence arise in relation to the
system properties of causality and bounded-input bounded-output stability.

A discrete-time LTI system is causal if, roughly speaking, the current value of
the output signal depends only on the current and past values of the input signal
and not on future values of the input signal. Technically, we need to do a little
better than that.

6.4 Definition: A LTI system S : X → FZ is causal when for every n ∈ Z the
following holds: if x1 and x2 are two input signals in X such that x1(k) = x2(k)
for every k ≤ n, then S(x1)(k) = S(x2)(k) for every k ≤ n.

In other words, when a system is causal and two input signals “agree” up to
and including time n, the outputs to which they give rise will also “agree” up to
and including time n — and that assertion holds for every n ∈ Z. It’s easy to prove
a condition on a system’s impulse response h that holds if and only if the system
is causal.

6.5 Theorem: A LTI system is causal if and only if its impulse response h
satisfies h(n) = 0 for n < 0.

Proof: First, suppose a given system is causal. Since the system is linear,
S(0) = 0, where 0 stands for the zero signal. Now, δ(m) = 0 for every m < 0, so δ
agrees with the all-zero signal up to and including time n = −1. Since the system
is causal, its impulse response h = S(δ) must agree with S(0) up to and including
time n = −1, so

h(n) = 0 for n < 0 .

Conversely, suppose h(m) = 0 for every m < 0. Given any n ∈ Z and any
x ∈ X,

S(x)(n) = h ∗ x(n) =
∞∑

k=−∞

h(n− k)x(k) =
n∑

k=−∞

h(n− k)x(k) ,

where the last equality holds because h(n − k) = 0 when k > n. Consequently,
the output at time n in response to input x depends only on the values of x(k)
for k ≤ n and not on the values of x(k) for k > n. This condition holds for every
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x ∈ X and every n ∈ Z, so if x1 and x2 are two input signals that agree up to and
including time n, then S(x1) and S(x2) must also agree up to and including time
n. It follows that the system is causal. �

Theorem 6.5 makes total sense when you think about it. Forcing a system
with an impulse δ amounts to giving the system a little “kick” at time n = 0
and doing nothing to the system before or after that time. If the system’s impulse
response h has a nonzero value for some negative time — e.g., if h(−17) = 3 — then
somehow the system must anticipate the upcoming kick. A system that responds
in anticipation of future inputs is not causal.

The zero system, the identity system, and the causal sliding-window M -fold
averager are all causal LTI systems. It’s intuitively clear that all those systems
satisfy the informal definition of causality. Each system’s “current output value”
depends explicitly on “current and/or past input values” and not on “future input
values.” (That dependence is trivial in the case of the zero system.)

Is the k1-shift system causal? Well, it depends. If k1 ≥ 0, then for every n ∈ Z

S(x)(n) = Shiftk1(x)(n) = x(n− k1)

depends only on values of x(k) for k ≤ n, so the system is causal. The shift system
acts as a pure delay in this case. If k1 < 0, then x(n − k1) depends on x(m) for
m > n, so the system is not causal. In this case the system acts as a pure predictor.
Note also that since the impulse response of the shift system is Shiftk1(δ), Theorem
6.5 tells us immediately that the shift system is causal if and only if k1 ≥ 0. I’ll
add that the badly behaved LTI system I introduced in the run-up to Standing
Assumption 6.3 is not causal. It would have been causal had it used limn→−∞
instead of limn→∞.

How might non-causal systems be relevant to applications? Suffice it to say
that if the index n on our discrete-time signals denotes some kind of truly temporal
variable, where x(n) actually “comes after” x(k) when n > k, then a non-causal
system is not physically realizable, at least given our present understanding of
how the universe operates. Nonetheless, many applications involve discrete-time
LTI system models wherein the ostensible “time index” n is not temporal at all.
Image processing and data post-processing give rise to such applications. In those
contexts, non-causal LTI systems play important roles.

What about stability? Roughly speaking, a system is stable if nothing crazy
happens when you drive the system with well behaved inputs. As a technical defi-
nition, of course, that won’t do. People have settled on a notion of stability that’s
appropriate to discrete-time LTI systems. It goes essentially like this: a system is
stable if every bounded signal x ∈ FZ is an admissible input for the system and if,
in addition, the output S(x) arising from such a bounded input signal x is also a
bounded signal.

6.6 Definition: A LTI system with input space X and system mapping
S : X → FZ is bounded-input bounded-output stable or BIBO stable when X con-
tains all the bounded signals in FZ (i.e. l∞ ⊂ X) and, for every bounded x ∈ X,
S(x) is also a bounded signal.
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Like causality, BIBO stability of a system has a neat characterization in terms
of the system’s impulse response. I’ll prove a weak version of this characterization
first, and then state a stronger version without proof.

6.7 Theorem: A LTI system with impulse response h is BIBO stable if and
only if h is absolutely summable — i.e., if and only if h ∈ l1.

Proof: Assume first that h is absolutely summable. By Criterion 5.3, h ∗ x
exists for every bounded signal x ∈ FZ and, furthermore, is a bounded signal
satisfying

‖h ∗ x‖∞ ≤ ‖h‖1 ‖x‖∞ .

In particular, every bounded x is in Dh and, since Dh = X by Standing Assumption
6.3, every bounded signal is an admissible input to the system. h ∗ x is just S(x),
so it follows that every bounded x leads to an output S(x) that is also bounded.
In fact,

‖S(x)‖∞ ≤ ‖h‖1 ‖x‖∞ .

Conversely, suppose h is not absolutely summable. I’ll construct a bounded
input signal x for which h ∗x fails to exist, which contradicts BIBO stability of the
system. Define

x(m) =
{
h(−m)/|h(−m)| when h(m) 6= 0

0 when h(m) = 0 ,

where the overbar denotes complex conjugate. Note that when h(−m) is real-
valued, h(−m)/|h(−m)| = sgn(h(−m)), where sgn means “sign”. The signal x is
bounded; in fact, ‖x‖∞ = 1 provided h 6= 0. I claim that x /∈ Dh, which means
that x is not admissible as an input to the system. To see why, attempt to compute
S(x)(0). You get

S(x)(0) = h ∗ x(0)

=
∞∑

k=−∞

h(k)x(0− k)

=
∑

{k:h(k) 6=0}

h(k)h(k)/|h(k)|

=
∞∑

k=−∞

|h(k)| ,

and the last series fails to converge because h isn’t absolutely summable. Since x
is a bounded input and is inadmissible as an input to the system, the system is not
BIBO stable. �

It turns out that the following significantly stronger version of Theorem 6.7
holds. I won’t prove it, but I’ll attempt to explain what makes it difficult to prove.
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6.8 Theorem: A LTI system with input space X and system mapping S is
BIBO stable if and only if every bounded right-sided signal is in X and S(x) is a
bounded signal for every bounded right-sided signal x. �

What makes Theorem 6.8 stronger than Theorem 6.7? It states that to check
for BIBO stability (or, equivalently, for absolute summability of h), we need only
make sure that h ∗ x is bounded for every bounded right-sided signal x. If so, we
can conclude that h ∗ x is bounded for all bounded signals x, right-sided or not.
This is an important gloss on the BIBO stability concept that plays a role in more
advanced applications.

The hard part of proving Theorem 6.8 is showing that if h ∗ x exists and is
bounded for every bounded right-sided signal x, then h ∈ l1. We can construct a
bounded right-sided signal resembling x in the proof of Theorem 6.7 that enables
us to conclude that

∑0
n=−∞ |h(n)| must converge for h ∗ x to exist. It’s trickier

to prove that
∑∞

k=0 |h(k)| converges when h ∗ x exists for all bounded right-sided
signals x. Suppose, for example, that the system under consideration is causal, in
which case h is right-sided by Theorem 6.5. Criterion 5.2 tells us that h ∗ x exists
for every right-sided signal x, so there’s no way to build a bounded right-sided
signal x for which h ∗ x fails to exist when

∑∞
k=0 |h(k)| diverges. Finishing the

proof requires a sophisticated result from functional analysis called the Uniform
Boundedness Theorem.

Let’s wrap things up by checking for BIBO stability of the various example
systems. The first three systems are easy for the following reason: from Theorem
6.7 it follows that every FIR system is BIBO stable, since every such system has a
trivially absolutely summable impulse response. Accordingly, the zero and identity
systems, the shift system(s), and the causal sliding-window M -fold averager are
all BIBO stable. You can understand this at a more elementary level just by
contemplating the definition of BIBO stability and asking whether a bounded input
signal leads to a bounded output signal for each of these systems. In each case, the
answer is fairly obviously Yes.

The discrete-time integrator, on the other hand, is not BIBO stable. Consider
driving the system with bounded input signal x = u. You discover that

S(u)(n) =
n∑

k=−∞

u(k) =
{
n+ 1 if n ≥ 0

0 if n < 0 .

Alternatively, S(u)(n) = (n+ 1)u(n) for every n ∈ Z, so S(u) is not bounded even
though u is.





CHAPTER 7

Continuous-time Signals and Convolution

Once upon a time, signals and systems classes dealt exclusively with continuous-
time signals. With the growing ascendancy of computers during the twentieth cen-
tury, discrete-time signals and relationships between discrete- and continuous-time
signals began achieving prominence. That development proved beneficial to peda-
gogy because the mathematically cleaner discrete-time arena provides a friendlier
setting in which to engage key concepts. I have tried with Chapters 5 and 6 to set
the stage for the material in this chapter and the next. All the central ideas from
the earlier chapters have continuous-time analogues, and the way the theory unfolds
might provoke a bit of déjà vu. Nonetheless, complications abound in continuous
time. Ironing out every wrinkle is impossible at this level, but we can come close.

Decent signals

We view the real numbers R as a mathematical model for “continuous time.” Real
number t corresponds to “time t.” Real number 0 corresponds to “time 0.” If s > t,
then “time s is later than time t.” Having used R to model continuous time, let’s
define an F-valued continuous-time signal as a function with domain R that takes
values in F — i.e., a continuous-time signal is a mapping x : R→ F. As usual, F is
either R or C. We denote the set of all continuous-time signals by FR.

Working with continuous-time signals is touchier than working with discrete-
time signals. All sorts of worrisome analytical issues arise involving, for example,
continuity and differentiability. Some continuous-time signals are quite nasty. For-
tunately, those signals play a limited role in applications, and we will end up essen-
tially wishing them out of the picture by restricting our attention largely to what
I’ll be calling decent signals.

7.1 Definition: A decent signal is a signal x ∈ FR that has the following
properties:

(1) x is continuous except possibly for jump discontinuities.
(2) x has at most finitely many jumps in any bounded interval [t1, t2] ⊂ R.
(3) x is bounded on any bounded interval [t1, t2] ⊂ R. I.e., for any such

interval, there exists R > 0 such that |x(t)| ≤ R for every t ∈ [t1, t2].

93
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Requirement 1 eliminates a number of signals we’d rather not deal with. Con-
sider, for example, the signal x1 ∈ RR with specification

x1(t) =
{

0 if t when rational
1 if t when irrational.

The signal x1 has no points of continuity. In any bounded interval, x1 has uncount-
ably many “jumps,” if you even want to call them jumps. Requirement 2 rules out
the slightly less pathological signal x2 with specification

x2(t) =


0 when t < 0
0 when 1/(n+ 1) < t ≤ 1/n and n is even
1 when 1/(n+ 1) < t ≤ 1/n and n is odd
1 when t ≥ 1 .

x2 has countably infinitely many jumps in the interval [0, 1], but is flat between
the jumps. Requirement 3 eliminates signals that blow up somewhere other than
as t→ ±∞. Consider, for example, the signal x3 with specification

x3(t) =
{

1
t when t 6= 0
0 when t = 0 .

|x3(t)| blows up as t → 0 from either side, so x is unbounded on any interval
containing time t = 0.

Every continuous signal is a decent signal. Many discontinuous signals are
decent as well, including some that we’ll encounter frequently. The continuous-
time unit step is the signal u that has specification

u(t) =
{

1 when t ≥ 0
0 when t < 0 .

I hope you don’t object to my using the same notation u for both the discrete- and
continuous-time unit steps. u is not continuous, but its only discontinuity is a jump
at t = 0. One comment on the unit step: I’ve defined it so u(0) = 1. As it happens,
in all the manipulations we do that involve decent signals, it will not matter at all
how we define the signals’ values at jump-discontinuity points. I could just as well
have set u(0) = 0 or even u(0) = 1/2. As you’ll see, it will always be safe to regard
two decent signals that agree everywhere except possibly at jumps as constituting,
in every practical sense, “the same signal.”

Another discontinuous decent signal that we’ll be using often enough so it
deserves a special name is the signal pa with specification

pa(t) =
{

1 when − a/2 ≤ t < a/2
0 otherwise .

If you graph pa(t) against t, you’ll see why we call pa a rectangular pulse with
height 1 and width a centered at t = 0. Once again, it doesn’t matter how we
define pa(t) at t = ±a/2. The way I’ve specified pa and u makes it true that

pa(t) = u(t+
a

2
)− u(t− a

2
) for all t ∈ R .

Like FZ, FR has a natural vector space structure. The zero vector in FR is
the zero signal, and for signals x1 and x2 and constants c1 and c2 in F, the linear
combination y = c1x1 + c2x2 is the signal with specification

y(t) = c1x1(t) + c2x2(t) for all t ∈ R .
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Fortunately, the set of decent signals is closed under taking such linear combina-
tions, and therefore forms a subspace of FR.

Associated with any to ∈ R is the time-shift mapping Shiftto
: FR → FR defined

by
Shiftto

(x)(t) = x(t− to)
for every signal x ∈ FR and every t ∈ R. Note that these shift mappings are
linear mappings on FR. Also, conveniently, the set of decent signals is closed under
shifting.

Now for the natural continuous-time versions of finite duration and right- and
left-sidedness. A signal x is right-sided when there exists T1 such that x(t) = 0 for
t < T1. A signal x is left-sided when there exists T2 such that x(t) = 0 for t > T2. A
signal x ∈ FR has finite duration when there exist T1 and T2 such that x(t) = 0 for
t < T1 and for t > T2. Clearly, a signal has finite duration if and only if it is both
right- and left-sided. The set of right-sided signals, the set of left-sided signals, and
the set of finite-duration signals are all subspaces of FR and are all closed under
shifting.

Bounded and absolutely integrable signals: the spaces L∞ and L1

Integrals, as you might expect, play a central role in continuous-time signal analy-
sis. By focusing largely on decent signals, we avoid most of the nagging problems
associated with reconciling various notions of integration. In particular, for decent
signals, Riemann and Lebesgue integration are essentially identical. Here is one
nice property of decent signals that we’ll use frequently.

7.2 Fact If x ∈ FR is a decent signal, then the integral of x over any bounded
interval is well defined and finite. In other words, for any real numbers T1 and T2,∫ T2

T1

x(t)dt

is well defined and finite.

Several important facts about infinite sums have continuous-time versions that
pertain to integrals over unbounded intervals. A signal x ∈ FR is integrable when
both of the limits

lim
T→∞

∫ T

0

x(t)dt and lim
S→∞

∫ 0

−S

x(t)dt

exist, in which case we define∫ ∞

−∞
x(t)dt = lim

S→∞

∫ 0

−S

x(t)dt+ lim
T→∞

∫ T

0

x(t)dt .

A signal x ∈ FR is absolutely integrable when
∫∞
−∞ |x(t)|dt exists. The 1-norm of

an absolutely integrable signal x is defined by

‖x‖1 =
∫ ∞

−∞
|x(t)|dt .
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I’ll use the notation L1 for the set of all absolutely integrable signals in FR.
Fact 3.3 has the following continuous-time analogue.

7.3 Fact If x ∈ FR is absolutely integrable, then x is also integrable. As a
result, x is integrable if there exists R > 0 such that for every T > 0 we have∫ T

−T

|x(t)|dt ≤ R .

A signal x ∈ FR is bounded when there exists R > 0 such that |x(t)| ≤ R for
every t ∈ R. The infinity norm of a bounded signal x is defined by

‖x‖∞ = sup{|x(t)| : t ∈ R} .

I’ll use the notation L∞ for the set of all bounded signals in FR.
Before we get too far along, I’d like to point out that my terminology and

notation are not quite standard. First of all, nobody talks about “decent signals.” I
made up that nomenclature so we’d have a single word to encapsulate the conditions
in Definition 7.1. Second, the official technical definitions of L1 and L∞ depend
on sophisticated concepts from Lebesgue integration and measure theory. (The
“L” happens to stand for “Lebesgue.”) It’s impossible to elucidate all these details
given the tools currently at our disposal. Please bear with me for now, and then
take a real-analysis course if you’d like to find out what you’re missing.

The sets L1 and L∞ as I have defined them are both closed under linear combi-
nation and are therefore subspaces of FR. Furthermore, both L1 and L∞ are closed
under time-shifting. Recall that in discrete time we had for every p with 1 < p <∞
the set lp of discrete-time signals for which

∞∑
n=−∞

|x(n)|p

converges. The continuous-time analogues are the sets Lp of signals for which∫ ∞

−∞
|x(t)|pdt

exists. Of particular importance is the set L2 of square-integrable signals. Like L1

and L∞, L2 is a subspace of FR and is closed under time-shifting. The 2-norm of
a signal x ∈ L2 is defined by

‖x‖2 =
(∫ ∞

−∞
|x(t)|2dt

)1/2

.

Recall that in discrete time we have l1 ⊂ l∞ — i.e., every absolutely summable
signal is bounded. More generally, it turns out that

l1 ⊂ lp ⊂ l∞
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for every p > 1. In continuous time, no such nice relationships hold between the
L’s. Consider the signal x with specification

x(t) =


0 if t ≤ 0

1/
√
t if 0 < t ≤ 1

1/t2 if t > 1 .

Note that x is absolutely integrable because∫ ∞

−∞
|x(t)|dt =

∫ 1

0

1/
√
tdt+

∫ ∞

1

1/t2dt = 3 .

Clearly, x is not bounded because x(t) blows up as t approaches 0 from above.
Furthermore, x is not square integrable because∫ 1

0

(1/
√
t)2dt =

∫ 1

0

(1/t)dt = ln(t)]10 =∞ .

Observe that the example signal x is not a decent signal because it is unbounded
on any interval that contains t = 0. Is it true, you might ask, that every decent
L1-signal is also in L∞? The answer is No, and here’s an example. Let x be the
signal with the following specification: x(t) = 0 for all t except for t-values that lie
in narrow intervals around nonzero integer values of t. Specifically, x(t) = 0 except
that

x(t) = 3|n| when n−
(
3−2|n|/2

)
≤ t ≤ n+

(
3−2|n|/2

)
for every nonzero n ∈ Z. If you graph x(t) against t, it looks like a bunch of
rectangular pulses centered on nonzero integer t-values whose widths narrow and
heights increase as |t| increases (see Figure 1). This x is a decent signal. Moreover,
x ∈ L1 because∫ ∞

−∞
|x(t)|dt =

−1∑
n=−∞

(3−n)(32n) +
∞∑

n=1

(3n)(3−2n) = 2
∞∑

n=1

3−n = 1 .

The point is that the area under the nth pulse is 3−|n| for every n ∈ Z. However,
it’s clear that x is not bounded, so x /∈ L∞. Nor is x an L2 signal because∫ ∞

−∞
|x(t)|2dt =

−1∑
n=−∞

(3−n)2(32n) +
∞∑

n=1

(3n)2(3−2n) = 2
∞∑

n=1

1 =∞ .

Convolution

Given two signals x1 and x2 in FR, the convolution of x1 and x2, if it exists, is the
signal x1 ∗ x2 ∈ FR with specification

(5) x1 ∗ x2(t) =
∫ ∞

−∞
x1(τ)x2(t− τ)dτ for all t ∈ R .

Alternative terminologies for the convolution of x1 and x2 are “the convolution of
x1 with x2” and “x1 convolved with x2.” For our purposes, the convolution of x1

and x2 exists precisely when the integral in (5) exists for every t ∈ R, which is the
same as saying that for all t ∈ R the function

τ 7→ x1(τ)x2(t− τ)
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is an integrable function of τ .
Let’s begin with an elementary observation about convolution. If x1 ∗x2 exists,

we can change the variable of integration in (5) as follows:

x1∗x2(t) =
∫ ∞

−∞
x1(τ)x2(t−τ)dτ =

∫ ∞

−∞
x1(t−ζ)x2(ζ)dζ =

∫ ∞

−∞
x1(t−τ)x2(τ)dτ .

Setting ζ = t− τ yields the first equality. To get the second, re-name the “dummy
variable of integration” ζ as τ . The bottom line is that on the right-hand side of
equation (5), it doesn’t matter where we put the τ and where we put the (t− τ) —
the result is the same. As in discrete time, one could add a bit of window dressing
by proclaiming that convolution, defined by (5), is a commutative operation in the
sense that if x1 ∗ x2 exists, then x1 ∗ x2 = x2 ∗ x1.

A slightly less elementary observation about convolution is that it is an asso-
ciative operation in the sense that if x1 ∗ (x2 ∗x3) exists, then so does (x1 ∗x2)∗x3,
and vice versa, and both convolutions are the same. Proving this fact is an exer-
cise in manipulating integrals. I’ll be a bit casual about interchanging orders of
integration here. The interchanges are legal since all the integrals exist. Assuming
that x1 ∗ (x2 ∗ x3) exists, we have

x1 ∗ (x2 ∗ x3)(t) =
∫ ∞

−∞
x1(τ)(x2 ∗ x3(t− τ))dτ

=
∫ ∞

−∞
x1(τ)

(∫ ∞

−∞
x2(ζ)x3((t− τ)− ζ)dζ

)
dτ

=
∫ ∞

−∞
x1(τ)

(∫ ∞

−∞
x2((t− τ)− ζ)x3(ζ)dζ

)
dτ

=
∫ ∞

−∞

(∫ ∞

−∞
x1(τ)x2((t− ζ)− τ)dτ

)
x3(ζ)dζ

=
∫ ∞

−∞
(x1 ∗ x2(t− ζ))x3(ζ)dζ

= (x1 ∗ x2) ∗ x3(t) .

The equalities hold for every t ∈ R, so

x1 ∗ (x2 ∗ x3) = (x1 ∗ x2) ∗ x3 .

Note: to get the third equality in the chain above, I used the “commutativity”
of convolution that I alluded to earlier, which allowed me to switch the roles of
(t− τ)− ζ and ζ. Convolution is also bilinear in the sense that

x1 ∗ (c2x2 + c3x3) = c2x1 ∗ x2 + c3x1 ∗ x3

and
(c1x1 + c2x2) ∗ x3 = c1x1 ∗ x3 + c2x2 ∗ x3

for every c1, c2, and c3 in F provided all the indicated convolutions exist.

Criteria for existence of convolutions

Given x1 and x2 in FR, how can we tell whether x1 ∗ x2 exists, aside from checking
for convergence of an infinite number of integrals in equation (5)? In what follows,
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I’ll state and prove several useful criteria for the existence of x1 ∗ x2. Before doing
that, I’ll show you an example of signals x1 and x2 whose convolution fails to exist.
Let x1 be the constant signal whose value is 17 for every t ∈ R, i.e.

x1(t) = 17 for all t ∈ R .

Let x2 = u, the continuous-time unit step, which has specification

u(t) =
{

1 if t ≥ 0
0 if t < 0 .

Attempting to compute x1 ∗ x2(t) using (5) leads to

x1 ∗ x2(t) =
∫ ∞

−∞
x1(τ)x2(t− τ)dτ =

∫ ∞

−∞
17u(t− τ)dτ =

∫ t

−∞
17dτ =∞ .

The third equality holds because u(t − τ) = 0 when τ > t and u(t − τ) = 1 when
τ ≤ t. So much for the possibility of x1 ∗ x2’s nonexistence. As in discrete time,
certain conditions on x1 and x2 guarantee that x1 ∗ x2 exists. Assuming x1 and x2

are decent makes things work.

7.4 Criterion If x1 and x2 are decent signals and either has finite duration,
then x1 ∗ x2 exists. If both x1 and x2 have finite duration, then x1 ∗ x2 also has
finite duration.

Proof: In this case, the integral in (5) is over a bounded τ -interval for every
t ∈ R, which means convergence is not an issue in view of Fact 7.2. To see this,
suppose that x1 has finite duration and that x1(t) = 0 when t < T1 and when
t > T2. Then ∫ ∞

−∞
x1(τ)x2(t− τ)dτ =

∫ T2

T1

x1(τ)x2(t− τ)dτ

for every t ∈ R. A similar argument applies when x2 has finite duration. The
bottom line is that the integral in (5) converges for every t ∈ R, so x1 ∗ x2 exists.

Suppose that both x1 and x2 have finite duration; specifically, assume x1(t) = 0
when t < T1 and when t > T2 and that x2(t) = 0 when t < S1 and when t > S2.
We still have

x1 ∗ x2(t) =
∫ ∞

−∞
x1(τ)x2(t− τ)dτ =

∫ T2

T1

x1(τ)x2(t− τ)dτ .

If t < T1 +S1, then t− τ < S1 for every τ in the range of integration, which means
that x2(t− τ) = 0 for all such τ and the integral is therefore zero. In other words,
x1 ∗x2(t) = 0 when t < T1 +S1. Similarly, if t > T2 +S2, then t−τ > S2 for all τ in
the range of integration, meaning that x2(t− τ) = 0 for all such τ and the integral
is zero once again, implying that x1 ∗ x2(t) = 0 when t > T2 + S2. It follows that
x1 ∗ x2 has finite duration. �

7.5 Criterion: If x1 and x2 are decent signals that are both right-sided or
both left-sided, then x1 ∗ x2 exists. Furthermore, in this case x1 ∗ x2 has the same
“sidedness” as x1 and x2.
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Proof: I’ll present the argument only in the case when both signals are right-
sided; the left-sided version is similar. Suppose, then, that x1(t) = 0 when t < T1

and x2(t) = 0 when t < S1. Then∫ ∞

−∞
x1(τ)x2(t− τ)dτ =

∫ ∞

T1

x1(τ)x2(t− τ)dτ

=

{ ∫ t−S1

T1
x1(τ)x2(t− τ)dτ if t ≥ T1 + S1

0 if t < T1 + S1 .

The first equality holds because x1(t) = 0 when t < T1. The second is a bit
more involved. First, note that if t < T1 + S1, then t − τ < S1 for every τ in
the range of integration, so x2(t − τ) = 0 for all such τ and the integral is zero.
Suppose that t ≥ T1 + S1. Remember that x2(t − τ) = 0 for all the τ -values sat-
isfying t − τ < S1, which is the same as τ > t − S1. So the part of the integrand
corresponding to τ -values in the range t − S1 < τ < ∞ is identically zero. This
argument proves not only that x1 ∗ x2 exists (since all the integrals in (5) are over
bounded τ -intervals), but also that x1 ∗ x2 is right-sided (since x1 ∗ x2(t) = 0 when
t < T1 + S1). �

7.6 Criterion Given two decent signals x1 and x2, if one signal is bounded (i.e.
is an L∞-signal) and the other is absolutely integrable (i.e. is an L1-signal), then
x1 ∗ x2 exists and is a bounded signal. Furthermore, the infinity norm of x1 ∗ x2

satisfies
‖x1 ∗ x2‖∞ ≤ ‖the L1 signal‖1 ‖the L∞ signal‖∞ .

Proof: I’ll prove this in the case that x1 is an L1-signal and x2 is an L∞ signal.
Given t ∈ R, we can conclude from Fact 7.3 that the integral in (5) exists if we can
find R > 0 such that ∫ T

−T

|x1(τ)||x2(t− τ)|dτ ≤ R

for every T > 0. Since |x2(t− τ)| ≤ ‖x2‖∞ for every t and τ ,∫ T

−T

|x1(τ)||x2(t− τ)|dτ ≤

(∫ T

−T

|x1(τ)|dτ

)
‖x2‖∞ .

The integral in parentheses is, in turn, bounded from above by ‖x1‖1, from which
it follows that for every T > 0∫ T

−T

|x1(τ)||x2(t− τ)|dτ ≤ ‖x1‖1 ‖x2‖∞ ,

implying not only that the integral in (5) converges for every t ∈ R (so x1 ∗ x2

exists), but also that
|x1 ∗ x2(t)| ≤ ‖x1‖1 ‖x2‖∞

for every t ∈ R. It follows that x1 ∗ x2 is a bounded signal (i.e. an L∞-signal), and
that ‖x1 ∗ x2‖∞ ≤ ‖x1‖1 ‖x2‖∞. �
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7.7 Criterion: If x1 and x2 are both decent square-integrable signals, then
x1 ∗ x2 exists and is a bounded signal. Furthermore, the infinity norm of x1 ∗ x2

satisfies

‖x1 ∗ x2‖∞ ≤
‖x1‖22 + ‖x2‖22

2
.

Proof: I’ll proceed as in the proof of Criterion 7.6. Again, given t ∈ R, we can
conclude from Fact 7.3 that the integral in (5) converges if we can find R > 0 such
that ∫ T

−T

|x1(τ)| |x2(t− τ)|dτ ≤ R

for every T > 0. From (|x1(τ)| − |x2(t − τ)|)2 ≥ 0 it follows directly that for each
t-value

|x1(τ)||x2(t− τ)| ≤
|x1(τ)|2 + |x2(t− τ)2|

2
for all τ ∈ R .

Thus for each t-value we have∫ T

−T

|x1(τ)| |x2(t− τ)|dτ ≤ 1
2

∫ T

−T

|x1(τ)|2dτ +
1
2

∫ T

−T

|x2(t− τ)|2dτ

≤ ‖x1‖22 + ‖x2‖22
2

for all T > 0 .

It follows that the integral in (5) converges for every t ∈ R, so x1 ∗ x2 exists, and
also that for every t ∈ R

|x1 ∗ x2(t)| = lim
T→∞

∣∣∣∣∣
∫ T

−T

x1(τ)x2(t− τ)dτ

∣∣∣∣∣
≤ lim

T→∞

∫ T

−T

|x1(τ)||x2(t− τ)|dτ

≤ ‖x1‖22 + ‖x2‖22
2

,

whereby ‖x1 ∗ x2‖∞ ≤
(
‖x1‖22 + ‖x2‖22

)
/2. �

7.8 Criterion If x1 and x2 are both decent absolutely integrable signals, then
x1 ∗ x2 exists and is an absolutely integrable signal. Furthermore, the 1-norm of
x1 ∗ x2 satisfies

‖x1 ∗ x2‖1 ≤ ‖x1‖1 ‖x2‖1 .

Proof: The existence of x1 ∗ x2 in this case does not follow from Criterion 7.6
because, as we have noted, an absolutely integrable continuous-time signal need
not be bounded. In other words, we need to do more work to prove Criterion 7.8
than we needed to do when proving the corresponding discrete-time result. I won’t
be able to give you all the details of the proof, because it relies on an advanced
result called Fubini’s Theorem. The gist of the argument, however, is not hard to
explain.
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Let S and T be given positive real numbers. Given t ∈ R,∫ T

−T

(∫ S

−S

|x1(τ)||x2(t− τ)|dτ

)
dt =

∫ S

−S

(∫ T

−T

|x1(τ)||x2(t− τ)|dt

)
dτ

=
∫ S

−S

|x1(τ)|

(∫ T

−T

|x2(t− τ)|dt

)
dτ

≤

(∫ S

−S

|x1(τ)|dτ

)
‖x2‖1

≤ ‖x1‖1 ‖x2‖1 .
Interchanging the order of integration on the first line is legal because the signals
are decent (cf. Fact 7.2). The inner integral on the right-hand side of the second
line is bounded from above by ‖x2‖1, which leads to the inequality on the third
line.

Fact 7.3 allows us to take the limit as S → ∞ on the right-hand side of the
first line, which yields∫ ∞

−∞

(∫ T

−T

|x1(τ)||x2(t− τ)|dt

)
dτ =

∫ T

−T

(∫ ∞

−∞
|x1(τ)||x2(t− τ)|dτ

)
dt

≤ ‖x1‖1 ‖x2‖1 .
The aforementioned Fubini’s Theorem allows us to interchange the order of inte-
gration and also implies that the inner integral on the right-hand side of the first
line is finite for “almost every” t ∈ R (“almost every” has a technical definition
that I won’t go into right now). Since by equation (5)

|x1 ∗ x2(t)| ≤
∫ ∞

−∞
|x1(τ)||x2(t− τ)|dτ ,

x1 ∗ x2(t) exists for (almost) all t ∈ R.
Furthermore, by Fact 7.3, we can take the limit as T →∞ in the inequality∫ T

−T

(∫ ∞

−∞
|x1(τ)||x2(t− τ)|dτ

)
dt ≤ ‖x1‖1 ‖x2‖1

to get ∫ ∞

−∞

(∫ ∞

−∞
|x1(τ)||x2(t− τ)|dτ

)
dt ≤ ‖x1‖1 ‖x2‖1 .

The inner integral is an upper bound for |x1 ∗ x2(t)|, so the whole expression on
the left is an upper bound on

∫∞
−∞ |x1 ∗ x2(t)|dt. It follows that x1 ∗ x2 is indeed

absolutely integrable, and ‖x1 ∗ x2‖1 ≤ ‖x1‖1 ‖x2‖1. �

I glossed over a major detail in the argument for Criterion 7.8, which is the
bit about “x1 ∗ x2(t) exists for almost all t ∈ R.” That’s another one of those
Lebesgue measure theory things. For our purposes, think of Criterion 7.8 as saying
that x1 ∗x2 does indeed exist if both x1 and x2 are decent L1 signals — and x1 ∗x2

will be an L1 signal — but x1 ∗x2 need not be a decent signal. Example 7.13 below
illustrates such an eventuality, which one rarely encounters in applications. I would
prefer, for now, that you assume Criterion 7.8 applies literally as written in every
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situation we encounter. Reassuringly, the convolutions x1 ∗ x2 in Criteria 7.4, 7.5,
7.6, and 7.7 all turn out to be decent signals, a fact I won’t prove.

Examples of computing convolutions

Nothing like a few examples to leaven the mood.

7.9 Example: x1 = x2 = u. Since x1 and x2 are both right-sided, Criterion
7.5 applies, so x1 ∗ x2 exists. For any t ∈ R,

x1 ∗ x2(t) =
∫ ∞

−∞
u(τ)u(t− τ)dτ =

∫ ∞

0

u(t− τ)dτ ,

where the last equality holds because u(τ) = 1 for τ ≥ 0 and u(τ) = 0 for τ < 0.
If t < 0, u(t − τ) = 0 for every τ in the range of integration 0 ≤ τ ≤ ∞, so the
whole integral is zero when t < 0. When t ≥ 0, u(t − τ) = 1 when 0 ≤ τ ≤ t and
u(t− τ) = 0 when t < τ <∞. It follows that

x1 ∗ x2(t) =
{

0 if t < 0∫ t

0
1dτ = t if t ≥ 0 .

Another way of writing the last equation is

x1 ∗ x2(t) = tu(t) for all t ∈ R .

If you think about what x1 ∗ x2 looks like in this case, you can see why people say
that “the convolution of two unit steps is a ramp.”

7.10 Example: x1 = u and x2 is the signal with specification

x2(t) =
{
e−3t t ≥ 0

0 t < 0 .

Note that x2(t) = e−3tu(t) for every t ∈ R. Again, Criterion 7.5 applies since both
x1 and x2 are right-sided. In fact, Criterion 7.6 also applies since x1 is bounded
and x2 is absolutely integrable, which is easy to check. To compute x1 ∗ x2, follow
a procedure similar to the one we followed in Example 7.9. For any t ∈ R,

x1 ∗ x2(t) =
∫ ∞

−∞
u(τ)e−3(t−τ)u(t− τ)dτ =

∫ ∞

0

e−3(t−τ)u(t− τ)dτ ,

where the last equality holds because u(τ) = 1 for τ ≥ 0 and u(τ) = 0 for τ < 0.
If t < 0, u(t − τ) = 0 for every τ in the range of integration 0 ≤ τ ≤ ∞, so the
whole integral is zero when t < 0. When t ≥ 0, u(t − τ) = 1 when 0 ≤ τ ≤ t and
u(t− τ) = 0 when t < τ <∞. It follows that

x1 ∗ x2(t) =
{

0 if t < 0∫ t

0
e−3(t−τ)dτ if t ≥ 0 .

Evaluating the integral yields

x1 ∗ x2(t) =
{

0 if t < 0
1
3 −

1
3e
−3t if t ≥ 0 .
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Another way of writing the last equation is

x1 ∗ x2(t) =
(

1
3
− 1

3
e−3t

)
u(t) for all t ∈ R .

7.11 Example: x1 = u and x2 is the signal with specification

x2(t) = e−3|t| =
{
e−3t if t ≥ 0
e3t if t < 0 .

Observe that we can also specify x2 for every t ∈ R via

x2(t) = e−3tu(t) + e3tu(−t) .
Note that x1 is a bounded signal and x2 is an L1-signal, so Criterion 7.6 guarantees
that x1 ∗ x2 exists. It helps to set x3(t) = e−3tu(t) and x4(t) = e3tu(−t) because
we computed x1 ∗ x3 in the Example 7.10. Now let’s find x1 ∗ x4.

By definition, for any t ∈ R,

x1 ∗ x4(t) =
∫ ∞

−∞
u(τ)e3(t−τ)u(−(t− τ))dτ =

∫ ∞

0

e3(t−τ)u(−t+ τ)dτ

since u(τ) = 1 for τ ≥ 0 and u(τ) = 0 for τ < 0. If t < 0, then u(−t+ τ) = 1 for all
τ in the range of summation 0 ≤ τ <∞. If t ≥ 0, then u(−t+ τ) = 0 for 0 ≤ τ < t
and u(−t+ τ) = 1 for all τ in the range t ≤ τ <∞. Accordingly,

x1 ∗ x4(t) =
{ ∫∞

0
e3(t−τ)dτ if t < 0∫∞

t
e3(t−τ)dτ if t ≥ 0 .

It follows that

x1 ∗ x4(t) =
{

1
3e

3t if t < 0
1
3 if t ≥ 0 .

Plugging the result of Example 7.10 into the equation x1 ∗ x2 = x1 ∗ x3 + x1 ∗ x4

yields the following specification for x1 ∗ x2:

x1 ∗ x2(t) =
{

1
3e

3t if t < 0
2
3 −

1
3e
−3t if t ≥ 0 .

Alternatively, for every t ∈ R,

x1 ∗ x2(t) =
(

2
3
− 1

3
e−3t

)
u(t) +

1
3
e3tu(−t) .

Just for completeness, I’d like to show you another way to do this example.
Interchanging τ and t− τ in equation (5) yields

x1 ∗ x2(t) =
∫ ∞

−∞
u(t− τ)e−3|τ |dτ =

∫ t

−∞
e−3|τ |dτ

for every t ∈ R because the u(t − τ) merely chops of the top of the sum at τ = t.
As a result,

x1 ∗ x2(t) =

{ ∫ t

−∞ e3τdτ if t < 0∫ 0

−∞ e3τdτ +
∫ t

0
e−3τdτ if t ≥ 0 .

Fortunately, as you can check, this turns out to be the same answer in a slightly
different form.



7. CONTINUOUS-TIME SIGNALS AND CONVOLUTION 105

7.12 Example: x1 = u and x2 is the signal with specification x2(t) = e3t

for all t ∈ R. I’m including this example partly because it satisfies none of the
criteria I’ve presented for convolution existence. Those criteria, in other words,
aren’t exhaustive. Here, x1 is bounded and right-sided, but x2 is neither right-
sided nor bounded nor absolutely integrable. Nonetheless, x1 ∗x2 exists. For every
t ∈ R,

x1 ∗ x2(t) =
∫ ∞

−∞
u(τ)e3(t−τ)dτ = e3t

∫ ∞

0

e−3τ =
1
3
e3t .

It’s of interest to note that x2(t) and x1 ∗x2(t) both take the form (constant)× e3t.

7.13 Example: Let x1 and x2 both be the signal x in Figure 1. As I noted
earlier, x is absolutely integrable, so Criterion 7.8 applies to this example — that
is, x1 ∗x2, which is the same as x∗x, must exist and be absolutely integrable. Look
what happens, though, when we try to compute x1 ∗ x2(0).

x1 ∗ x2(0) =
∫ ∞

−∞
x(τ)x(0− τ)dτ

=
∫ ∞

−∞
|x(t)|2dt

=
−1∑

n=−∞
(3−n)2(32n) +

∞∑
n=1

(3n)2(3−2n)

= 2
∞∑

n=1

1 =∞ .

The equality on the second line holds because x(τ) = x(−τ) for all τ ∈ R.
Accordingly, x1 ∗ x2(0) does not exist. You can prove, in fact, that x1 ∗ x2(n)

does not exist for any n ∈ Z — that is, x1 ∗x2(t) is not defined for integer values of
t. It also turns out that x1 ∗ x2(t) = 0 for a lot of t-values. For example, consider
t = 1/2.

x1 ∗ x2(1/2) =
∫ ∞

−∞
x(τ)x(1/2− τ)dτ = 0

because none of the small intervals over which the pulses in x(τ) are nonzero over-
laps an interval over which a pulse in x(1/2 − τ) is nonzero, so the integrand is
identically zero. See Figure 2. You can show that for any non-integer value of t,
the product x(τ)x(t − τ) is nonzero on only a finite number of bounded intervals,
which implies that the integral defining x ∗ x(t) converges for every t /∈ Z. Figure
3 displays a graph of x ∗ x(t) vs. t.

Let’s take another look at Criterion 7.8 in the light of this example. The signal
x is a decent absolutely integrable signal, and the integral defining x∗x(t) converges
for all but a countable set of t-values. For all practical purposes, x ∗ x exists, and
technically, in a Lebesgue-integration sense, x ∗ x(t) exists “for almost all t.” That
would be a more accurate way to have formulated Criterion 7.8, but since signals
such as x don’t feature prominently in applications, I’d rather not fret about these
fine points.



106 7. CONTINUOUS-TIME SIGNALS AND CONVOLUTION

To make x ∗ x into a true signal, we need to define x ∗ x(t) for integer values
of t. We can do that in many ways, and again, in a Lebesgue-integration sense, it
doesn’t matter how we do it. The easiest solution is arguably to set x ∗ x(n) = 0
for all n ∈ Z. You can check that x ∗ x is indeed an absolutely integrable signal as
we expect given Criterion 7.8, although x ∗ x is certainly not a decent signal.



CHAPTER 8

Continuous-time LTI Systems

The path we’re about to take is somewhat bumpier than the one we followed
in Chapter 6, but the trailside scenery is similar. Along the way we’ll confront
the ubiquitous but unnerving continuous-time unit impulse, a.k.a. the Dirac δ-
function. The impulse is only one of the obstacles that make life in continuous time
challenging. Please rest assured that the ragged edges we’ll encounter are minor
annoyances that play essentially no role when it comes to applying the theory in
the real world. The intuition underlying the results is the same as in discrete time
even though the results themselves aren’t quite as crisp.

Definition and examples

We’re interested in modeling real-world processes that take continuous-time input
signals and generate continuous-time output signals. An appealing way to represent
such a process is as a mapping

S : X −→ FR

where X is a subset of FR that represents the set of possible input signals for the
system. The idea of the mapping S is that when x ∈ X is the input signal to the
system, S(x) ∈ FR is the output signal that arises. One usually assumes that the
input space X is “rich enough” to include a lot of signals of interest. We’ll always
require that X contain at least all the finite-duration decent signals and also that
X be closed under time-shifting in the sense that Shiftto(x) ∈ X whenever x ∈ X
and to ∈ R.

As we saw in Chapter 7, FR has a natural vector-space structure. If a system’s
input set X is closed under the taking of linear combinations — i.e. is a subspace
of the vector space FR — and S : X → FR is a linear mapping, we call the system
linear. Furthermore, if the system has the property that shifting its input signal by
time-shift to always gives rise to the same time-shift to in the system’s output, we
call the system time-invariant. Here is the formal definition. As always, F means
R or C and FR is the set of all continuous-time F-valued signals.

8.1 Definition A continuous-time input-output linear time-invariant system
over F consists of the following:

• A subset X of FR representing the system’s set of possible input signals.
X is a subspace of FR that contains all the finite-duration decent signals
and is shift-invariant in the sense that if x ∈ X then Shiftto

(x) ∈ X for
all to ∈ R.

107
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• A mapping S : X → FR that is linear, i.e.

S(c1x1 + c2x2) = c1S(x1) + c2S(x2) for all x1, x2 ∈ X and c1, c2 ∈ F

and shift-invariant, i.e.

S(Shiftto
(x)) = Shiftto

(S(x)) for all x ∈ X and to ∈ R .

As in discrete time, I’ll use “LTI” to mean “linear time-invariant” and “LTI
system” to mean “input-output LTI system.” The simple example systems we
studied in discrete time have natural continuous-time analogues. The zero system
has input space X = FR and system mapping S : X → FR defined by S(x) = 0 for
all x ∈ X, where 0 here is the zero signal. The identity system also has X = FR but
its system mapping S has specification S(x) = x for all x ∈ X. The pure t1-shift
system features a given fixed time-shift t1 ∈ R. Its input function space is X = FR

and has system mapping S given by S(x) = Shiftt1(x) for every x ∈ X. I’ll leave it
to you to show that all three of these systems are LTI.

A slightly more interesting example is a continuous-time version of the discrete-
time causal sliding-window M -fold averager. For this system, the input space X
is the set of all decent signals in FR. The mapping S : X → FR takes each input
signal x ∈ X to the output signal S(x) ∈ FR whose value at time t is the average
of the input x over the interval of length T preceding time t, where T > 0 is given.
In equation form,

S(x)(t) =
1
T

∫ t

t−T

x(τ)dτ

for every x ∈ X and t ∈ R. One can show fairly easily that the system is LTI. We
stipulate that the input space X contain only decent signals to guarantee that the
integrals in the definition of S exist.

Another LTI system one encounters frequently in applications is the integrator.
That system takes an input signal x and outputs the signal S(x) with specification

S(x)(t) =
∫ t

−∞
x(τ)dτ for every t ∈ R .

The input space X contains precisely all those decent signals x for which the inte-
grals in the last equation exist for every t ∈ R.

As in discrete time, it pays to contemplate a few examples of systems that
aren’t linear or time-invariant. Linearity clearly fails for the system whose system
mapping takes any decent signal to output signal S(x) with specification

S(x)(t) =
1
T

∫ t

t−T

cos(x(τ))dτ for all t ∈ R .

Note that this system is time-invariant, as is the system with output signal S(x)
specified by

S(x)(t) = 7− 1
T

∫ t

t−T

x(τ)dτ for all t ∈ R

for any decent input signal x. This second system is nonlinear because, for one
thing, S(0) 6= 0.



8. CONTINUOUS-TIME LTI SYSTEMS 109

You can frequently determine that a system isn’t time-invariant by checking
how it processes elementary input signals such as the unit step u and the unit pulse
pa. For example, the system whose input space is the set of all decent signals and
whose output signal in response to input x is the signal S(x) with specification

S(x)(t) =
t

T

∫ t

t−T

x(τ)dτ for all t ∈ R

is linear but not time-invariant. You can check that S(u) has specification

S(u)(t) =

 0 when t < 0
t2/T when 0 ≤ t < T
t when t ≥ T

while S(Shift1(u)) has specification

S(Shift1(u))(t) =

 0 when t < 1
t(t− 1)/T when 1 ≤ t < T + 1

t when t ≥ T + 1 ,

so S(Shift1(u)) 6= Shift1(S(u)). Another linear system for which time-invariance
fails takes a decent input signal x to output signal S(x) with specification

S(x)(t) = x(3t− 1) for all t ∈ R .

S(u) has specification

S(u)(t) =
{

0 when t < 1/3
1 when t ≥ 1/3

}
= u(t− 1/3) for all t ∈ R

while S(Shift1(u)) has specification

S(Shift1(u))(t) = Shift1(u)(3t− 1)
= u(3t− 2)

=
{

0 when t < 2/3
1 when t ≥ 2/3

= u(t− 2/3) for all t ∈ R ,

whereby

S(Shift1(u)) = Shift1/3(S(u)) 6= Shift1(S(u)) ,

and time-invariance fails.

Strictly convolutional systems

To construct a more general example of a LTI system, begin by letting h ∈ FR be
any decent signal. Let Dh denote the set of all decent signals x ∈ FR for which the
convolution h∗x exists. It’s easy to show thatDh is closed under linear combinations
(i.e. is a subspace of FR). Dh also contains all the finite-duration decent signals by
Criterion 7.4. In fact, Dh is also closed under time shifting. To see this, note that
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for any to ∈ R we have, for every t ∈ R,

h ∗ (Shiftto
(x))(t) =

∫ ∞

−∞
h(τ)Shiftto

(x)(t− τ)dτ

=
∫ ∞

−∞
h(τ)x(t− τ − to)dτ

=
∫ ∞

−∞
h(τ)x((t− to)− τ)dτ

= h ∗ x(t− to) .
Since x ∈ Dh, h ∗ x exists, so h ∗ x(t − to) is well defined for every t ∈ R. By the
chain of equalities above, h ∗ (Shiftto

(x))(t) is also well defined for every t ∈ R,
from which it follows that h ∗ Shiftto(x) exists. We conclude that Shiftto(x) ∈ Dh

if x ∈ Dh.
Since Dh is closed under linear combination and time-shifting, it is a suitable

input space for a LTI system. Let’s define S : Dh → FR by

S(x) = h ∗ x for all x ∈ Dh .

It’s clear from linearity of convolution that S is a linear mapping from Dh into FR.
As for time-invariance, we saw above that for any x ∈ Dh and any to ∈ R,

h ∗ Shiftto(x)(t) = h ∗ x(t− to) for all t ∈ R ,

which is the same as saying that

S(Shiftto(x)) = h ∗ Shiftto(x) = Shiftto(h ∗ x) = Shiftto(S(x))

for every x ∈ Dh, so S is a shift-invariant mapping. The bottom line is that for any
decent signal h ∈ FR, the system with input space X = Dh and system mapping
defined by S(x) = h ∗ x is LTI. One might call such a system a “convolutional LTI
system” for obvious reasons. It turns out that convolutional systems are almost —
but not quite — as universal in continuous time as they are in discrete time. It
is here that the continuous-time theory starts displaying significant complications
relative to the discrete-time theory.

8.2 Definition: A continuous-time LTI system with input space X and sys-
tem mapping S : X → FR is strictly convolutional when there exists a decent signal
h ∈ FR for which X = Dh and S(x) = h ∗ x for every x ∈ X.

The averager system and the integrator system are both strictly convolutional
systems in the sense of Definition 8.2. For the averager system, you can show that

S(x)(t) =
1
T

∫ t

t−T

x(τ)dτ =
∫ ∞

−∞
h(t− τ)x(τ)dτ = h ∗ x(t)

for every x ∈ X and t ∈ R, where

h(t) =
{

1/T if 0 ≤ t < T
0 otherwise.

Since h has finite duration, Dh is the set of all decent signals, which is the input
space for the averager system by our original definition. Meanwhile, the integrator’s
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output in response to an admissible input signal x has specification

S(x)(t) =
∫ t

−∞
x(τ)dτ =

∫ ∞

−∞
u(t− τ)x(τ)dτ = h ∗ x(t)

for every t ∈ R, where h = u. The input space X for the integrator system is the
set of all decent x ∈ FR for which u ∗ x exists, which is Dh since h = u.

Unfortunately, many reasonable continuous-time LTI systems aren’t strictly
convolutional. Examples include the identity system and the pure t1-shift system.
The identity system is actually a special case of a t1-shift system with t1 = 0.
Let’s see why time-shift systems, including the identity system, fail to be strictly
convolutional. Given t1 ∈ R, suppose we had a decent signal h ∈ FR for which

S(x) = Shiftt1(x) = h ∗ x

for every decent signal x ∈ FR. Consider driving the system with the decent finite-
duration input signal x = pa, where a > 0 is given. The given input signal, graphed
against t, looks like a rectangular pulse of width a and height 1 centered at t = 0.
Observe that, for every t ∈ R,

S(pa)(t) = h ∗ pa(t) =
∫ ∞

−∞
h(t− τ)pa(τ)dτ =

∫ t+a/2

t−a/2

h(ζ)dζ .

Since h is a decent signal, we can find R > 0 such that |h(ζ)| ≤ R for all ζ satisfying
|ζ − t1| ≤ 1. It follows that when a < 1 we have

|S(pa)(t1)| ≤ aR .

On the other hand, by definition of the shift system, we also require

S(pa)(t) = Shiftt1(pa)(t) = pa(t− t1)

for every t ∈ R. In particular,

S(pa)(t1) = pa(0) = 1 .

If a < 1/R this is impossible. It follows that no decent h exists for which Shiftt1(x) =
h ∗ x even for all decent signals x, much less for all x ∈ FR.

Impulse response and the continuous-time impulse

The impulse response of discrete-time LTI system is the signal you convolve with
any input to the system to get the corresponding output. In continuous time, only
a strictly convolutional system has such an object associated with it, i.e. a signal
h that you convolve with inputs to generate outputs. In analogy with discrete
time, we define that h as the strictly convolutional system’s impulse response. So
we’ve defined “impulse response” at least for a large class of continuous-time sys-
tems without having defined “continuous-time impulse.” The impulse response of
a discrete-time system is literally the system’s output in response to an impulse at
the input. Why designate similarly the signal h appearing in Definition 8.2?

To discover the answer, suppose we have a strictly convolutional system with
system mapping S : Dh → FR specified by

S(x) = h ∗ x for all x ∈ Dh .
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Let ha be the system’s response to input x = (1/a)pa, where a > 0 is small. For
every t ∈ R we have

ha(t) = h ∗ ((1/a)pa)(t) =
1
a

∫ ∞

−∞
h(τ)pa(t− τ)dτ =

1
a

∫ t+a/2

t−a/2

h(τ)dτ .

In other words, ha(t) is, for each t ∈ R, the average value of h(τ) over the τ -interval
t− a/2 ≤ τ ≤ t+ a/2. As a→ 0, this average value converges to h(t) whenever t is
a continuity point of h and it converges to the average of h across the jump if t is a
jump point of h. Most importantly, it always converges because h is decent. Let’s
call the limiting signal h0, i.e.

h0(t) = lim
a→0

S((1/a)pa)(t) = lim
a→0

ha(t) = lim
a→0

1
a

∫ t+a/2

t−a/2

h(τ)dτ for all t ∈ R .

Since h0 agrees with h except at t-values where h jumps, h0 is essentially the same
signal as h. In particular, h0 is decent, Dh = Dh0 , and h0 ∗ x = h ∗ x for every
decent signal x ∈ Dh.

Now let’s brazenly interchange the limit and the S in the definition of h0, i.e.

h0 = lim
a→0

S((1/a)pa) = S

(
lim
a→0

1
a
pa

)
.

By taking this reckless step we’ve created something of a monster, namely the
expression in large parentheses on the right-hand side, which is known as the
continuous-time unit impulse δ or the Dirac δ-function. Our maneuver enables us
to regard h0 as the response of the system to a unit-impulse input — i.e., h0 = S(δ)
— which would explain why we call h0 or the essentially equivalent signal h the
impulse response of the strictly convolutional system we started with.

But let’s be careful. Disturbingly, δ as we’ve described it has specification

δ(t) = lim
a→0

1
a
pa(t) =

{
∞ if t = 0
0 if t 6= 0 .

As a consequence, δ isn’t really a signal at all, so it’s questionable whether we have
the right to use it as an input to a LTI system. The good news about δ is that
we find it almost exclusively under integral signs, and we can attach a rigorous
meaning to any expression wherein δ makes such an appearance. Specifically,

(6)
∫
δ(τ)[· · · ]dτ means lim

a→0

1
a

∫
pa(τ)[· · · ]dτ .

The quantity in brackets and limits of integration could be anything.
Of particular importance is the following chain of equalities stemming from (6),

in which I assume that x is a decent signal.∫ ∞

−∞
δ(τ)x(t− τ)dτ = lim

a→0

1
a

∫ ∞

−∞
pa(τ)x(t− τ)dτ

= lim
a→0

1
a

∫ a/2

−a/2

x(t− τ)dτ

= lim
a→0

1
a

∫ t+a/2

t−a/2

x(ζ)dζ = x(t) ,

with the last equality holding if t is a point of continuity for x. If t is a jump
point of x, the value of the limit in the last line is the average value of x across the
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jump. At least formally, this means that δ ∗ x = x for every continuous signal x,
and δ ∗ x = x almost holds (except possibly at x’s jump points) for every decent
signal x. In that sense, δ acts essentially as an identity element for continuous-time
convolution, created by fiat via (6). Consequently, one could regard the identity
system, which is not strictly convolutional, as “quasi-convolutional” in the sense
that

S(x) = x = δ ∗ x
for every decent signal x.

Note also that for given t1 ∈ R and any decent signal x we have∫ ∞

−∞
Shiftt1(δ)(τ)x(t− τ)dτ =

∫ ∞

−∞
δ(τ − t1)x(t− τ)dτ

=
∫ ∞

−∞
δ(ζ)x(t− t1 − ζ)dζ

= lim
a→0

1
a

∫ ∞

−∞
pa(ζ)x(t− t1 − ζ)dζ

= lim
a→0

1
a

∫ a/2

−a/2

x(t− t1 − ζ)dζ

= lim
a→0

1
a

∫ t−t1+a/2

t−t1−a/2

x(µ)dµ = x(t− t1)

whenever t− t1 is a point of continuity for x. (The third line in this last sequence
of equations follows from (6).) At least formally, this means that

Shiftt1(δ) ∗ x = Shiftt1(x)

for decent signals x. So the t1-shift system is also “quasi-convolutional” provided
we admit impulses as things to convolve with. A note on terminology: people often
refer to Shiftt1(δ) as an impulse occurring at time t1.

I’d like to hold off for now on discussing impulses any further. Treating im-
pulses rigorously requires the same techniques from measure theory that underpin
Lebesgue integration. Suffice it to say that impulses supply us with a de facto
identity element for convolution and method for shifting signals via convolution.
These appurtenances make it possible to deal with the identity and t1-shift systems
almost as if they were strictly convolutional systems.

In that spirit, I’d like now to introduce a standing assumption that will remain
in force whenever we talk about continuous-time LTI systems from now on. Mak-
ing the assumption doesn’t limit us appreciably, and most treatments cleave to it
without even bothering to state it explicitly. What it posits, essentially, is that
every system we’ll deal with be decomposable into a strictly convolutional part and
a shift part.

8.3 Standing Assumption: Every LTI system we encounter has a system
mapping S of the following form.

S(x) = h0 ∗ x+
M∑

k=0

dkShifttk
(x) ,
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where h0 ∈ FR is a decent signal; M is a nonnegative integer; t0 = 0; tk ∈ R are
distinct and nonzero when k > 0; and dk ∈ F for each k, with dk 6= 0 when k > 0.
Furthermore, the system’s input space X is the set of all decent signals x ∈ FR for
which h0 ∗ x exists — i.e. X = Dh0 . We define the system’s impulse response as

h = h0 +
M∑

k=0

dkShifttk
(δ) ,

which means that S(x) = h ∗ x for every x ∈ X.

More often than not, we’ll be working with strictly convolutional systems. For
any such system, h = h0 — that is, the system’s impulse response contains no
pure-shift component. Sometimes we’ll encounter systems that have d0 6= 0 but no
dk-terms k > 0. Because t0 = 0, such systems’ input-output behavior features a
“pure identity” component, and the system mapping decomposes schematically as

S = (strictly convolutional part) + d0 × (identity part) .

The impulse response h of a system satisfying Standing Assumption 8.3 tells
the entire story about the system’s input-output behavior. To find S(x) for any
input x, simply convolve h with x. As in discrete time, h is not only “what you
convolve with inputs to get outputs” but is also “the response of the system to an
impulse.” To see why, note that

S(δ) = h0 ∗ δ +
N∑

k=0

dkShifttk
(δ) = h0 +

N∑
k=0

dkShifttk
(δ) = h .

To get the second equality, I used that fact that h0 ∗ δ = h0 because h0 is a decent
signal and δ acts as an identity element for convolution with such signals.

We figured out earlier the impulse responses of the strictly convolutional aver-
ager and integrator systems. Now let’s consider the other prototype systems and
also redo those earlier examples using h = S(δ). Because S(x) = 0 for every input
x to the zero system, S(δ) = 0 and its impulse response is h = 0. For the identity
system, since S(x) = x for every input signal x, it follows that S(δ) = δ. Thus the
impulse response of the identity system is h = δ. Strictly speaking, we should stip-
ulate that the input space X, defined previously as FR, contain only decent signals
to make δ ∗ x = x for every x ∈ X. The pure t1-shift system has S(x) = Shiftt1(x)
for every x, so h = S(δ) = Shiftt1(δ). Again, strictly speaking, we should stipulate
that the input space X, defined previously as FR, contain only decent signals.

As for the averager, h = S(δ), so h is the signal whose value at time t is

h(t) =
1
T

∫ t

t−T

δ(τ)dτ

for every t ∈ R. Invoking the rigorous meaning of the right-hand side yields

h(t) =
1
T

lim
a→0

∫ t

t−T

(1/a)pa(τ)dτ =

 1/T if 0 < t < T
0 if t < 0 or t > T

1/2T if t = 0 or t = T .

Ignoring the slight disagreements at the jump points for h, this is the same as the
answer we found before. For the integrator, h = S(δ) is the signal whose value at
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time t is

h(t) =
∫ t

−∞
δ(τ)dτ

for every t ∈ R, meaning that

h(t) = lim
a→0

∫ t

−∞
(1/a)pa(τ)dτ =

 1 if t > 0
0 if t < 0

1/2 if t = 0 .

Ignoring the t = 0 issue, we see that h = u as we calculated earlier.

Causality and BIBO stability

Since the impulse response h determines the entire input-output behavior of a
LTI system satisfying Standing Assumption 8.3, you might expect that important
“system properties” have embodiments as “properties of h,” and that is indeed the
case. Two instances of this correspondence arise in relation to the system properties
of causality and bounded-input bounded-output stability.

In analogy with discrete time, a continuous-time LTI system is causal if, roughly
speaking, the current value of the output signal depends only on the current and
past values of the input signal and not on future values of the input signal. Here is
the formal definition.

8.4 Definition: A LTI system S : X → FR is causal when for every t ∈ R the
following holds: if x1 and x2 are two input signals in X such that x1(τ) = x2(τ)
for every τ ≤ t, then S(x1)(τ) = S(x2)(τ) for every τ ≤ t.

In other words, when a system is causal and two inputs “agree” up to and including
time t, the outputs to which they give rise will also “agree” up to and including
time t, and that condition holds for every t ∈ R. As in discrete time, we can prove
a condition on a system’s impulse response h that holds if and only if the system
is causal.

8.5 Theorem: A LTI system satisfying Standing Assumption 8.3 is causal if
and only if its impulse response h satisfies

(1) h0(t) = 0 for t < 0, and
(2) tk > 0 for 1 ≤ k ≤M .

Proof: First, suppose a system is causal. Since the system is linear, S(0) = 0,
where 0 stand for the “all-zero signal.” For any a > 0, pa(τ) = 0 for every τ < −a/2,
so pa agrees with the all-zero signal up to and including any time t < −a/2. Since
the system is causal, for any a > 0 the signal S((1/a)pa) must agree with S(0) = 0
up to and including any time t < −a/2. We need to show that all the tk for
1 ≤ k ≤ M are positive — note that when M = 0 we have nothing to prove
here. Suppose t1 < 0. Pick a > 0 small enough so that |tk − t1| > a/2 for
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all k > 1, which we can do because the tk are distinct. For such a choice of a,
Shiftt1((1/a)pa)(t1) = 1/a and Shifttk

((1/a)pa)(t1) = 0 for all k 6= 1, so

S((1/a)pa)(t1) = h0 ∗ ((1/a)pa)(t1) +
d1

a
.

When a is very small, the right-hand side is not equal to zero because the second
term swamps the first. This contradicts causality when we choose a small enough
so that t1 < −a/2. We conclude that t1 ≥ 0. A similar argument shows that all
the tk for 1 ≤ k ≤M must be positive.

Similarly, if h0(τ) 6= 0 for some τ < 0, because h0 is decent we can assume that
h(τ) 6= 0 over some interval [−T2,−T1] of τ -values where T1 and T2 are positive
and T1 < T2. Consider using the following input to the system:

x(τ) =
{
h0(−τ) if T1 ≤ τ ≤ T2

0 otherwise,

where h0(τ) is the complex conjugate of h0(τ). Note that x(τ) = 0 for all τ < T1,
so by causality we must have S(x)(τ) = 0 for τ < T1; in particular, we need
S(x)(0) = 0. But when we calculate S(x)(0) we find that

S(x)(0) = h0 ∗ (x)(0) =
∫ ∞

−∞
h0(0− τ)x(τ)dτ =

∫ T2

T1

|h0(−τ)|2dτ > 0 ,

which is a contradiction. (Note: the shift terms in h, if any, don’t contribute to
S(x)(0) because the input x does not “turn on” until time T1 and we know already
that all the nonzero tk are positive.) The bottom line is that if the system is causal,
then all the tk from the shift terms (if any) in h must be positive, and in addition

h0(t) = 0 when t < 0 .

Conversely, suppose h0(t) = 0 for every t < 0 and all the tk for 1 ≤ k ≤M are
positive — recall also that t0 = 0. Given any t ∈ R and any x ∈ X,

S(x)(t) = h0 ∗ (x)(t) +
M∑

k=0

dkShifttk
(x)(t) =

∫ t

−∞
h0(t− τ)x(τ)dτ +

M∑
k=0

dkx(t− tk)

where the last equality holds because h0(t− τ) = 0 when τ > t. Consequently, the
output at time t in response to input x depends only on the values of x(τ) for τ ≤ t
and not on the values of x(τ) for τ > t. This condition holds for every x ∈ X and
every t ∈ R, so if x1 and x2 are two input signals that agree up to and including
time t, then S(x1) and S(x2) must also agree up to and including time t. It follows
that the system is causal. �

The zero system, the identity system, the sliding-window averager, and the
integrator are all causal LTI systems. All those systems clearly satisfy the informal
definition of causality. Each system’s “current output value” depends explicitly on
“current and/or past input values” and not on “future input values.” Is the shift
system with S = Shiftt1 causal? It depends. Theorem 8.5 supplies the answer: if
t1 ≥ 0, then Yes; if t1 < 0, then No.

What about stability? Roughly speaking, a system is stable if nothing crazy
happens when you drive the system with well behaved inputs. As in discrete time,
people have settled on a notion of stability that goes essentially like this: a system
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is stable if every bounded decent signal x ∈ FR is an admissible input for the system
and if, in addition, the output S(x) arising from such a signal x is also a bounded
signal.

8.6 Definition: A LTI system with input space X and system mapping
S : X → FR is bounded-input bounded-output stable or BIBO stable when X con-
tains all the bounded decent signals in FR and, for every bounded decent x ∈ X,
S(x) is also a bounded signal.

Like causality, BIBO stability of a system has a neat characterization in terms
of the system’s impulse response. I’ll prove the standard version of this characteri-
zation first, and then state a stronger version without proof.

8.7 Theorem: A LTI system satisfying Standing Assumption 8.3 with impulse
response h is BIBO stable if and only if h0 is absolutely integrable — i.e., if and
only if h0 ∈ L1.

Proof: Assume first that h0 is absolutely integrable. By convolution-existence
Criterion 7.6, h0 ∗x exists for every bounded decent signal x ∈ FR and furthermore
is a bounded signal satisfying

‖h0 ∗ x‖∞ ≤ ‖h0‖1 ‖x‖∞ .

In particular, every bounded decent x lies in Dh0 , and, since Dh0 = X by Standing
Assumption 8.3, every bounded decent signal is an admissible input to the system.
Now,

S(x) = h0 ∗ x+
M∑

k=0

dkShifttk
(x) ,

and the kth shift term is bounded from above by |dk| ‖x‖∞ if x is bounded. It
follows that every bounded decent input x leads to a bounded output S(x). In fact,

‖S(x)‖∞ ≤

(
‖h0‖1 +

N∑
k=0

|dk|

)
‖x‖∞ .

The system is therefore BIBO stable.
Conversely, suppose the system is BIBO stable but h0 is not absolutely inte-

grable. I’ll construct a bounded decent input signal x for which h0 ∗ x doesn’t
exist, which means x /∈ Dh0 . By Standing Assumption 8.3, the input space X for
the system is Dh0 , so the existence of such an x contradicts BIBO stability of the
system. Define

x(τ) =
{
h0(−τ)/|h0(−τ)| when τ ≤ 0 and h0(−τ) 6= 0

0 otherwise ,

where h0(−τ) is the complex conjugate of h0(−τ). The signal x is bounded; in fact,
‖x‖∞ = 1. Furthermore, x is decent because h0 is. I claim that x /∈ Dh0 . To see
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why, attempt to compute S(x)(0). You get

S(x)(0) = h0 ∗ x(0)

=
∫ ∞

−∞
h0(τ)x(0− τ)dτ

=
∫
h0(τ)h0(τ)/|h0(τ)|dτ

=
∫ ∞

−∞
|h0(τ)|dτ ,

where the integral on the third line is over the range where h0(τ) 6= 0. The last
integral doesn’t exist because h0 isn’t absolutely integrable, so S(x)(0) isn’t well
defined and thus x /∈ Dh0 . We conclude that h0 must indeed be absolutely inte-
grable for the system to be BIBO stable. �

Once again by analogy to discrete time, a significantly stronger refinement of
Theorem 8.7 holds.

8.8 Theorem: A LTI system with input space X and system mapping S is
BIBO stable if and only if every bounded decent right-sided signal is in X and S(x)
is a bounded signal for every bounded decent right-sided signal x. �

What makes Theorem 8.8 stronger than Theorem 8.7? As in discrete time, to
check for BIBO stability (or, equivalently, for absolute integrability of h), we need
only make sure that h ∗ x is bounded for every bounded right-sided decent signal
x. If so, we can conclude that h ∗ x is bounded for all bounded decent signals x,
right-sided or not.

The hard part of proving Theorem 8.8 is showing that if h ∗ x exists and is
bounded for every bounded right-sided decent signal x, then h ∈ L1. We can
construct a bounded right-sided signal resembling x in the proof of Theorem 8.7
that enables us to conclude that

∫ 0

−∞ |h(t)|dtmust exist for h∗x to exist. It’s trickier
to prove that

∫∞
0
|h(t)|dt exists when h∗x exists for all bounded right-sided decent

signals x. Suppose, for example, that the system under consideration is causal, in
which case h is right-sided by Theorem 8.5. Criterion 5.5 tells us that h ∗ x exists
for every decent right-sided signal x, so there’s no way to build a bounded decent
right-sided signal x for which h ∗ x fails to exist when

∫∞
0
|h(t)|dt blows up. As in

discrete time, finishing the proof requires the Uniform Boundedness Theorem from
functional analysis.

Let’s wrap things up by checking for BIBO stability of the various example
systems. It’s easy to see that the zero and identity systems, the shift system(s),
and the averager are all BIBO stable. You can understand this on an elementary
level just by contemplating the definition of BIBO stability and asking whether a
bounded input signal leads to a bounded output signal for each of these systems.
In each case, the answer is unequivocally Yes.
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The integrator, on the other hand, is not BIBO stable. Consider driving the
system with bounded input signal x = u. You find that

S(u)(t) =
∫ t

−∞
u(τ)dτ =

{
t if t ≥ 0
0 if t < 0 .

Alternatively, S(u)(t) = tu(t) for every t ∈ R. While S(u) is well defined (i.e.
u ∈ X), S(u) not bounded even though u is.





CHAPTER 9

Fourier Series as Orthogonal Expansions

The study of periodic signals provided early inspiration for fundamental devel-
opments in continuous-time signal and system analysis during the twentieth century.
The key concept that emerged from that study is the frequency content of a signal.
Understanding signals in terms of their frequency content allows novel approaches
to problems involving not only the signals themselves but also how LTI systems
act upon them. While frequency content is most easily understood in the context
of periodic signals, we’ll see in subsequent chapters that it also makes sense for a
variety of non-periodic signals.

Periodic signals

You know intuitively that a periodic signal cycles repetitively through a set of val-
ues. More formally, we say that a signal x ∈ FR is periodic when there exists T > 0
such that ShiftT (x) = x. In this case, we say that T is a period of x. As usual, F
means R or C and FR is the set of all continuous-time F-valued signals.

Every constant signal is trivially periodic, and every T > 0 is a period of such
a signal. Sines and cosines are in a sense the prototypical periodic signals. Given
Ωo > 0, the signals t 7→ cos Ωot and t 7→ sinΩot are periodic, and every T of the
form m2π/Ωo, with m a positive integer, is a period of both of these. Another
paradigmatic periodic signal is t 7→ ejΩot, which has the same periods as the cosine
and sine above. Other periodic signals we encounter frequently are periodic square
waves, triangle waves, and sawtooth waves.

If T is a period of x, then any integer multiple of T is also a period of x. It
follows that every periodic signal has arbitrarily large periods. Note, however, that
all the examples in the preceding paragraph except the constant signal have some
“smallest period.” A non-constant periodic signal lacking a “smallest period” is
the signal x with specification

x(t) =
{

0 when t is rational
1 when t is irrational.

Every rational number T > 0 is a period of x because the sum of two rational
numbers is rational and the sum of a rational number and an irrational number
is irrational. This x, which we met in Chapter 7, is not a decent signal. As it
happens, every decent non-constant periodic signal has a “smallest period.”

9.1 Fact: If x ∈ FR is a decent non-constant periodic signal, then there exists
a smallest To > 0 that is a period of x.

121
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Proof: I’ll show that if x has arbitrarily small periods, then x must be con-
stant. Given an arbitrary T > 0, we can find a sequence {T1, T2, . . .} of periods
of x such that Tn increases to T in the limit as n → ∞. To construct this se-
quence, form Tn+1 from Tn by adding on a sufficiently small period of x so that
Tn+1 < T . For any t ∈ R and n > 0, we have x(t− Tn) = x(t) since Tn is a period
of x. If t − T is a point of continuity of x, it follows that x(t − T ) = x(t) because
limn→∞ x(t−Tn) = x(t−T ). What if t−T is a jump point of x? As it happens, x
can’t have any jumps. If to were a jump point of x, then for some ε > 0 we would
have x(to−δ) 6= x(to +δ) for every δ < ε. But x has a period τ < ε, by assumption,
which implies that x(to− τ/2) = x(to + τ/2), a contradiction. Accordingly, x must
be continuous since it is a decent signal with no jumps, and x(t − T ) = x(t) for
every t ∈ R, which implies that x is constant since T was arbitrary. In summary, if
x is decent and not constant, then it can’t have arbitrarily small periods. �

Fact 9.1 enables us to define the fundamental period of any decent periodic
signal x as the smallest period of x. If the fundamental period of x is To, the funda-
mental frequency of x is 2π/To, which I’ll usually denote by Ωo. As a reality check,
confirm for yourself that the fundamental period of t 7→ cos Ωot, t 7→ sinΩot, and
t 7→ ejΩot is indeed 2π/Ωo, so all three of these signals have fundamental frequency
Ωo. I noted earlier that every positive integer multiple of 2π/Ωo is a period of all
these signals. In fact, those are the signals’ only periods.

9.2 Fact: If x ∈ FR is a decent periodic signal with fundamental period To,
then every period of x is a positive integer multiple of To.

Proof: Suppose T is a period of x. By definition of fundamental period,
T ≥ To, so we can write T = mTo +R for some positive integer m and some R that
satisfies 0 ≤ R < To. Since T and mTo are both periods of x, it follows that

x = ShiftT (x) = ShiftmTo+R(x) = ShiftR(ShiftmTo
(x)) = ShiftR(x) ,

so if R > 0 then R is also a period of x. But this is a contradiction since R < To

and To is x’s fundamental period. Hence R = 0 and T = mTo. �

What about linear combinations of periodic signals? Clearly, if two periodic
signals x1 and x2 both have T as a period, then any signal of the form c1x1 + c2x2

also has T as a period. On the other hand, if T is a period of x1 but not of x2, we
have no reason to expect that T will be a period of c1x1 + c2x2. More fundamen-
tally, is c1x1 + c2x2 even necessarily periodic? The answer is somewhat delicate
but not terribly surprising.

9.3 Fact: If x1 has fundamental period T1 and x2 has fundamental period T2

and both signals are decent, then following statements hold.

(1) If T1/T2 is a rational number, then every linear combination of the form
c1x1 + c2x2 with c1 and c2 in F is periodic.
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(2) If, for some choice of nonzero constants c1 and c2 in F, the signal x =
c1x1 + c2x2 is periodic, then T1/T2 is a rational number, and the stronger
conclusion in (1) therefore holds.

Proof: Consider item (1) first. if T1/T2 = m/n for some positive integers m
and n, let T = nT1 = mT2. Then T is a period of both x1 and x2, and it follows
that any linear combination c1x1 +c2x2 has T as a period and is therefore periodic.

As for (2), say we have nonzero c1 and c2 such that x = c1x1 + c2x2 is periodic.
Let T be a period of x. Subtracting ShiftT (x) from x yields

−c1(x1 − ShiftT (x1)) = c2(x2 − ShiftT (x2)) .

We have two cases to consider.
Case 1: The signals on either side are constant. It turns out in this

case that both signals are zero, which means that T is a period of both x1 and
x2, implying that T = nT1 = mT2 for some positive integers m and n by Fact 9.2,
so that T1/T2 = m/n is a rational number. Why are both signals zero? Consider
the left-hand side. Suppose x1 − ShiftT (x1) = c0 6= 0. This would imply that
x1(T ) = x1(0) + c0, x1(2T ) = x1(0) + 2c0, x1(3T ) = x1(0) + 3c0, etc. Accordingly,
x1 would have to be unbounded. But since x1 is a decent signal, x1 is bounded on
the interval [0, T1] and therefore on all of R since x1 is T1-periodic. So we have a
contradiction.

Case 2: The signals on either side are not constant. In this case, they
have a fundamental period To. Since T1 is a period of the left-hand side and T2 is a
period of the right-hand side, it follows from Fact 9.2 that T1 = mTo and T2 = nTo

for some positive integers m and n, so, once again, T1/T2 = m/n is a rational
number. �

Suppose decent signals x1 and x2 have respective fundamental periods T1 and
T2, where T1/T2 is a rational number. It turns out that for most choices of nonzero
constants c1 and c2, the fundamental period of x = c1x1 + c2x2 is the lowest
common integer multiple of T1 and T2. To figure out that number, first write
T1/T2 = m/n in lowest terms. Then To = nT1 = mT2 is the lowest common integer
multiple of T1 and T2. One needs to choose c1 and c2 carefully for x to have a
fundamental period lower than To. For example, if x1(t) = cos(t/2) + cos(t/3) and
x2(t) = cos(t/3) for all t ∈ R, then T1 = 12π and T2 = 6π, but the fundamental
period of x = x1 − x2 is 4π. On the other hand, for arbitrarily small ε, the
fundamental period of x = (1 + ε)x1 − x2 is 12π.

Given To > 0, let XTo
be the set of all decent periodic signals that have To

as a period. Observe that XTo
contains all the constant signals. Some of the

non-constant signals in XTo
will have fundamental period To but others will have

smaller fundamental periods. By Fact 9.2, the only possible fundamental periods
for signals in XTo are numbers of the form To/m, where m is a positive integer.
Accordingly, the ratio of the fundamental periods of any two signals in XTo

will
be rational. It’s clear in any event that XTo

is closed under the taking of linear
combinations, so XTo

is a vector space of signals.
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Fourier series

Given To > 0, let Ωo = 2π/To. For any complex numbers c0 and c1, the signal

t 7→ c0 + c1e
jΩot

is periodic and has To as a period. If c1 6= 0, the signal actually has fundamental
period To. Similarly, for any c−1 ∈ C, the signal

t 7→ c−1e
−jΩot + c0 + c1e

jΩot

is periodic and has To as a period. The same is true for the signal

t 7→ c−2e
−j2Ωot + c−1e

−jΩot + c0 + c1e
jΩot + c2e

j2Ωot .

In fact, for any choices of the complex constants ck, the signal

t 7→
n∑

k=−n

cke
jkΩot

is periodic and has To as a period. Continuing in this fashion, we can assemble
a variety of periodic signals, all of which have To as a period, by forming linear
combinations of terms of the form ejkΩot. The theory of Fourier series tells us that
you can build essentially any well behaved periodic signal in this way. Here is the
principal result.

9.4 Theorem: Let x ∈ CR be a decent periodic signal that has To as a
period and is piecewise differentiable on all the intervals between its jumps. Let
Ωo = 2π/To. Then there exist complex constants ck, k ∈ Z, such that the sequence

SN (t) =
N∑

k=−N

cke
jkΩot

converges as N →∞ for every t ∈ R as follows:
• if t is a continuity point of x, then limN→∞ SN (t) = x(t), and
• if t is a jump point of x, then SN (t) converges as N → ∞ to the mean

value of x across the jump, namely (x(t+) + x(t−)) /2.

Theorem 9.4, whose proof is beyond our scope, asserts that any decent peri-
odic signal has an “expansion” as an “infinite linear combination” of pure complex
exponential sinusoids. The series in Theorem 9.4 is called a Fourier series for x in
honor of nineteenth-century French mathematician Jean-Baptiste Joseph Fourier.
The theorem statement summarizes the detailed meaning of the word “expansion.”
Often, I’ll be a bit casual and write

(7) x(t) =
∞∑

k=−∞

cke
jkΩot for all t ∈ R ,

even when x is not continuous. The equation is fully accurate only when x is contin-
uous and piecewise differentiable. Although I can’t provide the proof of Theorem
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9.4, I can show you how to compute the coefficients ck given that Theorem 9.4
holds. The computation rests on the following observation.

9.5 Fact: With notation as in the foregoing, if m ∈ Z, then∫ To

0

ejmΩotdt =
{
To if m = 0
0 if m 6= 0 .

Proof: Just do the integral. If m = 0, the integrand is 1 for all t ∈ [0, To], so
the integral evaluates to To. If m 6= 0, the integral evaluates to

1
jmΩo

(ejmΩoTo − 1) = 0 ,

where the last equality holds because ΩoTo = 2π and ej2π = 1. �

Given a decent periodic signal x that has To as a period and satisfies the
conditions of Theorem 9.4, let’s first compute c0 using Theorem 9.4. Integrate
both sides of (7) from 0 to T0. The manner in which the series converges ensures
that we can integrate the right-hand side term-by-term. By Fact 9.5 every term
integrates to zero except the c0 term. We get∫ To

0

x(t)dt = c0To ,

or

c0 =
1
To

∫ To

0

x(t)dt .

Consequently, c0 is simply the average value of x over one period, which is also the
average value of the entire signal x.

Now suppose we want to compute ck for some k 6= 0. Telescoping in on the
series from (7) near the kth term yields

x(t) = · · ·+ ck−1e
j(k−1)Ωot + cke

jkΩot + ck+1e
j(k+1)Ωot + ck+2e

j(k+2)Ωot + · · ·
for t ∈ R. Multiply both sides by e−jkΩot to obtain

x(t)e−jkΩot = · · ·+ ck−1e
−jΩot + ck + ck+1e

jΩot + ck+2e
j2Ωot + · · ·

and integrate both sides from 0 to To. Fact 9.5 guarantees that all terms on the
right-hand side except the solitary ck will integrate to zero, from which it follows
that ∫ To

0

x(t)e−jkΩotdt = ckTo ,

or

ck =
1
To

∫ To

0

x(t)e−jkΩotdt .

These formulas enable you to calculate the Fourier coefficients ck given that
you know x in one form or another. Sometimes you have an explicit formula for x.
Other times you have a graph of x from which you have to figure out an explicit
formula. A work-saver in some circumstances is the following observation: the
integrals in the ck-formulas are from 0 to To, but you can actually perform the



126 9. FOURIER SERIES AS ORTHOGONAL EXPANSIONS

integrals over any convenient interval of length To. This is because the integrands
are To-periodic, so shifting the interval of integration doesn’t change the integrals’
values. I’ll make the observation explicit by writing

c0 =
1
To

∫
To

x(t)dt

and

ck =
1
To

∫
To

x(t)e−jkΩotdt ,

where the notation
∫

To
means “integral over any interval of length To.”

Suppose x is a decent periodic signal with To as a period and we expand x in
a Fourier series as above, i.e.

x(t) =
∞∑

k=−∞

cke
jkΩot for all t ∈ R ,

where Ωo = 2π/To. Note that To need not be the fundamental period of x. It
turns out that you can calculate x’s fundamental period as follows. Let k̄ be the
greatest common divisor of all k-values for which ck 6= 0. Then x has fundamen-
tal frequency k̄Ωo and fundamental period 2π/k̄Ωo. Thus, for example, if in the
Fourier series above we have ck = 0 for all odd values of k but c4 and c6 are
nonzero, the fundamental frequency of x is 2Ωo and the fundamental period of x
is 2π/2Ωo = To/2. Observe that the Fourier series might contain no term at x’s
fundamental frequency — in this last example we could have had c2 = c−2 = 0,
and x’s fundamental frequency would still have been 2Ωo provided both c4 and c6
were nonzero.

You might have seen Fourier series for real-valued signals in sine-cosine form.
It’s easy to derive the sine-cosine form from the complex exponential form in The-
orem 9.5. First note that if x is real-valued, then c0 is real and, for every k 6= 0,
c−k = ck, where ck denotes the complex conjugate of ck. The reason is that

ck =
1
To

∫
To

x(t)e−jkΩotdt =
1
To

∫
To

x(t)ejkΩotdt =
1
To

∫
To

x(t)e−j(−k)Ωotdt = c−k .

The second equality holds because x is real, so x(t) = x(t). Now group the terms
in the Fourier series together in pairs to obtain

x(t) = c0 +
∞∑

k=1

(ckejkΩot + c−ke
−jkΩot) .

Because c−k = ck, The kth term in the expansion simplifies to

2Re{ckejkΩot} = 2Re{ck} cos kΩot− 2Im{ck} sin kΩot

= ak cos kΩot+ bk sin kΩot ,

where

ak = 2Re
{

1
To

∫
To

x(t)e−jkΩotdt

}
=

2
To

∫
To

x(t) cos kΩotdt

and

bk = −2 Im
{

1
To

∫
To

x(t)e−jkΩotdt

}
=

2
To

∫
To

x(t) sin kΩotdt .
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With ak and bk given by these formulas, the sine-cosine form of the Fourier series
for x is

x(t) = c0 +
∞∑

k=1

ak cos kΩot+
∞∑

k=1

bk sin kΩot , t ∈ R .

Sound in general and music in particular are good sources of intuition about
periodic signals and Fourier series. Think of a periodic signal as representing a
musical tone. The higher the fundamental frequency of the periodic signal, the
higher the pitch of the corresponding musical tone. In music, a given pitch is one
octave higher than another pitch if its fundamental frequency is twice that of the
other pitch. On a piano, the note “A above middle-C” has fundamental frequency
fo = 440Hz, which corresponds to Ωo = 880π. People generally call it “A-440.”
The next higher A on the piano keyboard has fundamental frequency 1760π, and
the next higher A after that one has fundamental frequency 3520π. The piano
keyboard, in this way, plots pitches on a log-frequency scale.

If someone plays an A-440 on a piano, it sounds different from an A-440 played
on a French horn or a Fender Stratocaster or a Moog synthesizer. All these notes
have the same fundamental frequency Ωo = 880π. What distinguishes them is their
so-called higher harmonics. Suppose x is some particular A-440. Let Ωo = 880π
and expand x in a Fourier series

x(t) =
∞∑

k=−∞

cke
jkΩot , t ∈ R.

The sum of the k = ±1 terms, i.e.

t 7→ c−1e
−jΩot + c1e

jΩot

is called the fundamental component of x. The signal

t 7→ c−ke
−jkΩot + cke

jkΩot

is called the kth harmonic component of x. The relative magnitudes of the various
ck determine how x’s “signal energy” distributes itself over the various frequencies
kΩo.

The A-440 notes on different instruments have different Fourier-series coeffi-
cients, and that’s at least part of why they sound different. A brassier instru-
ment might have relatively higher-magnitude ck for large k than would a mellower-
sounding instrument. Of course, energy distribution over harmonic components
does not tell the whole story about tone-color contrasts between different instru-
ments. The timbre of an A-440 played on a given instrument depends not just on
Fourier series but on subtle variations in fundamental frequency and volume and a
host of other things. One final comment: observe that kΩo, the frequency of the
kth harmonic, is not generally the frequency of an A because it is not an integer
number of octaves above A-440 unless k = 2m. Thus higher harmonics are not
simply higher-octave versions of the “fundamental note.”

Inner-product spaces and Hilbert spaces

Perhaps the cleanest and most intuitively appealing mathematical approach to
Fourier series is through orthogonal expansions in inner product spaces. I won’t be
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able to give you all the details here, but the essential ideas are relevant not only to
Fourier series but to other orthogonal expansions that arise in applications.

9.6 Definition: A complex inner product space is a vector space V over C
together with a mapping (v, w)→ 〈v, w〉 from V × V into C that has the following
properties:

• 〈v, v〉 ≥ 0 for every v ∈ V , and 〈v, v〉 = 0 if and only if v = 0.
• 〈w, v〉 = 〈v, w〉 for every v and w in V .
• For every v1, v2, v3 in V and every c1, c2, c3 in C,

〈c1v1 + c2v2, v3〉 = c1〈v1, v3〉+ c2〈v2, v3〉
〈v1, c2v2 + c3v3〉 = c2〈v1, v2〉+ c3〈v1, v3〉 .

The complex number 〈v, w〉 is called the inner product of v with w.

An extraordinarily useful property of any inner product space is the Schwarz In-
equality, also known as the Cauchy-Schwarz Inequality.

9.7 Schwarz Inequality: With notation as in the foregoing, if V is an inner
product space, then

|〈v, w〉| ≤
√
〈v, v〉

√
〈w,w〉

for every v and w in V .

Proof: The inequality clearly holds when w = 0, so assume w 6= 0. Consider

0 ≤
〈
v − 〈v, w〉
〈w , w〉

w , v − 〈v, w〉
〈w,w〉

w

〉
=

〈
v − 〈v, w〉
〈w,w〉

w, v

〉
− 〈w, v〉
〈w,w〉

〈
v − 〈v, w〉
〈w,w〉

w,w

〉
.

The second term on the second line is zero and the first term evaluates to 〈v, v〉 −
|〈v, w〉|2/〈w,w〉, from which it follows that

|〈v, w〉|2 ≤ 〈v, v〉 〈w,w〉 ,

which is equivalent to the Schwarz Inequality. �

We learned in Chapter 4 about norms on vector spaces and their associated
notions of convergence. Conveniently, the inner product on an inner product space
V gives rise to a special associated norm on V defined by

‖v‖ =
√
〈v, v〉 for every v ∈ V .

Proving that v 7→ ‖v‖ defines a norm on V depends on the Schwarz Inequality. The
triangle inequality

‖v + w‖ ≤ ‖v‖+ ‖w‖



9. FOURIER SERIES AS ORTHOGONAL EXPANSIONS 129

arises from

‖v + w‖2 = 〈v + w , v + w〉
= ‖v‖2 + 〈v, w〉+ 〈w, v〉+ ‖w‖2

= ‖v‖2 + 2Re{〈v, w〉}+ ‖w‖2

≤ ‖v‖2 + 2|〈v, w〉|+ ‖w‖2

≤ ‖v‖2 + 2‖v‖ ‖w‖+ ‖w‖2

= (‖v‖+ ‖w‖)2 ,

where the inequality on the second-to-last line holds because of the Schwarz In-
equality.

The norm in turn spawns a distance function on V : the distance between v
and w is ‖v−w‖. Along with the distance function comes a notion of convergence:
a sequence {vn} in V converges to v ∈ V when

lim
n→∞

‖vn − v‖ = 0 .

In analogy to real and complex numbers, a sequence {vn} in V is a Cauchy sequence
when for every ε > 0 there exists an N > 0 such that ‖vm − vn‖ < ε when m
and n are bigger than N . Every convergent sequence in V is a Cauchy sequence.
If, in addition, every Cauchy sequence in V converges, V is called a Hilbert space.
Hilbert spaces are named after the great nineteenth- and twentieth-century German
mathematician David Hilbert.

A familiar inner product space is Cn, the set of all column n-vectors with com-
plex entries. The inner product between two such vectors v and w is 〈v, w〉 = wHv,
where wH is the Hermitian conjugate of w defined by wT , the complex conjugate
of the transpose of w. Note that 〈v, w〉 =

∑n
i=1[v]i[w]i, where [v]i and [w]i are

respectively the ith entries in v and w. In particular, the norm associated with the
inner product is the standard Euclidean norm on Cn given by

‖v‖ = 〈v, v〉1/2 =

(
n∑

i=1

|[v]i|2
)1/2

,

where [v]i is the ith entry in v. It’s easy to show that every Cauchy sequence in
Cn has a limit, so Cn is a Hilbert space.

Another inner product space is the set l2 of all square-summable complex-
valued discrete-time signals that we first met in Chapter 5. Elements of l2 are
signals x ∈ CZ for which

∑∞
n=−∞ |x(n)|2 converges. We saw in Chapter 5 that l2

is indeed a vector space. For l2 signals x and y, define the inner product of x and
y via

〈x, y〉 =
∞∑

n=−∞
x(n)y(n) .

The norm associated with this inner product is the standard l2 norm

〈x, x〉1/2 =

( ∞∑
n=−∞

|x(n)|2
)1/2

= ‖x‖2 .

Similarly, the set L2 of complex-valued square-integrable continuous-time signals,
which we learned in Chapter 7 is a vector space, is an inner product space with
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inner product defined by

〈x, y〉 =
∫ ∞

−∞
x(t)y(t)dt

for all x and y in L2 and associated norm

〈x, x〉1/2 =
(∫ ∞

−∞
|x(t)|2dt

)1/2

= ‖x‖2 .

For the record, l2 and L2 are both Hilbert spaces, a fact that’s not simple to prove,
especially for L2.

The Schwarz Inequality enables us to improve on the upper bounds we estab-
lished in Criterion 5.4 on the infinity norm of the convolution of two l2-signals and
in Criterion 7.7 on the infinity norm of the convolution of two L2-signals. Suppose
x1 and x2 are l2 signals. Given n ∈ Z, let y ∈ CZ have specification

y(k) = x2(n− k) for all k ∈ Z .

Observe that ‖y‖2 = ‖x2‖2 and that

x1 ∗ x2(n) =
∞∑

k=−∞

x1(k)x2(n− k)

=
∞∑

k=−∞

x1(k)y(k)

= 〈x1, y〉 .
From the Schwarz Inequality it follows that

|x1 ∗ x2(n)| ≤ ‖x1‖2 ‖y‖2 = ‖x1‖2 ‖x2‖2 for all n ∈ Z ,

whereby
‖x1 ∗ x2‖∞ ≤ ‖x1‖2 ‖x2‖2 ,

a tighter bound than the one in Criterion 5.4. A parallel continuous-time argument
yields

‖x1 ∗ x2‖∞ ≤ ‖x1‖2 ‖x2‖2 ,
an improvement on Criterion 7.7, when x1 and x2 are L2-signals.

Orthogonal expansions

Inner-product spaces come equipped with a geometric structure that ordinary vec-
tor spaces lack. Inner products generalize the dot product between vectors in R3

that you learned about in pre-calculus. Remember how two little arrows emanating
from the origin are perpendicular if and only if their dot product is zero? Here’s a
more sophisticated rendition of that property.

9.8 Definition: Two vectors v and w in an inner product space V are or-
thogonal when 〈v, w〉 = 0. A finite or countably infinite set {wk} of vectors is an
orthonormal set when

〈wk, wl〉 =
{

1 if k = l
0 if k 6= l .
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An orthonormal set {wk} is complete when the only v ∈ V satisfying 〈v, wk〉 = 0
for all k is v = 0.

The vectors in an orthonormal set are “mutually perpendicular” and have “unit
length” in the sense that ‖wk‖ =

√
〈wk, wk〉 = 1 for every k. The customary

standard basis
(
e1, e2, . . . en

)
for Cn with the usual inner product is a complete

orthonormal set in Cn. Recall that
[
ek
]
i
= 1 when i = k and 0 when i 6= k. In l2

with the usual inner product, that the set {wk : k ∈ Z} of square-integrable signals
defined by

wk = Shiftk(δ) for all k ∈ Z
is certainly an orthonormal set. Note in addition that for any x ∈ l2 we have

〈x,wk〉 =
∞∑

n=−∞
x(n)Shiftk(δ)(n) =

∞∑
n=−∞

x(n)δ(n− k) = x(k)

for every k ∈ Z. Thus the only x satisfying 〈x,wk〉 = 0 for every k ∈ Z is x = 0
since x = 0 is the only x satisfying x(k) = 0 for all k ∈ Z. It follows that {wk} is a
complete orthonormal set in l2.

A finite orthonormal set {w1, . . . , wn} is also a linearly independent set — just
take the inner product of each wk with any expression of the form

c1w1 + · · ·+ cnwn = 0 ,

and you’ll discover that ck = 0. It follows that {wk : 1 ≤ k ≤ n} spans an n-
dimensional subspace W of V , so (w1, w2, . . . , wn) is an orthonormal basis of W .
As it happens, every finite-dimensional subspace of an inner product space pos-
sesses an orthonormal basis.

9.9 Fact: If W is an n-dimensional subspace of an inner product space V , then
W has an orthonormal basis (w1, w2, . . . , wn).

Proof: Theorem 4.3 guarantees the existence of a basis (v1, v2, . . . , vn) for W .
We’ll construct an orthonormal basis inductively using what’s known as the Gram-
Schmidt procedure. Define u1 = v1 and w1 = u1/‖u1‖, Note that ‖w1‖ = 1 and
span({w1}) = span({v1}). Suppose we’ve defined orthonormal vectors w1, w2, . . .
, wk such that

span ({w1, w2, . . . , wk}) = span ({v1, v2, . . . , vk}) ,

where k < n. Set

uk+1 = vk+1 −
k∑

l=1

〈vk+1, wl〉wl .

uk+1 6= 0 because the sum on the right-hand side lies in the span of vl for l ≤ k and
the vl for l ≤ k + 1 are linearly independent. Now set wk+1 = uk+1/‖uk+1‖. It’s
easy to check that {w1, w2, . . . , wk+1} is an orthonormal set whose span is the same
as span ({v1, v2, . . . , vk+1}). Keep this up until k + 1 = n and you end up with an
orthonormal spanning set {w1, w2, . . . , wn} for W . The set, being orthonormal, is
linearly independent, so (w1, w2, . . . , wn) is an orthonormal basis of W . �
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Given v ∈ V and a finite-dimensional subspace W of V , it is often of interest
to find the vector in W “closest to v” in the sense that it minimizes ‖v −w‖2 over
w ∈W . The vector

v̂ =
n∑

k=1

〈v, wk〉wk

solves that problem when {w1, . . . , wn} is an orthonormal basis for W . To see this,
note first that v − v̂ is orthogonal to each wl, since

〈v − v̂, wl〉 =

〈
v −

n∑
k=1

〈v, wk〉wk , wl

〉
= 〈v, wl〉 − 〈v, wl〉‖wl‖2 = 0 .

The second equality holds because 〈wk, wl〉 = 0 when k 6= l and the last equality
holds because ‖wl‖ = 1. Next, observe that we can write an arbitrary w ∈W as

w = v̂ +
n∑

k=1

∆kwk

for some complex numbers ∆k, so

‖v − w‖2 = 〈v − w, v − w〉

=

〈
(v − v̂)−

n∑
k=1

∆kwk , (v − v̂)−
n∑

k=1

∆kwk

〉

= ‖v − v̂‖2 +
n∑

k=1

|∆k|2 ,

where the last equality holds because v − v̂ is orthogonal to each wk and the wk

are orthonormal. It’s obvious from the last line that choosing ∆k = 0 for all k
minimizes ‖v − w‖2. The vector v̂ is called the orthogonal projection of v on the
subspace spanned by {w1, . . . , wn}.

A complete orthonormal set W = {wk} in a Hilbert space V serves as an
orthonormal basis for V in the sense that every v ∈ V possesses an expansion of
the form

v =
∑

k

ckwk

for some coefficients ck ∈ C. If W is finite, say W = {w1, w2, . . . , wn}, then the
sum in the last equation is finite. IfW is countably infinite, sayW = {wk : k ∈ Z},
then the rigorous meaning of the expression

v =
∞∑

k=−∞

ckwk

is

lim
n→∞

∥∥∥∥∥v −
n∑

k=−n

ckwk

∥∥∥∥∥ = 0 .

As you might expect given the orthogonal-projection discussion above, the coeffi-
cients ck are given by the formula

ck = 〈v, wk〉 for all k .
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To get an intuitive grasp of what’s happening when W is infinite and V is
therefore infinite-dimensional, set

Wn = span ({wk : −n ≤ k ≤ n}) for all n ∈ N .

Wn is a (2n + 1)-dimensional subspace of V for each n, and these subspaces are
nested in the sense that

W0 ⊂W1 ⊂ · · ·Wn−1 ⊂Wn ⊂Wn+1 · · ·

Furthermore, for each n

Sn(v) =
n∑

k=−n

〈v, wk〉wk

is the orthogonal projection of v onto the subspace Wn. As n grows, Wn gets larger
and Sn(v) gets closer to v. Completeness of the orthonormal set W ensures that
Wn expands as n→∞ to encompass all of V and that Sn(v) converges to v, i.e.

lim
n→∞

∥∥∥∥∥v −
n∑

k=−n

〈v, wk〉wk

∥∥∥∥∥ = 0 .

Proving this central result requires two supporting facts. The first, regarding
the convergence of inner products and infinite sequence, is an important conse-
quence of the Schwarz Inequality. The second establishes a one-to-one correspon-
dence between l2-sequences and “infinite linear combinations” of a countably infi-
nite set of orthonormal vectors.

9.10 Fact: If the sequence {vn} in an inner product space V converges to
v ∈ V , then 〈vn, w〉 converges to 〈v, w〉 for every w ∈ V . More generally, if the se-
quences {vn} and {wn} converge, respectively, to v and w, then 〈vn, wn〉 converges
to 〈v, w〉.

Proof: The first assertion follows from the second if we take wn = w for all n,
so let’s just prove the second assertion. Observe that

〈vn, wn〉 − 〈v, w〉 = 〈vn − v, wn − w〉+ 〈vn − v, w〉+ 〈v, wn − w〉 .

Take absolute values of both sides and apply the Schwarz inequality to the right-
hand side to obtain

|〈vn, wn〉 − 〈v, w〉| ≤ ‖vn − v‖ ‖wn − w‖+ ‖vn − v‖ ‖w‖+ ‖v‖ ‖wn − w‖ .

All the terms on the right-hand side go to zero as n → ∞ because ‖vn − v‖ and
‖wn − w‖ go to zero as n→∞. It follows that limn→∞ |〈vn, wn〉 − 〈v, w〉| = 0. �

9.11 Fact: Let {wk : k ∈ Z} be an orthonormal set in a Hilbert space V .
Let {ck : k ∈ Z} be a sequence of complex numbers. For each n ∈ Z, let Sn =∑n

k=−n ckwk. Then the sequence {Sn} converges, i.e. there exists v ∈ V such that

lim
n→∞

‖Sn − v‖ = lim
n→∞

∥∥∥∥∥
n∑

k=−n

ckwk − v

∥∥∥∥∥ = 0 ,
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if and only if {ck} is an l2-sequence.

Proof: First observe that if m > n, we have

‖Sm − Sn‖2 =

〈−n−1∑
k=−m

ckwk +
m∑

k=n+1

ckwk ,
−n−1∑
k=−m

ckwk +
m∑

k=n+1

ckwk

〉

=
−n−1∑
k=−m

|ck|2 +
m∑

k=n+1

|ck|2 ,

where the last equality follows from the orthonormality of {wk}. Saying {ck} is an
l2-sequence is the same as saying that

∑∞
k=−∞ |ck|2 converges, which happens if

and only if for every ε > 0 we can find N ∈ Z such that when m > n > N we have
−n−1∑
k=−m

|ck|2 +
m∑

k=n+1

|ck|2 < ε .

In turn, this is the same as saying that {Sn} is a Cauchy sequence in V . It follows
that {ck} is an l2-sequence if and only if {Sn} is a Cauchy sequence, which is true
if and only if {Sn} converges to some v ∈ V since V is a Hilbert space. �

9.12 Theorem: Let V be a Hilbert space and let W = {wk} be a finite or
countably infinite complete orthonormal set in V . If W = {w1, . . . , wn} is finite,
then v =

∑n
k=1〈v, wk〉wk for every v ∈ V . If W = {wk : k ∈ Z} is countably

infinite, then for any v ∈ V

lim
n→∞

‖v − Sn(v)‖ = 0 ,

where

Sn(v) =
n∑

k=−n

〈v, wk〉wk .

Proof: If W is finite, then v −
∑n

k=1〈v, wk〉wk is orthogonal to each wl and is
therefore zero by completeness of W. That disposes of the finite-W case. Suppose,
then, that W is infinite. For each n ∈ Z, Sn(v) is the orthogonal projection on
span({wk : −n ≤ k ≤ n}), so

〈v − Sn(v), wl〉 = 0 when − n ≤ l ≤ n .

Since Sn(v) is a linear combination of {wk : −n ≤ k ≤ n}, it follows that v−Sn(v)
is orthogonal to Sn(v), so

‖v‖2 = 〈Sn(v) + (v − Sn(v)) , Sn(v) + (v − Sn(v))〉 = ‖Sn(v)‖2 + ‖v − Sn(v)‖2 .

As a result,
‖Sn(v)‖2 ≤ ‖v‖2

for every n ∈ Z. Observe next that

‖Sn(v)‖2 = 〈Sn(v), Sn(v)〉 =
n∑

k=−n

|〈v, wk〉|2
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by orthonormality of {wk}, so
n∑

k=−n

|〈v, wk〉|2 ≤ ‖v‖2 for all n ∈ Z ,

implying that
∞∑

k=−∞

|〈v, wk〉|2

converges.
Applying Fact 9.11 with the substitutions ck = 〈v, wk〉 and Sn = Sn(v) allows

us to conclude that the sequence {Sn(v)} converges to some limit. That limit turns
out to be v itself. To see why, make the following observations.

• The sequence {v − Sn(v)} must also converge, since {Sn(v)} does.
• Let v0 = limn→∞(v − Sn(v)). Because for every k ∈ Z we have 〈v −
Sn(v), wk〉 = 0 for all n ≥ k, we know that limn→∞〈v−Sn(v), wk〉 = 0 for
every k ∈ Z. It follows from Fact 9.10 that 〈v0, wk〉 = 0 for every k ∈ Z.

• Hence v0 = 0 because W is a complete orthonormal set.
The bottom line is that

v = lim
n→∞

Sn(v) ,

i.e.
lim

n→∞
‖v − Sn(v)‖ = 0 ,

which completes the proof. �

Fourier series are orthogonal expansions

Back now to Fourier series. We’ve noted already that, given To > 0, the set
XTo of complex-valued decent signals having To as a period is closed under linear
combination and is therefore a vector space of signals. In fact, XTo

is an inner
product space with inner product

〈x1, x2〉 =
1
To

∫ To

0

x1(t)x2(t)dt for all x1, x2 ∈ XTo

and associated norm

‖x‖ =

(
1
To

∫ To

0

|x(t)|2dt

)1/2

for all x ∈ XTo
.

For each k ∈ Z, let wk be the signal t 7→ ejkΩot, where Ωo = 2π/To. Then the
countably infinite set W = {wk : k ∈ Z} is an orthonormal set in XTo

by Fact 9.5.
Furthermore,W is actually a complete orthonormal set in XTo

. This last statement
is tough to prove, so you’ll have to take my word on it.

Inconveniently, XTo isn’t a Hilbert space because there exist Cauchy sequences
in XTo

that don’t have limits in XTo
. We circumvent this difficulty by embedding

XTo
in a Hilbert space endowed with the “same” inner product as XTo

. Let L2
To

be the set of all periodic signals x — decent or not — that have To as a period and
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for which
∫ To

0
|x(t)|2dt is finite. L2

To
includes XTo

and the inner product on XTo

extends nicely to L2
To

. Furthermore, L2
To

is a Hilbert space and W is a complete
orthonormal set in L2

To
. I’ll caution you that I’m glossing over some important

Lebesgue-measure issues that pertain to this setup, but you won’t go wrong by
ignoring them for now.

Theorem 9.12 applies to the Hilbert space L2
To

and the complete orthonormal
set W. For any x ∈ L2

To
, we have

〈x,wk〉 =
1
To

∫ To

0

x(t)ejkΩotdt =
1
To

∫ To

0

x(t)e−jkΩotdt ,

and, in the notation of Theorem 9.12, Sn(x) is the signal

t 7→
n∑

k=−n

〈x,wk〉ejkΩot .

Theorem 9.12 implies that

lim
n→∞

‖x− Sn(x)‖2 = lim
n→∞

1
To

∫ To

0

∣∣∣∣∣x(t)−
n∑

k=−n

〈x,wk〉ejkΩot

∣∣∣∣∣
2

dt = 0 .

The foregoing argument applies to every x ∈ L2
To

. In particular, it applies to every
x ∈ XTo . The formula for 〈x,wk〉 is the same as the formula for the Fourier-series
coefficient ck. What’s new about the orthogonal-expansion take on Fourier series
for decent signals is Theorem 9.12’s assertion that the Fourier series converges in the
“L2 sense,” also called the mean-square sense. That assertion applies to the Fourier
series for any signal in XTo

, not just those satisfying the regularity conditions of
Theorem 9.4.

Applying the argument in the proof of Theorem 9.12 to Fourier series yields as
a by-product a classic result known as Parseval’s Theorem. Referring to that proof
and substituting x for v, where x is a decent To-periodic signal, yields

‖Sn(x)‖2 =
n∑

k=−n

|〈x,wk〉|2 for all n ∈ Z ,

where wk is the signal t 7→ ejkΩot. Since limn→∞ Sn(x) = x, it follows from Fact
9.10 that

lim
n→∞

‖Sn(x)‖2 = lim
n→∞

〈Sn(x), Sn(x)〉 = ‖x‖2 .

Accordingly,

‖x‖2 =
1
To

∫ To

0

|x(t)|2dt = lim
n→∞

n∑
k=−n

|〈x,wk〉|2 =
∞∑

k=−∞

|〈x,wk〉|2 .

Thus we have equality between the norm of x inXTo
and the l2-norm of the sequence

of Fourier coefficients for x. From the identity

〈v, w〉 =
‖v + w‖2 − ‖v‖2 − ‖w‖2

2
+ j
‖v + jw‖2 − ‖v‖2 − ‖w‖2

2
,

which holds for all v and w in any complex inner product space V , we obtain the
following.
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9.13 Parseval’s Theorem: Let x and y be decent periodic signals that have
To as a period. Let Ωo = 2π/To and let

ck =
1
To

∫ To

0

x(t)e−jkΩotdt for all k ∈ Z

and

dk =
1
To

∫ To

0

y(t)e−jkΩotdt for all k ∈ Z .

Then {ck} and {dk} are l2 sequences. Furthermore,

1
To

∫ To

0

x(t)y(t)dt =
∞∑

k=−∞

ckdk

and, in particular,
1
To

∫ To

0

|x(t)|2dt =
∞∑

k=−∞

|ck|2 .

Finally, it would be mildly irresponsible of me not to show you at least one
example of a signal x ∈ L2

To
that’s not a decent signal and therefore not in XTo

.
Accordingly, let x be the signal with fundamental period To whose specification on
the interval (0, To] is x(t) = t−1/3. The full specification for x is

x(t) = (t− nTo)−1/3 for nTo < t ≤ (n+ 1)To and n ∈ Z .

The signal x isn’t decent because it’s not bounded on bounded intervals. Nonethe-
less, as you can check for yourself, x ∈ L2

To
.

Why study Fourier series?

Compelling answers abound, but I’ll focus on two of them. First, from the stand-
point of signal analysis, one might argue that pure sinusoids are paradigmatic peri-
odic signals. Fourier series provide the means to “decompose” an arbitrary periodic
signal into an “infinite linear combination” of pure sinusoids. A central goal of sig-
nal analysis is to explain complicated things in terms of simpler things, and Fourier
series play an important role in doing just that.

Fourier series also enable us to get a grip on the concept of frequency content of
periodic signals. If x is periodic and has fundamental period To, the Fourier series

x(t) =
∞∑

k=−∞

cke
jkΩot for all t ∈ R ,

where Ωo = 2π/To, tells us that x has frequency content concentrated on the
discrete set of frequencies {kΩo : k ∈ Z}. The magnitudes of the various ck indicate
how the signal energy in x parcels out over these various frequencies. People refer
to the Fourier series for x as a frequency-domain description of x for that reason.
Describing a periodic signal x in terms of its frequency content characterizes x
completely. A frequency-domain description of x doesn’t just “tell you something
about x.” Instead, it tells you everything about x, but in a manner different from
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specifying x, graphically or analytically, as a periodic time function. It’s simply
another way of looking at x, as if from a new angle.

Of comparable importance are systems-analysis reasons for studying Fourier
series. Suppose S is the system mapping of a LTI system with input space X, and
suppose that x ∈ X is a decent periodic signal that has To as a period. Then

ShiftTo
(S(x)) = S(ShiftTo

(x)) = S(x) .

The first equality holds because of time-invariance and the second because To is a
period of x. So if x is periodic and To is a period of x, then To is also a period of
S(x). In particular, S(x) is periodic and in essentially every case will be decent.

Suppose, then, that x ∈ X is decent and has To as a period. We can expand x
in a Fourier series

x(t) =
∞∑

k=−∞

cke
jkΩot for all t ∈ R ,

where Ωo = 2π/To. Since S(x) also has To as a period we can, assuming S(x) is
decent, expand it in its own Fourier series

S(x)(t) =
∞∑

k=−∞

c′ke
jkΩot for all t ∈ R .

How are the c′k related to the ck?
The crucial observation is that any signal of the form t 7→ ejΩ1t, where Ω1 ∈ R,

is an “eigen-input” for any LTI system that admits it as an input. Suppose a LTI
system has impulse response h. Define x via x(t) = ejΩ1t for every t ∈ R. If x is
an admissible input for the system — i.e., if x ∈ Dh — then S(x) = h ∗ x, so

S(x)(t) =
∫ ∞

−∞
h(τ)x(t− τ)dτ

=
∫ ∞

−∞
h(τ)ejΩ1(t−τ)dτ

=
(∫ ∞

−∞
h(τ)e−jΩ1τdτ

)
ejΩ1t for all t ∈ R .

In other words, S(x) = (constant) × x, which is why I call x an “eigen-input” for
the system. The quantity in the parentheses in the last equation depends on Ω1,
the fundamental frequency of x. If we think of varying Ω1 over all Ω ∈ R, we get a
function Ĥ of Ω.

9.14 Definition: Let h be the impulse response of a LTI system and suppose
that for every Ω ∈ R the signal t 7→ ejΩt lies in Dh and is therefore an admissible
system input. In this case, we say that the system has a frequency response and
define the frequency response of the system as the function Ω 7→ Ĥ(Ω) specified by

Ĥ(Ω) =
∫ ∞

−∞
h(τ)e−jΩτdτ for all Ω ∈ R .
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If a LTI system has frequency response Ĥ, then the amount by which the
system “scales” an eigen-input of the form t 7→ x(t) = ejΩ1t is the value of Ĥ at
frequency Ω1. In other words,

S(x) = Ĥ(Ω1)x

for such an input x. The system tends to amplify pure sinusoids of frequency Ω1

when Ĥ(Ω1) is large and attenuate pure sinusoids of frequency Ω1 when Ĥ(Ω1) is
small. In this way, a LTI system with a frequency response acts as a frequency-
selective filter. I’d like to emphasize that not every LTI system has a frequency re-
sponse. The continuous-time integrator doesn’t have one because it doesn’t admit
pure sinusoidal inputs. On the other hand, every BIBO-stable system, in partic-
ular every system with a decent finite-duration impulse response, has a frequency
response.

Let’s return now to the Fourier series for S(x), where x is a signal that has To

as a period and Fourier series

x(t) =
∞∑

k=−∞

cke
jkΩot for all t ∈ R ,

where Ωo = 2π/To. The kth term in the series is the signal t 7→ cke
jkΩot, which is

an eigen-input of the kind we’ve been discussing. If we use t 7→ ejkΩot as input to
the system, the output that arises is the signal t 7→ Ĥ(kΩo)ejkΩot. Provided the
series converges appropriately, we can conclude that

S(x)(t) =
∞∑

k=−∞

(
ckĤ(kΩo)

)
ejkΩot for all t ∈ R .

The Fourier series serves in this way as an “eigenfunction expansion” in that it
decomposes a periodic input x into an “infinite linear combination” of eigen-inputs
to the system. The system processes these eigen-inputs in a simple way, and the
expansion of x gives rise to a similar expansion for S(x). If ck is the kth Fourier
coefficient for x, then the kth Fourier coefficient c′k of S(x) is simply c′k = ckĤ(kΩo)
for every k ∈ Z. In essence, the system re-shapes the frequency content of a To-
periodic input according to the relative magnitudes of Ĥ(kΩo) for various values
of k. Thus the system’s frequency response gives us a handle on how the output’s
energy distribution over harmonic components differs from or resembles the input’s
energy distribution over harmonics. Fourier series make these ideas transparent,
and that’s part of why we study them.





CHAPTER 10

Continuous-time Fourier Transforms

As we saw in Chapter 9, the notion of frequency content makes perfect sense
for periodic signals. If x is a periodic signal that has To as a period, x might have
frequency content at any number of frequencies. All those frequencies are of the
form kΩo, where Ωo = 2π/To and k ∈ Z. The coefficients in the Fourier series for
x show how the frequency content in x is distributed over these frequencies. Why
might one expect non-periodic signals to have frequency content? I’ll attempt first
to demonstrate by means of an example that such an expectation is not unreason-
able. After that, I’ll try to segué as smoothly as possible from Fourier series to the
Fourier transform, which is the tool people use to analyze non-periodic signals from
the standpoint of frequency content. A comprehensive and truly rigorous treatment
of Fourier transforms would require an entire book of its own, and excellent such
books exist. We’ll need to cut some corners and set some issues aside, and I’ll try
to be conscientious about mentioning when we do that.

Motivation, definition, and “derivation”

An example I enjoy pondering is a finite-duration A-440. Recall from Chapter 9
that a true A-440 is a periodic signal with fundamental period To = 1/440 and
fundamental frequency Ωo = 880π. If I play an A-440 on an instrument and you
listen to it, what you hear is not a true A-440 but a finite-duration signal that
“sounds like an A-440” while I’m playing it. That signal, one would like to think,
has significant “frequency content” around frequency 880π.

The Fourier transform enables us to make mathematical sense of frequency con-
tent for non-periodic signals like the finite-duration A-440. I’ll try first to motivate
the definition with a sketchy sort of pseudo-derivation. Suppose first that x is a
decent finite-duration signal and To > 0 is such that x(t) = 0 when |t| ≥ To/2. x
is about as non-periodic as you can imagine, but we can extend x to form a decent
periodic signal xr that has To as a period by adding infinitely many shifted replicas
of x. Technically,

xr(t) =
∞∑

n=−∞
x(t− nTo) for all t ∈ R .

For any specific t, at most one term in the infinite series is nonzero due to the
finite-duration condition on x, so the sum converges trivially. Note that

xr(t) = x(t) for − To/2 ≤ t ≤ To/2 .

141
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Now let Ωo = 2π/To and expand xr in a Fourier series

xr(t) =
∞∑

k=−∞

cke
jkΩot for all t ∈ R .

For every k ∈ Z,

ck =
1
To

∫ To/2

−To/2

xr(t)e−jkΩotdt =
1
To

∫ To/2

−To/2

x(t)e−jkΩotdt ,

where the last equality holds because xr = x on the interval [−To/2, To/2]. Ac-
cordingly, ignoring the issue of jumps in xr(t), we have

xr(t) =
∞∑

k=−∞

(
1
To

∫ To/2

−To/2

x(t)e−jkΩotdt

)
ejkΩot for all t ∈ R

and therefore

x(t) =
∞∑

k=−∞

(
1
To

∫ To/2

−To/2

x(t)e−jkΩotdt

)
ejkΩot for − To/2 ≤ t ≤ To/2 .

The final step is to let To → ∞ in the last equation. The right-hand side
becomes a Riemann approximation of an integral. To see how it works, first replace
1/To with Ωo/2π to obtain

(8) x(t) =
1
2π

∞∑
k=−∞

(∫ To/2

−To/2

x(t)e−jkΩotdt

)
ejkΩot×Ωo for −To/2 ≤ t ≤ To/2 .

As To → ∞, the sum becomes an integral, Ωo becomes dΩ, kΩo becomes Ω, and
To/2 ≤ t ≤ To/2 becomes t ∈ R. The end result is

(9) x(t) =
1
2π

∫ ∞

−∞

(∫ ∞

−∞
x(t)e−jΩtdt

)
ejΩtdΩ for all t ∈ R .

The bogus part of the argument leading from (8) to (9) is the step where the con-
dition −To/2 ≤ t ≤ To/2 becomes “for all t ∈ R.” The right-hand side of (8),
although it coincides with x(t) over ever-widening intervals as To increases, does
not converge nicely to x(t) for all t ∈ R as To → ∞. Nonetheless, (9) provides a
strong motivation for the following formal definition.

10.1 Definition: A complex-valued signal t 7→ x(t) and a complex-valued
function Ω 7→ X̂(Ω) are a Fourier transform pair when one or both of the following
equations holds:

(F) X̂(Ω) =
∫ ∞

−∞
x(t)e−jΩtdt for all Ω ∈ R

(F−1) x(t) =
1
2π

∫ ∞

−∞
X̂(Ω)ejΩtdΩ for all t ∈ R

In this case, we also say that X̂ is the Fourier transform of x, and write

x
F←→ X̂ .



10. CONTINUOUS-TIME FOURIER TRANSFORMS 143

It’s impossible at this level to deal rigorously with all the subtleties of the
Fourier transform. Definition 10.1 is somewhat unconventional in that it talks
about Fourier transform pairs instead of defining “Fourier-transformable signals”
first, then proving that equation F−1 holds in certain special cases, etc. Definition
10.1 works better for the purposes of signal and system applications, at least in my
view. I caution you that in what follows I’ll often assume for ease of exposition in a
specific context that one or the other of equations F or F−1 holds for a particular
Fourier transform pair.

For convenience in applications, it’s useful to extend Definition 10.1 in a couple
of directions. First, consider the unit impulse δ. Plugging x = δ into F yields

X̂(Ω) =
∫ ∞

−∞
δ(t)e−jΩtdt = lim

a→0

1
a

∫ a/2

−a/2

e−jΩtdt = lim
a→0

1
(a/2)Ω

sin(a/2)Ω = 1

for all Ω ∈ R. In deriving this formula, I used equation (6) from Chapter 8 along
with sin θ/θ → 1 as θ → 0. Accordingly, by convention if you will, the unit impulse
δ has as Fourier transform the constant function 1. Schematically,

δ
F←→ 1 .

It’s painfully obvious that the integral in F−1 fails to converge in any ordinary sense
for this example. Similarly, applying equation F−1 to the “function” Ω 7→ 2πδ(Ω)
gives

1 =
1
2π

∫ ∞

−∞
2πδ(Ω)ejΩtdΩ

for every t ∈ R. Thus arises another generalized Fourier transform pair

1 F←→ 2πδ .

You can check that equation F fails for this example. We’ll see shortly that these
generalizations along with various operational rules for Fourier transforms will en-
able us to amass a variety of Fourier transform pairs involving impulses either in
time or frequency for which only one of F or F−1 holds.

It proves beneficial to generalize Definition 10.1 even further by allowing Fourier
transform pairs for which neither equation F nor F−1 holds. The examples I’m
thinking of are along the lines of the signal x = δ + 1. We have Fourier transforms
for 1 and δ, but for each of them one of the two defining equations in Definition
10.1 fails. We would like it to be true that

1 + δ
F←→ 2πδ + 1 ,

so we simply “make it so.” This amounts to extending Definition 10.1 by linearity
to a wider class of signals than the definition covers officially. It’s clear, for example,
that if F holds for two signals x1 and x2 and their respective Fourier transforms X̂1

and X̂2, then F also holds for c1x1 + c2x2 for any complex numbers c1 and c2. But
what if only F holds for x1 and only F−1 holds for x2? The following, which states
the first of many properties of Fourier transforms, essentially wishes that problem
away.
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10.2 Linearity: The Fourier transform is linear in the sense that if x1
F←→ X̂1

and x2
F←→ X̂2, then

c1x1 + c2x2
F←→ c1X̂1 + c2X̂2

for every c1, c2 ∈ C. This property is clear when either F or F−1 applies to both x1

and x2, but we extend Definition 10.1 so that it holds in general. More precisely, we
consider x and X̂ to be a Fourier-transform pair if we can decompose x into a sum
of signals {xk} and X̂ into a sum of functions X̂k so that, for each k, xk

F←→ X̂k

in the strict sense of Definition 10.1.

It’s worth noting but not easy to prove that decent signals and their Fourier
transforms are essentially in one-to-one correspondence in the sense that if x F←→ X̂,
then x determines X̂ completely even if F fails and X̂ determines x completely even
if F−1 fails. In this sense, a signal and its Fourier transform are simply alternative
descriptions of the “same abstract object.” It’s like looking at one “thing” from
two different angles. The operative lingo, as in Chapter 9, is that “t 7→ x(t) is
a time-domain description of a signal, whereas Ω 7→ X̂(Ω) is a frequency-domain
description of that same signal.” Alternative terminology that I’ll often use calls
X̂ the spectrum of x or the spectral description of x.

We’ll see presently, in the context of the finite-duration A-440 and other ex-
amples, how X̂ provides a useful representation of the frequency content of x. For
now, compare what equation F−1 does for x to what a Fourier-series expansion
does for a To-periodic signal. The Fourier series expresses the periodic signal as a
superposition of pure sinusoids at a discrete set of frequencies {kΩo : k ∈ Z}. The
weights in the superposition are the Fourier-series coefficients. Meanwhile, equation
F−1 expresses x as a continuum superposition of pure sinusoids. The weights in
this continuum superposition are the values of X̂(Ω) as Ω ranges over frequency
space. People say for these reasons that a periodic signal has a discrete spectrum or
pure-point spectrum whereas a non-periodic x with a continuous Fourier transform
X̂ has a continuous spectrum.

It is difficult to characterize precisely the set of signals that possess Fourier
transforms in the sense of Definition 10.1. The following sufficient conditions will
have to do for now. Although they don’t tell the whole story by any means, they’re
useful things to know. Some are easier to prove than others, but I won’t prove any
of them.

10.3 Existence criteria for Fourier transforms:

• If x is a decent finite-duration signal, then X̂ exists and equation F holds.
Furthermore, X̂ is a bounded function of Ω. Similarly, if Ω 7→ X̂(Ω) is
a decent function of Ω that satisfies X̂(Ω) = 0 when |Ω| ≥ Ωm for some
Ωm > 0, then there exists a bounded signal x for which x

F←→ X̂, and
equation F−1 holds.
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• Suppose x is an infinitely differentiable signal that decreases rapidly as
|t| → ∞ in the sense that

lim
|t|→∞

tmDnx(t) = 0

for every m and n in N, where Dnx is the nth derivative of x. Then X̂

exists and both equations F and F−1 hold. In addition, Ω 7→ X̂(Ω) is an
infinitely differentiable function of Ω that decreases rapidly as |Ω| → ∞
in the sense that

lim
|Ω|→∞

ΩmDnX̂(Ω) = 0

for every m and n in N, where DnX̂ is the nth derivative of X̂ with respect
to Ω.
• If x is an absolutely integrable signal, then X̂ exists and equation F holds.

Furthermore, X̂ is a bounded function of Ω; in fact,

|X̂(Ω)| ≤ ‖x‖1 =
∫ ∞

−∞
|x(t)|dt for all Ω ∈ R .

• If x is a square-integrable signal, then X̂ exists and is a square-integrable
function of Ω. Both equations F and F−1 hold in a “mean-square sense,”
which means

lim
T→∞

∫ ∞

−∞

∣∣∣∣∣X̂(Ω)−
∫ T

−T

x(t)e−jΩtdt

∣∣∣∣∣
2

dΩ = 0

and

lim
Ω→∞

∫ ∞

−∞

∣∣∣∣∣x(t)− 1
2π

∫ Ω

−Ω

X̂(Ω)ejΩtdΩ

∣∣∣∣∣
2

dt = 0 .

When x is square-integrable, we have a result analogous to Parseval’s Theorem for
Fourier series.

10.4 Plancherel’s Theorem: If x and y are square-integrable signals with
respective Fourier transforms X̂ and Ŷ , then∫ ∞

−∞
x(t)y(t)dt =

1
2π

∫ ∞

−∞
X̂(Ω)Ŷ (Ω)dΩ

and, in particular, ∫ ∞

−∞
|x(t)|2dt =

1
2π

∫ ∞

−∞
|X̂(Ω)|2dΩ .

Operational rules and prototype examples
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To develop facility with manipulating expressions involving signals and their Fourier
transforms, it’s important to learn various operational rules that simplify the ma-
nipulations. In “proving” each of these rules, I’ll be casual about whether equation
F or F−1 holds. In particular, I’ll assume in each case the validity of whichever
equation makes the proof easier. Rest assured that you can start each proof with
the other equation if you wish.

10.5 Time-shift rule: If x F←→ X̂ then, for any to ∈ R, y = Shiftto
(x) has

Fourier transform Ŷ specified by

Ŷ (Ω) = e−jΩtoX̂(Ω) for all Ω ∈ R .

To see this, assume F−1 holds. Then

y(t) = x(t− to) =
1
2π

∫ ∞

−∞
X̂(Ω)ejΩ(t−to)dΩ =

1
2π

∫ ∞

−∞

(
e−jΩtoX̂(Ω)

)
ejΩtdΩ ,

and this is just equation F−1 for y, revealing that Ŷ (Ω) = e−jΩtoX̂(Ω) for all
Ω ∈ R. �

10.6 Frequency-shift rule: If x F←→ X̂ then, for any Ωo ∈ R, the signal y
with specification y(t) = ejΩotx(t) for all t ∈ R has Fourier transform Ŷ specified
by

Ŷ (Ω) = X̂(Ω− Ωo) for all Ω ∈ R .

To demonstrate this, start with equation F for x and plug in Ω − Ωo for Ω. You
get

X̂(Ω−Ωo) =
∫ ∞

−∞
x(t)e−j(Ω−Ωo)tdt =

∫ ∞

−∞

(
ejΩotx(t)

)
e−jΩtdt =

∫ ∞

−∞
y(t)e−jΩtdt ,

and this is equation F for y, revealing that Ŷ (Ω) = X̂(Ω− Ωo) for all Ω ∈ R. �

10.7 Time-derivative rule: If x F←→ X̂ and x is differentiable, then the
signal y = Dx, where D denotes time derivative, has Fourier transform Ŷ with
specification

Ŷ (Ω) = jΩX̂(Ω) for all Ω ∈ R .

Start the argument with equation F−1 for x and you get

y(t) = Dx(t) = D

(
1
2π

∫ ∞

−∞
X̂(Ω)ejΩtdΩ

)
=

1
2π

∫ ∞

−∞

(
jΩX̂(Ω)

)
ejΩtdΩ ,

and this is equation F−1 for y, revealing that Ŷ (Ω) = jΩX̂(Ω) for all Ω ∈ R. �

10.8 Frequency-derivative rule: If x F←→ X̂ and X̂ is a differentiable func-
tion of Ω, then Ŷ = DX̂, where D denotes derivative with respect to Ω, is the
Fourier transform of the signal y with specification

y(t) = −jtx(t) for all t ∈ R .
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Start the argument with equation F for x and you get

Ŷ (Ω) = DX̂(Ω) = D

(∫ ∞

−∞
x(t)e−jΩtdt

)
=
∫ ∞

−∞
(−jtx(t)) e−jΩtdΩ ,

and this is just equation F for y F←→ Ŷ , where Ŷ = DX̂ and y(t) = −jtx(t) for
every t ∈ R. �

10.9 Scaling rule: If x F←→ X̂ and a > 0, then the signal y with specification
y(t) = x(at) for all t ∈ R has Fourier transform Ŷ with specification

Ŷ (Ω) =
1
a
X̂

(
Ω
a

)
for all Ω ∈ R .

Start with equation F for y. You find that

Ŷ (Ω) =
∫ ∞

−∞
x(at)e−jΩtdt

=
∫ ∞

−∞
x(τ)e−jΩ(τ/a)(1/a)dτ

=
1
a

(∫ ∞

−∞
x(τ)e−j(Ω/a)τdτ

)
for all Ω, so Ŷ (Ω) = 1

aX̂
(

Ω
a

)
for all Ω ∈ R. �

10.10 Convolution rule: If x1
F←→ X̂1 and x2

F←→ X̂2 and x = x1∗x2 exists,
then x

F←→ X̂1X̂2. In other words, the Fourier transform takes convolution in the
time domain to simple function multiplication in the frequency domain.

In “proving” this one, I’ll assume first that both x1 and x2 are absolutely inte-
grable, which implies that we can interchange orders of integration with impunity
in the equations below. Start with equation F for x.

X̂(Ω) =
∫ ∞

−∞
x(t)e−jΩtdt

=
∫ ∞

−∞

(∫ ∞

−∞
x1(τ)x2(t− τ)dτ

)
e−jΩtdt

=
∫ ∞

−∞
x1(τ)

(∫ ∞

−∞
x2(t− τ)e−jΩtdt

)
dτ

=
∫ ∞

−∞
x1(τ)

(
e−jΩτ X̂2(Ω)

)
dτ

=
(∫ ∞

−∞
x1(τ)e−jΩτdτ

)
X̂2(Ω)

= X̂1(Ω)X̂2(Ω) for all Ω ∈ R .

The crucial step on the fourth line follows from the time-shift rule applied to the
inner integral.

When both x1 and x2 are square-integrable, an entirely different argument
applies. First fix t ∈ R and let y be the signal with specification y(τ) = x2(t− τ)
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for all τ ∈ R. Observe that

〈x1, y〉 =
∫ ∞

−∞
x1(τ)y(τ)dτ

=
∫ ∞

−∞
x1(τ)x2(t− τ)dτ

= x1 ∗ x2(t) .

Furthermore, y has Fourier transform Ŷ with specification

Ŷ (Ω) =
∫ ∞

−∞
y(τ)e−jΩτdτ

=
∫ ∞

−∞
x2(t− τ)e−jΩτdτ

=
∫ ∞

−∞
x2(ζ)e−jΩ(t−ζ)dζ

= X̂2(Ω)e−jΩt

for all Ω ∈ R. By Plancherel’s Theorem 10.4,

〈x, y〉 =
1
2π

∫ ∞

−∞
X̂(Ω)Ŷ (Ω)dΩ ,

so

x1 ∗ x2(t) =
1
2π

∫ ∞

−∞
X̂1(Ω)X̂2(Ω)ejΩtdΩ for all t ∈ R ,

which is just equation F−1 for x1 ∗ x2. �

10.11 Modulation rule: If x1
F←→ X̂1 and x2

F←→ X̂2 and X̂ = X̂1 ∗ X̂2

exists, then the signal x such that x F←→ X̂ is

x = 2πx1x2 .

In other words, the Fourier transform (almost) takes multiplication in the time
domain to convolution in the frequency domain.

In proving this one, I’ll assume first that both X̂1 and X̂2 are absolutely inte-
grable functions of Ω, which implies that we can interchange orders of integration
with impunity in the equations below. Start with equation F−1 for x.

x(t) =
1
2π

∫ ∞

−∞
X̂(Ω)ejΩtdΩ

=
1
2π

∫ ∞

−∞

(∫ ∞

−∞
X̂1(ζ)X̂2(Ω− ζ)dζ

)
ejΩtdΩ

=
∫ ∞

−∞
X̂1(ζ)

(
1
2π

∫ ∞

−∞
X̂2(Ω− ζ)ejΩtdΩ

)
dζ

=
∫ ∞

−∞
X̂1(ζ)

(
ejζtx2(t)

)
dζ

=
(∫ ∞

−∞
X̂1(ζ)ejζtdζ

)
x2(t)

= 2πx1(t)x2(t) for all t ∈ R .
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The step on the fourth line follows from the Frequency-shift rule applied to the inner
integral. When x1 and x2 are square-integrable, an argument based on Plancherel’s
Theorem similar to the one in the proof of 10.10 applies. �

10.12 Symmetry properties: Suppose x F←→ X̂.

• If x is real-valued, then X̂(−Ω) = X̂(Ω) for all Ω ∈ R.
• If x is an even function of t, i.e., if x(−t) = x(t) for all t ∈ R, then X̂ is

an even function of Ω, i.e. X̂(−Ω) = X̂(Ω) for all Ω ∈ R.
• If x is an odd function of t, i.e., if x(−t) = −x(t) for all t ∈ R, then X̂ is

an odd function of Ω, i.e. X̂(−Ω) = −X̂(Ω) for all Ω ∈ R.
• If x is real-valued and even, then X̂ is also real-valued and even.
• If x is real-valued and odd, then X̂ is pure imaginary-valued and odd.

I’ll prove the first of these explicitly starting from F .

X̂(−Ω) =
∫ ∞

−∞
x(t)e−j(−Ω)tdt =

∫ ∞

−∞
x(t)e−jΩtdt =

∫ ∞

−∞
x(t)e−jΩtdt = X̂(Ω) .

The last two follow from the first three. The second and third are simple exercises
in changing variables in integrals. �

The operational rules enable us to construct a variety of handy prototype ex-
amples of Fourier transform pairs. First recall that 1 F←→ 2πδ. Applying the
Frequency-shift rule 10.6, we find that for any Ωo ∈ R

ejΩot F←→ 2πδ(Ω− Ωo) .

Here and in what follows I’m taking some notational liberties. Formally, what I
mean is that the signal x with specification x(t) = ejΩot for all t ∈ R has Fourier
transform X̂ with specification X̂(Ω) = 2πδ(Ω). Invoking Euler’s Formulas leads
to

cos Ωot
F←→ πδ(Ω− Ωo) + πδ(Ω + Ωo)

and
sinΩot

F←→ π

j
δ(Ω− Ωo)−

π

j
δ(Ω + Ωo) .

If x is a periodic signal with a Fourier series

x(t) =
∞∑

k=−∞

cke
jkΩot for all t ∈ R ,

then the foregoing examples enable us to think of x as having a Fourier transform
X̂ with specification

X̂(Ω) =
∞∑

k=−∞

2πckδ(Ω− kΩo) .

This X̂ is an impulse train in the frequency domain. It illuminates graphically the
intuitive assertion that the frequency content of x is concentrated entirely on the
discrete set of frequencies {kΩo : k ∈ Z}.
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The Fourier transform pair

e−αtu(t) F←→ 1
α+ jΩ

,

which holds for α > 0, spawns a whole sequence of prototype examples. First,
let’s make sure we believe that this one is indeed a Fourier transform pair. Let
x(t) = e−αtu(t) for t ∈ R. Apply equation F to find X̂.

X̂(Ω) =
∫ ∞

−∞
x(t)e−jΩtdt =

∫ ∞

0

e−(α+jΩ)tdt =
−1

α+ jΩ
e−(α+jΩ)t

∣∣∣∣∞
0

=
1

α+ jΩ
.

The upper limit in the second-to-last expression evaluates to zero because α > 0
and |e−jΩt| = 1 for all t. Apply the frequency-derivative rule to this example and
you get

−jtx(t) F←→ −j
(α+ jΩ)2

,

which because of linearity is the same as

tx(t) F←→ 1
(α+ jΩ)2

.

Apply the frequency-derivative rule again.

−jt2x(t) F←→ −2j
(α+ jΩ)3

,

which is the same as
t2

2
x(t) F←→ 1

(α+ jΩ)3
.

Repeated applications of the frequency-derivative rule lead to the following list of
prototype examples: for every integer m > 0,

tm

m!
e−αtu(t) F←→ 1

(α+ jΩ)m+1
.

Rectangular pulses star in the following two examples, both of which play cen-
tral roles in applications of Fourier transforms to signal and system analysis.

10.13 Example: x = pa for some a > 0. Since x is decent and has finite
duration, it has a Fourier transform X̂ that we can figure out from equation F .

X̂(Ω) =
∫ ∞

−∞
x(t)e−jΩtdt

=
∫ a/2

−a/2

e−jΩtdt

=
ej(aΩ/2) − e−j(aΩ/2)

jΩ

=
2 sin(aΩ/2)

Ω
for all Ω ∈ R .
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The X̂ of this example takes the form of what people call a sinc function. Despite
the Ω in the denominator, X̂(0) is finite. Using sin θ/θ → 1 as θ → 0, you find that

X̂(0) = lim
Ω→0

a sin(aΩ/2)
(aΩ/2)

= a .

X̂ has zero-crossings where aΩ/2 is an integer multiple of π, i.e. at all Ω-values of
the form 2mπ/a for m ∈ Z. The peaks in X̂ decay toward zero as |Ω| → ∞ like
1/|Ω|. See Figure 1.

10.14 Example: X̂ is the function Ω 7→ pΩo(Ω) for some Ωo > 0. In other
words, X̂ is a rectangular pulse in the frequency domain. We can use equation F−1

to figure out the signal x that has X̂ as Fourier transform.

x(t) =
1
2π

∫ ∞

−∞
X̂(Ω)ejΩtdΩ

=
1
2π

∫ Ωo/2

−Ωo/2

ejΩtdΩ

=
ej(Ωot/2) − e−j(Ωot/2)

j2πt

=
sin(Ωot/2)

πt
for all t ∈ R .

The x of this example is a sinc function in the time domain. Again using sin θ/θ → 1
as θ → 0, you find that

x(0) = lim
t→0

Ωo

2π
sin(Ωot/2)
(Ωot/2)

=
Ωo

2π
.

x has zero-crossings where Ωot/2t is an integer multiple of π, i.e. at all t-values of
the form 2mπ/Ωo for m ∈ Z. The peaks in x decay toward zero as |t| → ∞ like
1/|t|. See Figure 2.

Example 10.13 helps us make sense of the finite-duration A-440. A reasonable
mathematical model for a particularly simple finite-duration A-440 is the signal y
with specification

y(t) = pa(t) cos(880πt) =
{

cos(880πt) −a/2 ≤ t < a/2
0 otherwise.

A more general model would replace the cosine with an arbitrary periodic signal x
with fundamental frequency 880π. Euler’s formula implies that

y(t) = (pa(t)/2)ej880πt + (pa(t)/2)e−j880πt .

By the Frequency-shift rule 10.6 along with Example 10.13,

Ŷ (Ω) =
sin a

2 (Ω− 880π)
Ω− 880π

+
sin a

2 (Ω + 880π)
Ω + 880π

,

so Ŷ is the sum of two sinc functions, one centered on Ω = 880π and the other on
Ω = −880π. Looking at Figure 3 might convince you that it makes sense to say
that y has significant frequency content in the neighborhood of frequency Ω = 880π,



152 10. CONTINUOUS-TIME FOURIER TRANSFORMS

which is 440 Hz. That property of y’s frequency content supports nicely our original
intuition about the finite-duration A-440.

Think now about what happens as we extend the duration of the finite-duration
A-440, which is the same as letting a get larger. The peaks of the two sinc functions
that constitute Ŷ are both a/2. The zero-crossings in each sinc function occur at
frequencies of the form ±880π + 2mπ/a for m ∈ Z. Adding the two sinc functions
causes the peaks and zero crossings to change slightly, but it’s fairly clear what
happens when a gets large. The central peaks at Ω = ±880π get taller and the zero
crossings cluster around Ω = ±880π, The picture of Ŷ starts looking more and more
like a pair of impulses located at Ω = ±880π, which is not surprising because as a
increases y looks more and more like a true 440 Hz cosine whose Fourier transform
has specification πδ(Ω− 880π) + πδ(Ω + 880π).

Heisenberg’s Inequality and bandlimited signals

The examples δ F←→ 1 and 1 F←→ 2πδ are extreme instances of a general rule,
namely: if a signal is sharply focused in the time domain, its Fourier transform
tends to be spread out, whereas a signal with Fourier transform sharply focused in
Ω-space tends to be spread out in time. The Scaling rule 10.9 gives this qualitative
property some quantitative teeth. From that rule it follows that for any a > 0 we
have

t 7→
√
ax(at) F←→ Ω 7→ 1√

a
X̂(

Ω
a

) .

Consider starting with a nominal x. For large a, t 7→
√
ax(at) is a taller and more

sharply focused version of x. Correspondingly, Ω 7→ (1/
√
a)X̂(Ω/a) is a squashed-

down spread-out version of X̂. For small a, t 7→
√
ax(at) is a more spread-out

version of x, and Ω 7→ (1/
√
a)X̂(Ω/a) is a taller more sharply focused version of

X̂. So increasing a causes the time-domain picture to sharpen its focus and the
frequency-domain picture to flatten and spread out, and vice versa for decreasing
a.

As it happens, the scaling rule is related to the inequality that constitutes
Heisenberg’s Uncertainty Principle in quantum mechanics. Roughly speaking, the
position and momentum wave functions for a particle are a Fourier-transform pair.
Accurate knowledge of position corresponds to a sharply focused position wave
function and hence a spread-out momentum wave function, which corresponds in
turn to inaccurate knowledge of momentum — and vice versa. An example of a
pertinent quantitative result is the following.

10.15 Heisenberg’s Inequality: Suppose x is a square-integrable signal and
x

F←→ X̂. Then(∫ ∞

−∞
t2|x(t)|2dt

)1/2(∫ ∞

−∞
Ω2|X̂(Ω)|2dΩ

)1/2

≥
√
π

2
‖x‖22 ,

and equality holds only if x is a Gaussian signal, i.e. x(t) = Coe
−αt2 for all t ∈ R

for some Co ∈ C and α > 0.
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I’ll omit the proof of Heisenberg’s Inequality, which rests on the Schwarz In-
equality 9.7 and is easiest when you assume that x is infinitely differentiable and
rapidly decreasing in the sense that tmDnx(t) → 0 as |t| → ∞ for all nonnegative
integers m and n, where Dnx denotes the nth derivative of x. To understand the
intuition behind Heisenberg’s Inequality, think of f = |x|2/‖x‖22 as a probability
distribution on t-space and g = |X̂|2/‖X̂‖22 as a probability distribution on Ω-space.
Suppose for convenience that the means of the probability distributions f and g
lie at t = 0 and Ω = 0 respectively. Then the standard deviations of the f and g
distributions are

σf =
1
‖x‖2

(∫ ∞

−∞
t2|x(t)|2dt

)1/2

and

σg =
1

‖X̂‖2

(∫ ∞

−∞
Ω2|X̂(Ω)|2dΩ

)1/2

.

Heisenberg’s Inequality states that

σfσg ≥
√
π

2
‖x‖22

‖x‖2‖X̂‖2
=
√
π

2
1√
2π

=
1
2
.

I invoked Plancherel’s Theorem 10.4 here, which implies that ‖x‖2/‖X̂‖2 = 1/
√

2π.
The standard deviations measure the spreads of the distributions about their means,
and Heisenberg’s Inequality puts a lower bound on the product of those standard
deviations. The smaller one is, the larger the other has to be.

One could argue that any finite-duration signal is, on some level, “sharply fo-
cused in the time domain.” The frequency-domain analogue of “finite duration”
will feature prominently in our discussion of sampling and reconstruction later on.

10.16 Definition: Suppose x F←→ X̂. We say that x is a bandlimited signal,
or that x has finite bandwidth, when there exists some Ωm > 0 such that X̂(Ω) = 0
for |Ω| ≥ Ωm. In this case, we also say that x is bandlimited to within Ωm. The
bandwidth of a bandlimited signal x is

Ω∗
m = inf

(
{Ωm > 0 : X̂(Ω) = 0 when |Ω| > Ωm}

)
.

Many, if not most, signals of practical interest are bandlimited. Any signal au-
dible to humans has frequency content confined entirely between 0 and 20,000 Hz,
so in the terminology of Definition 10.16 it is bandlimited to within Ωm = 40, 000π.
Other instances of band speak include narrowband and broadband, both of which
have obvious meanings as modifiers of bandlimited signals. If you think of a ban-
dlimited signal as being “sharply focused in the frequency domain,” the following
result won’t surprise you.
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10.17 Theorem: Suppose x F←→ X̂ and x 6= 0. If x has finite duration, then
x is not bandlimited. If x is bandlimited, then x does not have finite duration.

Proof: Suppose x has finite duration and let T > 0 be such that x(t) = 0 for
|t| ≥ T . Suppose x is also bandlimited to within Ωm > 0. I’ll show that x = 0.
Assuming X̂ is a reasonable function of Ω, equation F−1 holds and we can write

x(t) =
1
2π

∫ Ωm

−Ωm

X̂(Ω)ejΩtdΩ for all t ∈ R .

Since x(t) is identically zero for all |t| ≥ T , Dnx(t) is identically zero for all |t| > T ,
whereDnx(t) is the nth derivative of x evaluated at time t. (Note: I’m not assuming
that x is a differentiable signal.) Pick some t1 > T and evaluate the nth time-
derivative of the equation above at time t1 and you get∫ Ωm

−Ωm

X̂(Ω)(jΩ)nejΩt1dΩ = 0 for all n ∈ N .

Finally, observe that

x(t) =
∫ Ωm

−Ωm

X̂(Ω)ejΩ(t−t1)ejΩt1dΩ

=
∞∑

n=0

(t− t1)n

n!

∫ Ωm

−Ωm

X̂(Ω)(jΩ)nejΩt1dΩ = 0 for all t ∈ R .

I obtained the second line by expanding one of the exponentials under the integral
sign. Conclude that if x has finite duration and is also bandlimited, then x = 0. �

Frequency response, filters, and amplitude modulation

In case you haven’t noticed already, we actually met our first example of a Fourier
transform in Chapter 9 while discussing systems-analysis reasons for studying Fourier
series. If a LTI system has a frequency response in the sense of Definition 9.14,
then the system’s impulse response and frequency response are a Fourier-transform
pair, and equation F gives the frequency response in terms of the impulse response.
So if a system has a frequency response Ĥ, you can figure out Ĥ in at least two
ways:

• First find the output y of the system when the input is t 7→ ejΩt. You’ll
find that y(t) = Ĥ(Ω)ejΩt for all t ∈ R. Do this for every Ω ∈ R and you
get Ĥ.
• First find the impulse response h of the system, then find Ĥ by taking the

Fourier transform of h using equation F .
We encountered the frequency response when analyzing how LTI systems re-

spond to pure sinusoids and more general periodic signals. The convolution rule for
Fourier transforms enables us to analyze and interpret a system’s responses to more
general inputs in terms of the system’s frequency response. Suppose a LTI system
has system mapping S and impulse response h and possesses a frequency response
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Ĥ. Let x be an input to the system and suppose x F←→ X̂. Since h F←→ Ĥ and
S(x) = h ∗ x, the Convolution rule 10.10 implies that

S(x) F←→ ĤX̂ .

In this way, the frequency response re-shapes the frequency content of an input
x, as embodied in X̂, into the frequency content of the corresponding output, as
embodied in Ŝ(x) = ĤX̂. Thus every system with a frequency response acts as a
frequency-selective filter of sorts. If Ĥ(Ω) is large for Ω near Ω1, then the system
will boost the part of the input spectrum near frequency Ω1. If Ĥ(Ω) is small for
Ω near Ω1, then the system will attenuate the part of the input spectrum near
frequency Ω1.

In signals and systems applications, one often encounters discussions featuring
ideal filters of various kinds. While none of these filters is physically realizable,
a lot of work in signal processing focuses on approximating their behavior with
physically realizable LTI systems. The three ideal filters are

• The ideal low-pass filter: this is the LTI system with frequency response

Ĥ(Ω) =
{

1 |Ω| ≤ Ω2

0 otherwise,

where Ω2 > 0 is some given frequency.
• The ideal high-pass filter: this is the LTI system with frequency response

Ĥ(Ω) =
{

1 |Ω| ≥ Ω1

0 otherwise,

where Ω1 > 0 is some given frequency.
• The ideal bandpass filter: this is the LTI system with frequency response

Ĥ(Ω) =
{

1 Ω1 ≤ |Ω| ≤ Ω2

0 otherwise,

where Ω1 > 0 and Ω2 > 0 are given frequencies with Ω1 < Ω2.
The frequencies Ω1 and Ω2 in these examples are called cutoff frequencies for the

filters. Each filter has a passband and a stopband. The passband has the following
characterization: Ωo is in the passband when the input signal t 7→ ejΩot passes
through the filter unchanged. The stopband has the following characterization: Ωo

is in the stopband when the filter annihilates the input signal t 7→ ejΩot. Because
the output of a filter with frequency response Ĥ in response to input t 7→ ejΩot is
t 7→ Ĥ(Ωo)ejΩot, and because each of the ideal filters has Ĥ(Ω) = 1 over some range
of frequencies, that range of frequencies therefore constitutes the filter’s passband.
Similarly, each filter has Ĥ(Ω) = 0 over some range of frequencies, and that range
of frequencies constitutes the filter’s stopband.

If x is a more general input signal and x F←→ X̂, we know from the Convolution
rule 10.10 that the output y of the system with frequency response Ĥ due to input
x has Fourier transform Ŷ with specification

Ŷ (Ω) = Ĥ(Ω)X̂(Ω) for all Ω ∈ R .

Thus the ideal filters serve to “chop” the spectrum of x in such a way that Ŷ
looks exactly like X̂ over the range of frequencies lying in the filters’ passbands and
Ŷ (Ω) = 0 for all Ω lying in the filters’ stopbands. An ideal filter passes unchanged
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the “frequency content of x” that lies in the filter’s passband and annihilates the
“frequency content of x” that lies in its stopband.

It would be nice if we could build LTI systems that behaved just like these
ideal filters, but, as I mentioned earlier, we can’t. What I mean is that no causal
LTI system has frequency response that matches that of any of the three ideal
filters. An elementary way to see this is to refer to the Symmetry properties 10.12
of Fourier transforms. The frequency responses of the ideal filters are all real-valued
and even functions of Ω. Accordingly, the impulse responses of the LTI systems
corresponding with the ideal filters must be real-valued and even functions of t.
Such signals cannot be impulse responses of causal LTI systems by Theorem 8.5.

More generally, no causal LTI system with a decent real-valued impulse re-
sponse h has a real-valued frequency response Ĥ. Referring again to the Symmetry
properties 10.12, note that if h is real-valued and h

F←→ Ĥ, then Ĥ(−Ω) = Ĥ(Ω)
for all Ω. If we write Ĥ in polar form, i.e.

Ĥ(Ω) = |Ĥ(Ω)|ejφ(Ω) ,

we can conclude that |Ĥ(−Ω)| = |Ĥ(Ω)| and φ(−Ω) = −φ(Ω) for all Ω. If Ĥ is
real-valued, then φ(Ω) = 0 or ±π for all Ω, which makes Ω 7→ ejφ(Ω) a real-valued
and even function of Ω since φ is an odd function of Ω. In turn, that makes Ĥ itself
a real-valued and even function of Ω, so h is a real-valued and even signal, implying
by virtue of Theorem 8.5 that system with impulse response h is not causal.

The crucial observation is that the frequency response of any physically realiz-
able LTI system will have some nontrivial phase Ω 7→ φ(Ω). In essence, what’s ideal
about the ideal filters is that they have zero phase. A number of typical real-world
filter-design strategies consist of two steps:

• Figure out a desired frequency-response magnitude Ω 7→ |Ĥdes(Ω)|
• Design a causal LTI system whose frequency-response magnitude matches

the desired magnitude and whose phase is “not too damaging.”
Phase wouldn’t be much of a problem if we were interested only in pure sinu-

soidal inputs to the system. Suppose we have |Ĥdes|. Let ydes be the output that
arises from applying input x specified by x(t) = ejΩot to the (unrealizable) system
with frequency response |Ĥdes|, so

ydes(t) = |Ĥdes(Ωo)|ejΩot for all t ∈ R .

The output y that arises when we apply the same input to any system with fre-
quency response

Ĥ(Ω) = |Ĥdes(Ω)|ejφ(Ω) for all Ω ∈ R
has specification

y(t) = Ĥ(Ωo)ejΩot

= |Ĥdes(Ωo)|ej(Ωot+φ(Ωo))

= |Ĥdes(Ωo)|ejΩo(t+φ(Ωo)/Ωo)

= ShiftT (ydes(t)) ,

where T = −φ(Ωo)/Ωo. Thus the response to x of any system whose frequency
response has the desired magnitude along with some phase is simply a time shift of
the response to x of the desired phase-free system.
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As soon as we force a system with an input whose frequency content is dis-
tributed over a range of frequencies — a discrete range for an arbitrary periodic
signal and a continuous range for a more general signal — phase in the frequency
response becomes an issue. Roughly speaking, different frequency components of
the input get phase-shifted by different amounts. What might it mean for phase in
a frequency response to be “not too damaging?”

Suppose we can solve the filter-design problem above by building a system
whose frequency response has linear phase in the sense that, for some T > 0,

Ĥ(Ω) = |Ĥdes(Ω)|e−jΩT for all Ω ∈ R .

Then for an arbitrary input x, the output y of the system in response to x will have
Fourier transform

Ŷ (Ω) = e−jΩT |Ĥdes(Ω)|X̂(Ω) .

By the Time-shift rule 10.5, y = ShiftT (ydes), where ydes is the response to x of
the ideal phase-free system. In other words, the response to an arbitrary input
of a system whose frequency response has linear phase will be a delayed version
of the response to that input of the unrealizable system with phase-free frequency
response. One could therefore argue that linear phase has relatively benign effects.

Applications demand not only that we design filters that perform according to
some specifications but also that we devise schemes to mitigate the undesirable im-
pacts of filters we’re stuck with. Consider the problem of transmitting a relatively
low-frequency signal, say an audio signal, from a source to a distant destination or
destinations. Acoustical approaches to the problem are obvious non-starters. Con-
verting the audio signal to an electromagnetic signal to be transmitted wirelessly
through the atmosphere is a step in the right direction, but the atmosphere acts
as a high-pass filter of electromagnetic radiation, and the frequency content of our
electromagnetic signal lies well outside of the atmospheric filter’s passband. How
do we circumvent the atmospheric obstacle?

Suppose x is bandlimited to within a relatively small Ωm > 0 — for example,
Ωm ≈ 40, 000π for an audio signal. Let Ωc > 0 be large enough so that the intervals
of frequencies [Ωc −Ωm,Ωc + Ωm] and [−Ωc −Ωm,−Ωc + Ωm] lie within the pass-
band of the atmosphere, which for simplicity I’ll view as an ideal high-pass filter.
Form the signal z with specification

z(t) = x(t) cos Ωct

=
1
2
x(t)ejΩct +

1
2
x(t)e−jΩct for all t ∈ R .

By the Frequency-shift rule 10.6,

Ẑ(Ω) =
1
2
X̂(Ω− Ωc) +

1
2
X̂(Ω + Ωc) ,

so the nonzero part of z’s spectrum lies in the filter’s passband, and if we transmit
z it passes through the filter unchanged. Essentially what we’ve done is piggy-back
the low-frequency signal x onto a high-frequency signal z. In this particular exam-
ple, z is a high-frequency cosine with amplitude modulated by the low–frequency
signal x, which is why people allude to this scheme as amplitude modulation and
call Ωc the carrier frequency associated with the scheme. The recipient of the trans-
mitted signal z can recover x, at least approximately, by first forming the signal y
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with specification

y(t) = z(t) cos Ωct

=
1
2
z(t)ejΩct +

1
2
z(t)e−jΩct for all t ∈ R .

The Frequency-shift rule yields

Ŷ (Ω) =
1
2
Ẑ(Ω− Ωc) +

1
2
Ẑ(Ω + Ωc) ,

and you can verify easily that Ŷ (Ω) = X̂(Ω)/2 for −Ωm ≤ Ω ≤ Ωm. Passing y
through an ideal low-pass filter with frequency response

Ĥ(Ω) =
{

2 when |Ω| ≤ Ωm

0 otherwise

yields x exactly, but of course you can’t build an ideal low-pass filter, so you need
to approximate it and therefore can produce at best an approximation of x.

The scheme I’ve just described, known as amplitude modulation with synchro-
nous demodulation, doesn’t work in practice because it requires every recipient of
the signal z to have access to a cosine signal synchronized perfectly with the cosine
signal at the source — and it gets worse when you try to account for source-to-
destination time delays, which differ for the different destinations that arise in a
broadcast setting. Amplitude modulation with asynchronous demodulation gets
around this difficulty by forming its z-signal differently and prescribing a more re-
alistic procedure for recovering x approximately from z. Assume again that x is
bandlimited to within Ωm > 0 and that we’ve selected Ωc as above. Choose any
m ∈ (0, 1) for which 1 + mx(t) > 0 for all t ∈ R, where for simplicity I’m con-
sidering only real-valued x. Such an m, called the modulation index, exists when
x is bounded, which is a reasonable assumption. The transmitted signal z has
specification

z(t) = (1 +mx(t)) cos Ωct for all t ∈ R .

Thus z is the sum of a cosine whose frequency lies within the channel pass-band and
the signal t 7→ mx(t) cos Ωct, which we know already passes through the channel
unadulterated. Accordingly, z arrives unchanged at the destination(s). Recovering
x from z — i.e. demodulation — entails following the positive peaks in z to get an
approximation of 1 + mx and from that an approximation of x. No synchronous
cosine generator is required, unlike the previous scheme where z(t) = x(t) cos Ωct
for all t. Why, you might ask, couldn’t we have demodulated asynchronously there,
as well? The answer is simple: following the positive peaks in z(t) = x(t) cos Ωct
yields an approximation of |x|, which isn’t the same as x if x ever takes on negative
values.

Finally, consider the multiple-access problem that arises when several agents
want to transmit their own low-frequency signals simultaneously through the same
high-pass channel using amplitude modulation. Say agent i, for 1 ≤ i ≤ N , wants
to send signal xi, and assume that all the signals xi are bandlimited to within
Ωm. Every agent wants to transmit its signal through the channel by modulating
the amplitude of a high-frequency cosine, so agent i transmits a signal zi with
spectrum confined to Ωi − Ωm ≤ |Ω| ≤ Ωi + Ωm, where Ωi is agent i’s carrier
frequency. Recipients receive the signal z =

∑N
i=1 zi, and a recipient looking to

recover xi by demodulation must be able to extract zi from z.
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To make that extraction possible, we assign carrier frequencies to the trans-
mitting agents so as to allow them to share the channel bandwidth in such a way
that their transmissions don’t interfere with each other. Specifically, we require
|Ωi − Ωj | ≥ 2Ωm for all i and j. This condition guarantees that the spectra of the
various zi are nonzero over disjoint intervals in Ω-space. A recipient of the signal z
can extract zi by sending z through a band-pass filter that annihilates all the zj for
j 6= i and can subsequently recover xi approximately from zi as before. Figure 4
might help you understand this scheme, known as frequency-division multiplexing.

AM radio, roughly speaking, solves the problem of broadcasting multiple au-
dio signals simultaneously over long distances by implementing frequency-division
multiplexing of amplitude-modulated signals. In the US, the FCC assigns carrier
frequencies to transmitting agents in local AM markets wherein agents’ transmis-
sions might interfere with each other without regulation. The numbers on an AM
radio station-selection dial represent carrier frequencies in kilohertz. Centering
that dial on Ωi — more accurately on Ωi/2π — slides the passband of a vari-
able band-pass filter so as to capture the signal zi associated with the agent using
the carrier frequency Ωi. I won’t elaborate on various bandwidth-conserving and
fidelity-enhancing embellishments of the basic schemes I’ve described. Our goal
is to understand the essential mathematics and also arguably to appreciate how
mathematics motivates clever solutions to real-world engineering problems.





CHAPTER 11

The Discrete-Time Fourier Transform and
Sampling

We’ve developed some facility with frequency-domain concepts in continuous
time. Expanding a periodic signal in a Fourier series — a discrete superposition of
pure sinusoids — reveals how the signal’s frequency content is distributed over a
discrete set of frequencies. We can’t expand a non-periodic signal in a Fourier series,
but we can often express it as a “continuum superposition” of pure sinusoids using
the continuous-time Fourier transform by means of equation F−1. Like Fourier
coefficients for periodic signals, the Fourier transform of a continuous-time signal
indicates how the signal’s frequency content, also known as its spectral content, is
distributed over frequency space. How do we make sense of the frequency-domain
idea for discrete-time signals?

Definition of the DTFT

The fundamental question is, what might it mean for a discrete-time signal to have
frequency content at some frequency ωo? The most elementary periodic signal in
continuous time is a pure sinusoid like t 7→ ejΩot, which has all its frequency content
at Ωo. So how about declaring that the analogous discrete-time signal n 7→ ejnωo

has frequency content at ωo? Let’s make that declaration while keeping in mind
that its meaning isn’t obvious. For starters, the sequence {ejnωo} is rarely a periodic
sequence of numbers, so the words “frequency” and “period” no longer dance in
step with each other. One source of difficulty is that, unlike the continuous time
variable t, the discrete time index n is “unit-free.” We think of t as being measured
in seconds, so frequencies Ω are measured in radians per second. In discrete time,
we have no corresponding unit-like notion associated with the frequency variable
ω. Observe also that ejnωo = ejn(ωo+2πk) for all integers n and k. So if n 7→ ejnωo

has frequency content at ωo, then it ought to have the same frequency content at
ωo + 2πk for every k. It’s reasonable to expect the same to be true of an arbitrary
discrete-time signal x — that is, if x has frequency content at ωo, then x ought to
have the same frequency content at ωo + 2πk.

Let’s now see what happens if we attempt to define the discrete-time Fourier
transform by imitating the continuous-time theory. Let x ∈ CZ be a complex-valued
discrete-time signal. The equation

(DT FT ) X̂(ω) =
∞∑

n=−∞
x(n)e−jnω for all ω ∈ R

161
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is the analogue of equation F in continuous time. The sum in DT FT need not
converge — it depends on properties of the signal x. Note that if it does converge
for all ω ∈ R, the function ω 7→ X̂(ω) is periodic in ω, and has 2π as a period.
Equation DT FT is tantamount to a Fourier-series expansion of the function X̂. If
you compare DT FT with the Fourier series

X̂(ω) =
∞∑

k=−∞

cke
jkω for all ω ∈ R ,

for X̂, you see that x(k) = c−k for all k ∈ Z. Thus

x(n) =
1
2π

∫ π

−π

X̂(ω)e−j(−n)ωdω for all n ∈ Z ,

which is the same as

(DT FT −1) x(n) =
1
2π

∫ π

−π

X̂(ω)ejnωdω for all n ∈ Z .

Here is the formal definition of the discrete-time Fourier transform.

11.1 Definition: Let x ∈ CZ be a discrete-time signal and let ω 7→ X̂(ω)
be a complex-valued function of the real variable ω that has 2π as a period. We
say that x and X̂ are a discrete-time Fourier transform pair when one or both of
the equations DT FT or DT FT −1 holds. In this case, we also say that X̂ is the
discrete-time Fourier transform, or the DTFT, of x, and write

x
DT FT←−−→ X̂ .

It’s worth pondering what the 2π-periodicity of X̂ means intuitively. Based on
our declaration that the pure discrete-time sinusoid n 7→ ejnωo has frequency con-
tent at ωo and therefore at every frequency ωo +2πk, we developed the expectation
that the frequency content of an arbitrary discrete-time signal x ought to be the
same in the neighborhood of each frequency ωo + 2πk as it is in the neighborhood
of frequency ωo. Thus X̂, which is supposed to represent the frequency content
of the signal x, is unsurprisingly 2π-periodic. The periodicity of X̂ allows us to
determine X̂ completely by specifying it on the ω-interval −π ≤ ω ≤ π. Getting
the entire X̂ from such a partial specification entails a simple 2π-periodic extension.
For example, if X̂ resembles the graph in Figure 1 on the interval |ω| ≤ π, then X̂
resembles the graph in Figure 2 as a function of all ω.

I won’t spend a lot of time talking about what signals have DTFTs and what
signals don’t. Suffice it to say that not every signal has a DTFT and not every
2π-periodic function of ω is the DTFT of some signal. For example, the signal x
with specification x(n) = 3|n| for all n ∈ Z doesn’t have a DTFT. It’s fairly easy
to see for this example that the sum in DT FT won’t converge for most ω ∈ R.
It’s true but not so easy to see that you can’t find a function X̂ so that DT FT −1

holds for the given x. In view of our observation that the values of a signal x are
Fourier-series coefficients for X̂, the question of whether a signal x has a DTFT is
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equivalent to the question of whether x’s values constitute the set of Fourier-series
coefficients for some 2π-periodic function of ω. That question is deep, but some
partial answers are worth mentioning.

If x is an absolutely summable signal, then the sum in DT FT converges for
every ω ∈ R by Fact 3.3 and therefore defines a function X̂. Actually, X̂ turns out
to be a continuous function of ω in this case. If x is a square-summable signal, then
the series in DT FT converges in the mean-square sense to a function X̂ for which

1
2π

∫ π

−π

|X̂(ω)|2dω

exists. Mean-square convergence amounts to

lim
N→∞

1
2π

∫ π

−π

∣∣∣∣∣X̂(ω)−
N∑

n=−N

x(n)e−jnω

∣∣∣∣∣
2

dω = 0 .

These l2 results hinge on x’s status as a list of Fourier-series coefficients for X̂ and
follow from reasoning similar to that in Chapter 9 leading up to Parseval’s Theorem
9.13. In fact, when x is an l2-signal, we have

∞∑
n=−∞

|x(n)|2 =
1
2π

∫ π

−π

|X̂(ω)|2dω

and, more generally,

(10)
∞∑

n=−∞
x(n)y(n) =

1
2π

∫ π

−π

X̂(ω)Ŷ (ω)dω

for every x and y in l2.
Finally, if X̂ is any decent function of ω with 2π as a period, there exists a

discrete-time signal x whose DTFT is X̂. I’m using the word “decent” here in
the technical sense of Definition 7.1. If X̂ is decent, then the integrals in equation
DT FT −1 pose no problems and define a signal x.

The discrete-time impulse δ is a genuine signal, and computing its DTFT using
equation DT FT yields

δ
DT FT←−−→ 1 .

In other words, the DTFT of a discrete-time impulse is the constant function of ω
with constant value 1. Allowing for impulses in ω-space gives us DTFTs for pure
discrete-time sinusoids. Since any DTFT X̂ must be 2π-periodic in ω, the simplest
DTFT featuring an impulse is the 2π-periodic impulse train with specification

X̂(ω) =
∞∑

k=−∞

2πδ(ω − ωo + 2πk) ,

where ωo is some real number. Note that unless ωo is an odd multiple of π, in
which case ejnωo = (−1)n for all n, precisely one of the impulses in the train — say
the one located at ωo + 2πk∗ — falls in the central interval |ω| < π. Investigating
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equation DT FT −1 for this example yields

1
2π

∫ π

−π

2π
∞∑

k=−∞

δ(ω − ωo + 2πk)ejnωdω =
∫ π

−π

∞∑
k=−∞

δ(ω − ωo + 2πk)ejnωdω

=
∫ π

−π

δ(ω − ωo + 2πk∗)ejnωdω

= ejn(ωo+2πk∗) = ejnωo for all n ∈ Z .

The equality on the second line holds because the interval of integration includes
none of the impulses in the sum on the first line except the one corresponding to
k = k∗. We conclude that the impulse train X̂ is the DTFT of the pure discrete-
time sinusoid x with specification x(n) = ejnωo for all n ∈ Z, which supports our
intuition that the pure discrete-time sinusoid x has all its frequency content at
frequencies in the discrete set {ωo + 2πk : k ∈ Z}.

Like the continuous-time Fourier transform, the DTFT has numerous associ-
ated operational rules. Two of these are particularly important.

11.2 Time-shift Rule: If x DT FT←−−→ X̂, then for any no ∈ Z the DTFT Ŷ of
the signal y = Shiftno

(x) has specification

Ŷ (ω) = e−jnoωX̂(ω) for all ω ∈ R .

To see this, assume equation DT FT −1 holds. Then

y(n) = x(n− no) =
1
2π

∫ π

−π

X̂(ω)ej(n−no)ωdω =
1
2π

∫ π

−π

(
e−jnoωX̂(ω)

)
ejnωdω

for all n ∈ Z, and this is just equation DT FT −1for y, revealing that Ŷ (ω) =
e−jnoωX̂(ω) for all ω ∈ R. �

11.3 Convolution Rule: If x1
DT FT←−−→ X̂1 and x2

DT FT←−−→ X̂2 and the convo-
lution of x1 and x2 exists, then

x = x1 ∗ x2
DT FT←−−→ X̂ = X̂1X̂2 .

In other words, the DTFT takes convolution in the time domain to simple function
multiplication in the frequency domain.

In proving this one, I’ll assume first that both x1 and x2 are absolutely sum-
mable, which implies that we can interchange orders of summation with impunity
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in the equations below. Start with equation DT FT for x.

X̂(ω) =
∞∑

n=−∞
x(n)e−jnω

=
∞∑

n=−∞

( ∞∑
k=−∞

x1(k)x2(n− k)

)
e−jnω

=
∞∑

k=−∞

x1(k)

( ∞∑
n=−∞

x2(n− k)e−jnω

)

=
∞∑

k=−∞

x1(k)
(
e−jkωX̂2(ω)

)
=

( ∞∑
k=−∞

x1(k)e−jkω

)
X̂2(ω)

= X̂1(ω)X̂2(ω) for all ω ∈ R .

The crucial step on the fourth line follows from the Time-Shift Rule applied to the
inner sum.

When both x1 and x2 are square-summable, an entirely different argument
applies. First fix n ∈ Z and let y be the signal with specification y(k) = x2(n− k)
for all k ∈ Z. Observe that y ∈ l2, and

〈x1, y〉 =
∞∑

k=−∞

x1(k)y(k)

=
∞∑

k=−∞

x1(k)x2(n− k)

= x1 ∗ x2(n) .

Furthermore, y has DTFT Ŷ with specification

Ŷ (ω) =
∞∑

k=−∞

y(k)e−jkω

=
∞∑

k=−∞

x2(n− k)e−jkω

=
∞∑

m=−∞
x2(m)e−jω(n−m)

= X̂2(ω)e−jnω

for all ω ∈ R. Applying the Parseval-like (10) yields

〈x1, y〉 =
1
2π

∫ π

−π

X̂1(ω)Ŷ (ω)dω ,

so

x1 ∗ x2(n) =
1
2π

∫ π

−π

X̂1(ω)X̂2(ω)ejnωdω for all n ∈ Z ,
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which is just equation DT FT −1 for x1 ∗x2, revealing that x1 ∗x2 has DTFT X̂1X̂2.
�

The DTFT plays a role in discrete-time LTI systems analysis analogous to the
role that the continuous-time Fourier transform plays in continuous-time LTI sys-
tems analysis.

11.4 Definition: We say that a discrete-time LTI system with impulse re-
sponse h ∈ CZ has a frequency response when the input signal n 7→ ejnωo is in the
input space X = Dh for every ωo ∈ R. In this case, we define the frequency response
of the system as the DTFT Ĥ of the impulse response h.

While not every system has a frequency response, every FIR system has one,
as does every BIBO stable system, since by Theorem 6.7 the impulse response of a
BIBO stable system is absolutely summable. If a system has a frequency response,
consider what happens when we use input signal x with specification x(n) = ejnωo

as input to the system. We discover that

S(x)(n) = h ∗ x(n)

=
∞∑

k=−∞

h(k)x(n− k)

=
∞∑

k=−∞

h(k)ej(n−k)ωo

=

( ∞∑
k=−∞

h(k)e−jkωo

)
ejnωo

= Ĥ(ωo)ejnωo for all n ∈ Z .

In other words, S(x) = Ĥ(ωo)x, so x is an “eigen-input” to the system. On the
other hand, if x ∈ Dh and x has DTFT X̂, then the Convolution Rule 11.3 implies
that S(x) = h ∗ x has DTFT ĤX̂. In these senses, as in continuous time, you
can regard a discrete-time LTI system with a frequency response as a frequency-
selective filter.

Sampling and Interpolation

One way of generating discrete-time signals is by sampling continuous-time signals.
Given a continuous-time signal xc and a sampling interval T > 0, consider what
happens when we form the discrete-time signal x specified by

x(n) = xc(nT ) for all n ∈ Z .

Certainly, xc tells us everything about x. What about the converse? What does x
tell us about xc? You can think of x as a sparse, skeletal version of xc, comprising
only a discrete set of numbers — a sequence of dots, if you will. A priori, you might
not expect it to contain a lot of information about the continuum of numbers
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that constitutes xc. Our intuition tells us that for x to determine a lot about
xc, the sampling interval will need to be small enough so that x captures the
“interesting features” in xc. For example, suppose xc(t) = sin t and T = π. Then
x(n) = sin(nπ) = 0 for every n, and so x — since it’s just a long string of zeroes —
tells us essentially nothing interesting about xc. On the other hand, if T is much
smaller, the oscillations in x(n) as a function of n will resemble those in the sinusoid
xc. The Shannon-Nyquist Sampling Theorem enables us to make quantitative sense
of all this.

Think now of any discrete-time signal x as comprising a sequence of dots that
mark its values. By connecting those dots to form a continuous-time signal, we
are performing interpolation. Specifically, given a discrete-time signal x and some
T > 0, I’ll call any continuous-time signal yc that satisfies yc(nT ) = x(n) for all
n ∈ Z a T -interpolation of x. The signal yc with specification

yc(t) = x(n) +
t− nT
T

(x(n+ 1)− x(n))

for all t ∈ [nT, (n + 1)T ] and n ∈ Z is the linear T -interpolation of x. Another
T -interpolation of x is the signal yc with specification

yc(t) = x(n) + (x(n+ 1)− x(n)) sin
( π

2T
(t− nT )

)
for all t ∈ [nT, (n + 1)T ] and n ∈ Z. If x arose originally from T -sampling a
continuous-time signal xc — i.e. if x(n) = xc(nT ) for all n ∈ Z — we have no
reason to expect that either of these T -interpolations yc will bear any resemblance
to xc other than agreeing with xc at the sampling instants {nT : n ∈ Z}.

You perform interpolation whenever you watch a movie. A movie is a discrete
sequence of still images, and the people who filmed the movie generated that se-
quence by sampling a continuous-time visual signal. Standard Hollywood movies
are filmed at 24 frames per second, which means that movie-makers sample visual
signals at angular frequency Ωs = 48π with sampling interval Ts = 1/24 sec. When
you watch a movie, you generally manage to interpolate in such a way as to arrive
at a fairly good idea of what the original continuous-time visual signal looked like,
but consider the following notable exception. Everyone has seen a Western featur-
ing covered wagons lumbering frontierward, their giant spoked wheels appearing to
turn in bizarrely unphysical ways. The wagon moves from left to right across the
screen, but the wheel appears sometimes to be rotating clockwise, which is what it
was actually doing while being filmed, and sometimes to be rotating counterclock-
wise or even standing still. As you “see” the wheel moving “incorrectly” on the
screen, you interpolate the movie x and manufacture a continuous-time signal yc

that’s not the same as the original continuous-time signal xc that the movie-makers
sampled.

Let’s put some numbers to the movie example. Suppose someone films a vehi-
cle moving left to right across the screen. The filming occurs at the standard rate
of 24 frames per second. One of the wheels on the vehicle has a radial marking
whose position indicates the wheel’s orientation. Physics tells us that the wheel was
rotating clockwise while being filmed. Now watch the movie. Referring to Figure
3, Case 1 shows the sequence of frames you see when the vehicle was moving so
that the wheel made a complete rotation every 1/24 second. Case 2 shows what
you see when the wheel was making one rotation every 1/18 second, which is the
same as 3/4 of a rotation every 1/24 second. Case 3 corresponds to a rotation every
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1/12 second, or half a rotation every 1/24 second, and Case 4 to a rotation every
1/6 second, or one quarter of a rotation every 1/24 second. I would argue that in
Case 1 the wheel looks to you as if it were standing still; in Case 2 the wheel looks
as if it were making 1/4 rotation counterclockwise every 1/24 second; in Case 3
your brain can’t decide which way the wheel is rotating, and in fact snaps back
and forth between the two possibilities; and in Case 4 the wheel looks as if it were
doing what it was actually doing in real life. We’ll return to the movie example
after developing the mathematics that explains it.

Deconstruction, reconstruction, and the Sampling Theorem

To understand the relationship between a continuous-time signal xc and the discrete-
time signal x obtained by T -sampling xc, we need to focus on what’s happening
in the frequency domain. Our first order of business will be to derive a formula
expressing the DTFT of x in terms of the continuous-time Fourier transform of xc.
With apologies to Derrida, I’m calling that formula the deconstruction equation.

11.5 The Deconstruction Equation: Given a continuous-time signal xc

and a sampling interval T > 0, let x be the discrete-time signal with specification
x(n) = xc(nT ), for all n ∈ Z. If x has a DTFT X̂, then X̂ has specification

(D) X̂(ω) =
∞∑

k=−∞

1
T
X̂c

(
ω

T
+ k

2π
T

)
for all ω ∈ R ,

where X̂c is the continuous-time Fourier transform of xc.

Proof: Start with F−1 for xc, which yields

xc(t) =
1
2π

∫ ∞

−∞
X̂c(Ω)ejΩtdΩ for all t ∈ R .

Plug in t = nT and x(n) = xc(nT ) and you get

x(n) =
1
2π

∫ ∞

−∞
X̂c(Ω)ejΩnT dΩ for all n ∈ Z .

Now split up the interval of integration into chunks of Ω-length 2π/T centered on
the values Ω = k2π/T :

x(n) =
∞∑

k=−∞

1
2π

∫ k 2π
T + π

T

k 2π
T − π

T

X̂c(Ω)ejΩnT dΩ for all n ∈ Z .

Change variables in the kth term by setting µ = Ω− k 2π
T :

x(n) =
∞∑

k=−∞

1
2π

∫ π
T

− π
T

X̂c

(
µ+ k

2π
T

)
ej(µnT+2πkn)dµ for all n ∈ Z .
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Now use ej2πkn = 1 along with the change of variable ω = µT ; also, assume that
you can move the sum inside the integral, and do it:

x(n) =
1
2π

∫ π

−π

( ∞∑
k=−∞

1
T
X̂c

(
ω

T
+ k

2π
T

))
ejnωdω for all n ∈ Z .

This last equation is just DT FT −1 for x and reveals that the sum in large paren-
theses is precisely X̂(ω), whereby

X̂(ω) =
∞∑

k=−∞

1
T
X̂c

(
ω

T
+ k

2π
T

)
for all ω ∈ R ,

which is the deconstruction equation D. �

The foregoing proof dodges some significant analytical obstacles. For one thing,
it assumes that equation F−1 holds for xc. That’s not a problem if xc is bandlimited
and X̂c is reasonable. The proof also plays fast and loose with infinite sums and
interchanging summation and integration. Again, that’s not a problem when xc

is bandlimited, because in that case the ostensibly infinite sums have only finitely
many nonzero terms for any ω ∈ R.

Perhaps more important, the proof doesn’t address the question of under what
circumstances the signal x has a DTFT. For some signals xc, it’s possible to choose
a sampling interval T that leads to an x with no DTFT. For example, let xc be the
signal with the following specification: xc(t) = 0 for all t except for t-values that
lie in narrow intervals around nonzero integer values of t, so xc(t) = 0 except that

xc(t) = 3|n| when n−
(
3−2|n|/2

)
≤ t ≤ n+

(
3−2|n|/2

)
for some n ∈ Z. We met this signal back in Chapter 7. It’s an L1-signal so it has
a Fourier transform and equation F holds. But if T = 1, the discrete-time signal x
with specification

x(n) = xc(nT ) = 3|n| for all n ∈ Z
has no DTFT. Similar problems occur when T is any integer. A non-integer T ,
however, leads to a finite-duration x that does have a DTFT. Accordingly, the
difficulty arises not simply because xc is a strange signal but also because of the
interplay between the strangeness of xc and the choice of sampling interval.

Setting aside these misgivings, let’s consider what the deconstruction equation
says. The first thing to notice is that D holds for any Fourier-transformable xc

with a reasonable spectrum X̂c and any sampling interval T that gives rise to a
discrete-time signal x that has a DTFT. No additional assumptions about xc and
T are necessary; in particular, xc need not be bandlimited. Next, observe that D
exhibits X̂ as the infinite sum of scaled, shifted replicas of X̂c. The scaling is both
in amplitude — by the leading 1/T factor — and in frequency variable — by the
transformation ω ↔ ΩT .

You can build X̂ from X̂c as follows. First construct a replica of X̂c centered
at each Ω-value of the form k 2π

T and add all the replicas together to obtain

F (Ω) =
∞∑

k=−∞

X̂c

(
Ω + k

2π
T

)
.
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Then multiply by 1/T and re-scale the frequency axis by means of the substitution
ω = ΩT , which yields

X̂(ω) =
1
T
F
(ω
T

)
.

In general, the X̂c-replicas you add to get F will overlap as in Figure 4(a) in
the sense that each replica’s “interval of nonzeroness” will intersect the interval of
nonzeroness of each of its neighboring replicas and perhaps even replicas centered
farther away. This phenomenon is called aliasing, and I’ll have more to say about
it later. It’s clear that aliasing is unavoidable unless xc is bandlimited to begin
with. If xc fails to be bandlimited, then X̂c(Ω) will be nonzero “all the way out”
in Ω-space, and the replicas we form will always overlap. So to avoid aliasing, we
require at least that xc be bandlimited.

Actually, we need even more. For adjacent replicas to avoid hitting each other,
we require that T be small enough so that X̂c(Ω) = 0 when |Ω| ≥ π/T as in
Figure 4(b). If this condition holds, then the replicas’ intervals of nonzeroness are
all disjoint, and the infinite sum in equation D is trivial in the sense that for any
specific ω-value at most one term in the sum is nonzero. In particular, D implies
in this case that

X̂(ω) =
1
T
X̂c

(ω
T

)
when − π ≤ ω ≤ π .

That is, only the k = 0-term in the series contributes to X̂(ω) on the central interval
|ω| ≤ π. Equivalently,

X̂c(Ω) = TX̂(ΩT ) when − π

T
≤ Ω ≤ π

T
.

Since we know already that X̂c(Ω) = 0 when |Ω| ≥ π/T , we arrive at a complete
specification of X̂c in terms of X̂, namely

X̂c(Ω) =
{
TX̂(ΩT ) when − π

T ≤ Ω ≤ π
T

0 when |Ω| ≥ π
T .

The last equation has profound implications. It says that X̂ determines X̂c

completely when the sampling interval T is small enough relative to the bandwidth
of xc. In the time domain, this means that x determines completely the continuous-
time signal xc of which x is a sampled version, provided the sampling is fast enough.
In this case we have the following equation, a “reconstruction equation,” which
follows directly from F−1:

(11) xc(t) =
1
2π

∫ π
T

− π
T

TX̂(ΩT )ejΩtdΩ for all t ∈ R .

We can summarize the discussion so far as follows.

11.6 Shannon-Nyquist Sampling Theorem, Version 1: Let xc ∈ CR have
Fourier transform X̂c, and let T > 0 be given. Let x be the discrete-time signal
with specification x(n) = xc(nT ) for all n ∈ Z. If xc is bandlimited and T is small
enough so that X̂c(Ω) = 0 for |Ω| ≥ π

T , then x determines xc completely. �

The idea is that x determines X̂; in turn, under the indicated assumptions, X̂
determines xc by means of the explicit formula (11).
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We can reformulate the conditions of the Sampling Theorem in a couple of
ways. Suppose xc is bandlimited. Following Definition 10.16, the bandwidth of xc

is
Ω∗

m = inf{Ωm > 0 : X̂c(Ω) = 0 when |Ω| ≥ Ωm} .
If π/T > Ω∗

m, then X̂(Ω) = 0 when |Ω| ≥ π/T . It follows that we can recover xc

from x if π/T > Ω∗
m. The frequency Ωs = 2π/T is the sampling frequency, and the

sampling is fast enough when
Ωs > 2Ω∗

m .

In other words, sampling “faster than twice the bandwidth of xc” always suffices to
generate a sampled record that determines xc uniquely. The frequency ΩNyq = 2Ω∗

m

is called the Nyquist frequency or Nyquist rate for xc. The Sampling Theorem
asserts that sampling a bandlimited signal faster than its Nyquist rate generates a
sequence of samples from which you can reconstruct the signal.

We can reconstitute (11) in the time domain and see exactly how the values of
x(n) for n ∈ Z determine xc(t) for all t ∈ R. Rewrite (11) using equation DT FT
for X̂(ΩT ) and you get

xc(t) =
1
2π

∫ π
T

− π
T

T

( ∞∑
n=−∞

x(n)e−jΩnT

)
ejΩtdΩ

=
∞∑

n=−∞
x(n)

(
1
2π

∫ π
T

− π
T

TejΩ(t−nT )dΩ

)
for all t ∈ R .

Evaluating the integrals yields

(12) xc(t) =
∞∑

n=−∞
x(n)

sin( π
T (t− nT ))

π
T (t− nT )

for all t ∈ R .

Equation (12) exhibits xc explicitly in terms of x without frequency-domain inter-
vention, as it were. The right-hand side of (12) is a a sinc-function interpolation
between the values of x. As a reality check, let’s evaluate it at time t = mT and
make sure we get x(m). For each n 6= m, the nth term in the expansion evaluates
to zero because

sin( π
T (mT − nT ))

π
T (mT − nT )

=
sin((m− n)π)

(m− n)π
= 0 .

The n = m term evaluates to x(m) because

lim
t→mT

sin( π
T (t−mT ))

π
T (t−mT )

= 1 .

Sinc-function interpolation: the movies revisited

What happens when the conditions of the Sampling Theorem 11.6 aren’t satisfied?
In particular, what happens if aliasing occurs because T is too large or because xc

isn’t even bandlimited? Equation D still holds, but equations (11) and (12) are no
longer valid. We can imagine taking the sample sequence x and its accompanying
DTFT X̂ and plugging them blindly into (11) and (12). The signal that emerges
in this case will not be xc but will instead be some other related signal xR. The
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signal xR has two noteworthy properties. First of all, xR(nT ) = x(n) = xc(nT ) for
all n, so xR does indeed interpolate between the samples. This is because, as we’ve
noted already, the expansion on the right-hand side of

(R2) xR(t) =
∞∑

n=−∞
x(n)

sin( π
T (t− nT ))

π
T (t− nT )

for all t ∈ R

evaluates to x(n) when t = nT , so xR(t) agrees with xc(t) at every sampling instant
t = nT . Second, xR is bandlimited; in fact, X̂R(Ω) = 0 when |Ω| > π

T . This is
because

(R1) xR(t) =
1
2π

∫ π
T

− π
T

TX̂(ΩT )ejΩtdΩ for all t ∈ R ,

which implies by equation F−1 that

X̂R(Ω) =
{
TX̂(ΩT ) when − π

T ≤ Ω ≤ π
T

0 when |Ω| > π
T .

We can think of equations R1 and R2 as representing mathematically the op-
eration of a special kind of interpolator. Any interpolator implements a particular
recipe for “connecting the dots” in x, and our special interpolator is a device that
takes a discrete-time signal x and outputs a continuous-time signal xR by super-
posing sinc functions as in R2 or with frequency-domain mediation as in R1. The
discrete-time signal x serving as “input” toR1 andR2 need not come from sampling
some pre-specified continuous-time signal. Most important, the special interpola-
tion xR is the only T -interpolation of x that’s bandlimited to within π/T . You can
see this by noting that if xc is bandlimited to within π/T , and xc(nT ) = x(n) for all
n, then (11) and (12) imply that xc is the output of the sinc-function T -interpolation
driven by x — in other words, xc = xR. This last observation illuminates the Sam-
pling Theorem from a new angle.

11.7 Shannon-Nyquist Sampling Theorem, Version 2: Suppose x is a
discrete-time signal that has a DTFT X̂ and let T > 0 be given. There exists
exactly one continuous-time signal xR with the following two properties:

• xR(nT ) = x(n) for all n ∈ Z
• X̂R(Ω) = 0 when |Ω| > π/T .

Again, the discrete-time signal x in Theorem 11.7 need not come from sampling
some pre-specified continuous-time signal. The theorem requires only that x be
a discrete-time signal possessing a DTFT. It asserts that among the myriad T -
interpolations of such an x, exactly one is bandlimited to within π/T . That special
T -interpolation is the sinc-function interpolation xR arising from R1 and R2.

Why do people say that “aliasing occurs” when you sample a continuous-time
signal xc slower than its Nyquist rate? If the sampling interval is T and you pass
the samples through the sinc-function T -interpolator, you get xR instead of xc. In
this way, the samples masquerade as a sequence of samples of xR even though you
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got them originally by sampling xc. One might say that the signal xc “assumes the
alias xR” by virtue of your having sampled it too slowly.

Now let’s go back to the movies. You can regard a real-life continuous-time
wheel spinning clockwise at frequency Ωo as defining a continuous-time signal xc

with specification
xc(t) = ejΩot for all t ∈ R .

Its Fourier transform X̂ has specification

X̂c(Ω) = 2πδ(Ω− Ωo) .

The wheel turns, the film crew swings into gear, and the camera creates a discrete-
time signal x by sampling xc at frequency Ωs = 48π, which corresponds to 24
frames per second and an inter-sample interval T = 1/24 seconds. By equation D,
the DTFT X̂ of x has specification

X̂(ω) = 24
∞∑

k=−∞

X̂c (24ω + k48π)

=
∞∑

k=−∞

48πδ (24ω − Ωo + k48π) .

What do you “see” when you watch the movie? I would argue that your visual
apparatus, with a bit of help from your experience of the world, acts like a sinc-
function interpolator in the sense that you “see” the continuous-time signal xR

given by R1, i.e.

xR(t) =
1
2π

∫ π
T

− π
T

TX̂(ΩT )ejΩtdΩ

=
∞∑

k=−∞

∫ 24π

−24π

δ (Ω− Ωo + k48π) ejΩtdΩ .

Let’s consider the values of Ωo corresponding to three of the different wheel speeds
we considered earlier. In Case 1, the wheel was rotating clockwise 24 times per
second when filmed, so Ωo = 48π. The impulses under the integral sign are situated
at Ω-values 0, ±48π, ±96π, etc. Only one of these impulses — the one at Ω = 0 —
lies in the interval of integration, which means that

xR(t) =
∫ 24π

−24π

δ(Ω)ejΩtdt = 1 for all t ∈ R .

In other words, the wheel looks as if it were standing still.
In Case 2, where the wheel turned 18 times per second, Ωo = 36π, so

xR(t) =
∫ 24π

−24π

δ (Ω− 36π + k48π) ejΩtdΩ .

The impulses under the integral sign lie at Ω-values −60π, −12π, 36π, 84π, etc.
Again, only one of these impulses — the one at Ω = −12π — lies in the interval of
integration, and

xR(t) =
∫ 24π

−24π

δ(Ω + 12π)ejΩtdt = e−j12πt for all t ∈ R .
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In this case xR corresponds to counterclockwise rotation at frequency 2π × 6, i.e.
six revolutions per second. The wheel looks as if it were rotating “backward.”

Skipping over the annoying borderline Case 3, which leads to indecision on your
part when you’re watching the movie, consider Case 4, where the continuous-time
wheel spins six times clockwise every second, corresponding to Ωo = 12π and

xR(t) =
∫ 24π

−24π

δ (Ω− 12π + k48π) ejΩtdΩ .

This time the impulses occur at Ω-values −36π, 12π, 60π, 108π, etc., and the only
one under the integral sign sits at 12π, so

xR(t) =
∫ 24π

−24π

δ(Ω− 12π)ejΩtdt = ej12πt = xc(t) for all t ∈ R .

Only in this case does your mind reconstruct xc when you watch the movie and
allow your visual apparatus implement its interpolation ritual.

Mathematically, these results harmonize with the Sampling Theorem. In each
case, the sampling frequency is 48π and the bandwidth of the continuous-time signal
xc is Ωo, so its Nyquist rate is 2Ωo. The Nyquist rate for xc in Case 1 is 96π, so
the sampling frequency does not exceed the Nyquist rate. The same is true in Case
2, where Ωo = 36π and the Nyquist rate for xc is 72π. In Case 4, Ωo = 12π, so the
Nyquist rate for xc is 24π, and the sampling frequency exceeds the Nyquist rate,
so we expect the interpolation procedure embodied in R1 to yield xR = xc, and
indeed it does.

If the math doesn’t surprise us, what about the implications for cognitive sci-
ence? Why do we settle on xR as an explanation for what we observe as we watch
the movie? I would submit that even if we saw the frame sequence from Case 2
in slow motion we would think of xR — that is, counterclockwise rotation of one
quarter turn between frames — before considering other viable options such as
clockwise rotation at three quarters of a turn between frames. It would seem as
if we were seeking the most parsimonious explanation for the data. Perhaps natu-
ral selection tends to favor sentient beings that find, and settle quickly on, simple
explanations for observed phenomena. If you wake up in the middle of the night
and see a lion prowling near your wilderness campsite, you’ll probably think “Lion!”
before considering the possibility that someone has dressed up in a lion suit to scare
you. Deciding quickly on the simple explanation might make the difference between
survival and the alternative. A more subtle question in the present context is why
xR, which you could construe as the “lowest-bandwidth signal” connecting the dots
in the sample sequence, might explain a sample sequence “most parsimoniously” in
settings more general than movies of rotating wheels.

Now for one last bit of terminology that streamlines discussions of sampling and
interpolation involving pure sinusoids such as rotating wheels. When a continuous-
time signal xc is a pure sinusoid with specification xc(t) = ejΩot and you sample
it every T seconds, you get a discrete-time signal x that could have arisen from
T -sampling any number of other continuous-time signals, among which are pure
sinusoids of frequencies different from Ωo. For any k ∈ Z, the signal xc,k with
specification

xc,k(t) = ej(Ωo+k2π/T )t for all t ∈ R ,
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which has fundamental frequency Ωk = Ωo + k2π/T , satisfies

xc,k(nT ) = xc(nT ) = x(n) for all n ∈ Z .

Let’s call the signals xc,k the continuous-time aliases of xc with respect to the
sampling interval T . When Ωo isn’t an odd multiple of π, exactly one of the Ωk,
say Ωk∗ , satisfies −π < Ωk∗ < π. We call the signal xc,k∗ the principal continuous-
time alias of xc with respect to the sampling interval T . If you sample a pure
sinusoid xc every T seconds and obtain the discrete-time signal x, the continuous-
time signal xR that emerges from a sinc-function T -interpolator driven by x is the
principal continuous-time alias of xc with respect to the sampling interval T . As
one noteworthy consequence, if a discrete-time signal x could have come from T -
sampling a pure sinusoid, then the sinc-function T -interpolation of x is a sinusoid.

Pulse sampling and time-division multiplexing

Given T > 0 and a > 0 with a < T/2, let Π be the pulse train with specification

Π(t) =
∞∑

n=−∞
pa(t− nT ) for all t ∈ R .

If xc ∈ CR is an arbitrary signal, we can form another signal z = xcΠ, which has
specification

z(t) =
∞∑

n=−∞
xc(t)pa(t− nT )

=
{
xc(t) when nT − a/2 ≤ t < nT + a/2 and n ∈ Z

0 otherwise.

The signal z is called a pulse-sampled version of xc. It comprises a lot of little
pieces of xc, each centered on an integer multiple of T , with zero in between.
Ostensibly z contains more information about xc than a sampled record {xc(nT ) :
n ∈ Z} contains. In fact, that sampled record is embedded in z, so by the Sampling
Theorem 11.6 we could conceivably reconstruct xc from z by extracting the sampled
record provided xc is bandlimited within π/T .

As it happens, we can actually reconstruct xc from z in a more straightforward
fashion when xc is suitably bandlimited. The Fourier series for Π is

Π(t) =
∞∑

k=−∞

cke
jk 2π

T t for all t ∈ R ,

and you can check that c0 = a
T . Since z = xcΠ, we have

z(t) =
∞∑

k=−∞

ckxc(t)ejk 2π
T t for all t ∈ R ,

and the Frequency-shift rule 10.6 for continuous-time Fourier transforms implies
that

Ẑ(Ω) =
∞∑

k=−∞

ckX̂c

(
Ω− k 2π

T

)
.
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If xc is bandlimited and T small enough — i.e. if X̂c(Ω) = 0 when |Ω| ≥ π
T — then

the scaled shifted replicas of X̂c that form Ẑ don’t collide. In particular,

Ẑ(Ω) =
a

T
X̂c(Ω) when − π

T
≤ Ω ≤ π

T
.

If we send z through the ideal low-pass filter whose frequency response Ĥ has
specification

Ĥ(Ω) =
{
T/a when |Ω| ≤ π/T
0 otherwise,

then, since c0 = a/T , what comes out of the filter is exactly xc. Note that the
pulse sampling and subsequent recovery by low-pass filtering take place entirely in
the world of continuous-time signals and systems even though the enabling spectral
ideas are identical to those underlying the Sampling Theorem.

The signal z contains a lot of dead space between successive pulse samples of
xc when a/T is small. We can fill that space with pulse-sampled versions of other
signals and thereby solve the following engineering problem: given N signals xc1,
. . . , xcN , with each xcm bandlimited to within π/T , devise a way to encode the
information from all the signals into a single signal z from which we can recover all
N signals, at least in principle. Here’s how it works. Choose a > 0 so a is much
smaller than T/N . Let z be the signal with specification

z(t) =
N∑

m=1

xcm(t)Π
(
t− (m− 1)

T

N

)
for all t ∈ R .

The signal z comprises interleaved pulse-sampled versions of the xcm. The pulse-
sampled version of xcm embedded in z is shifted by (m−1)T/n for each m. Imagine
forming z by using a switch to cycle repeatedly through the signals xc1, . . . , xcN ,
the switch dwelling for time a on xcm every time it lands on xcm. You can unpack
the signal z and recover a pulse-sampled version of each xcm, which you can then
pass through an ideal low-pass filter to obtain xcm itself.

The technique I’ve just described is called time-division multiplexing. It solves
a multiple-access problem just as frequency-division multiplexing solves another
multiple-access problem. Think of N agents, agent m producing signal xcm, all of
whom want to transmit their signals simultaneously over a channel that acts like the
identity or pure t1-shift system. The agents share the channel by dividing up time
just as the agents participating in frequency-division multiplexing divide up channel
bandwidth. It would seem that by choosing a small enough you could pack as many
bandlimited signals as you wanted into a multiplexed signal such as z. Practical
limitations include the fact that the channels over which you will want to transmit z
won’t be ideal t1-shift systems, so z won’t pass through unscathed. Smaller a means
smaller inter-sample time lags in z and lower energy in each individual signal pulse
sample. These disadvantageous features make it more likely that narrow pulse
samples of the xcm will get swamped by noise or mashed together and polluted
beyond recognition by the distortion the channel introduces. And even if you have
access to a clean version of z, you need ideal low-pass filters to reconstruct the xcm

from their pulse-sampled versions.
Practical difficulties aside, time-division multiplexing and its variants feature

prominently in a variety of modern telecommunications systems. The primitive
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scheme I’ve presented here, while only the tip of the iceberg, illustrates in frequency-
domain terms how sampling and reconstruction procedures actually work. The
DTFT and the Sampling Theorem provide the mathematical underpinning, and it’s
fair to say that the telecommunications revolution of the last half-century would
never have gained traction without them.





CHAPTER 12

The DFT and the FFT

Real-world discrete-time signal processing deals exclusively with finite-duration
signals. Infinite-duration signals are useful mathematically, but nobody has ever
watched such a signal play out in its entirety. When addressing signals and sys-
tems problems involving infinite-duration signals, one’s goal is often to generate
useful approximate results by manipulating finite-duration signals in a computa-
tionally efficient way. The DFT and FFT are tools that facilitate such manipula-
tions. In essence, the DFT reduces a variety of signal-processing calculations to
finite-dimensional linear algebra, and the FFT serves as an efficient procedure for
computing the DFT. For ease of exposition, I’ll continue to assume that all the
signals we encounter are complex-valued. This doesn’t cost us any generality, since
a real-valued signal is just a special kind of complex-valued signal.

N-point signals, cyclic shifting, and circular convolution

Given a positive natural number N , an N -point signal is a discrete-time signal
x ∈ CZ satisfying x(n) = 0 for n < 0 and for n ≥ N . Thus an N -point signal is
simply a finite-duration signal x whose “duration interval” is contained in the range
0 ≤ n < N . Observe that x(n) could still be zero for some n-values in that range.
In particular, when M > N , we can regard any N -point signal x as an M -point
signal that just happens to satisfy x(n) = 0 for N ≤ n < M . I’ll denote by SN

the set of all N -point signals. Observe that any x ∈ SN is specified completely by
N numbers x(0), x(1), . . . , x(N − 1), so the set of all N -point signals stands in
one-to-one correspondence with CN , the set of all N -vectors with entries in C. If x
is an N -point signal, I’ll denote by x the column N -vector[

x(0) x(1) x(2) . . . x(N − 1)
]T

.

The set SN is closed under the taking of linear combinations in CZ, so it forms a
vector space under the usual vector operations on CZ. It’s easy to check that those
vector operations map nicely to the usual vector operations on CN under the signal-
vector correspondence in the sense that if x and y are the vectors corresponding to
N -point signals x and y, then for any c1 and c2 in C the vector c1x+c2y corresponds
to the N -point signal c1x+ c2y. Furthermore, since every N -point signal is square-
summable, SN inherits from l2 the inner product we studied in Chapters 5 and 9.
For x and y in SN ,

〈x, y〉 =
∞∑

n=−∞
x(n)y(n) =

N−1∑
n=0

x(n)y(n) ,

179
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where the last equality holds because x and y are N -point signals. Happily, the
inner product on SN maps under the signal-vector correspondence to the standard
inner product on CN in the sense that

〈x, y〉 = yHx for all x and y in SN .

In what follows I’ll make considerable use of the notation 〈〈l〉〉N for l ∈ Z and
nonzero N ∈ N, which we first met in Chapter 2. Read that notation as “l mod
N .” It denotes the unique natural number m such that 0 ≤ m < N and m = pN+ l
for some p ∈ Z. If l ≥ 0, 〈〈l〉〉N is the remainder you obtain after dividing l by
N . For example, 〈〈7〉〉5 = 2 whereas 〈〈15〉〉5 = 0. Note that 〈〈l〉〉N = l if and only
if 0 ≤ l < N . When l < 0, add N to l repeatedly and 〈〈l〉〉N will be the first
number m you obtain that satisfies 0 ≤ m < N . For example, 〈〈−3〉〉7 = 4 and
〈〈−13〉〉5 = 2. I’ll also make a habit of specifying an N -point signal x only on the
time interval 0 ≤ n < N , with the understanding that x(n) = 0 for all other n ∈ Z.

Given a positive integer N , an N -point signal x, and any no with 0 ≤ no < N ,
the cyclic shift of x by no is the N -point signal CShiftno

(x) with specification

CShiftno
(x)(n) = x( 〈〈n− no〉〉N )

=
{

x(n− no) when no ≤ n < N
x(N + n− no) when 0 ≤ n < no .

It’s clear what cyclic shifting does to an N -point signal. If you think of the signal
as a left-to-right ordered list of its values at times 0 ≤ n < N , cyclic shifting by no

slides all the entries in the list to the right by no, then takes the ones that “fall off
the edge of the page” and splices them back in their original order at the left end
of the list.

Cyclic shifting is obviously a linear operation on the set SN of N -point signals.
In terms of the vector representation ofN -point signals, we can regard cyclic shifting
of an N -point signal as multiplying the signal vector on the left with a special
matrix. Define the (N ×N) matrix CN by

CN =



0 0 0 . . . 0 1
1 0 0 0 . . 0 0
0 1 0 0 0 . . 0
. . . . . . . .
. . . . . . . .
0 . . 0 1 0 0 0
0 0 0 . . 1 0 0
0 0 . . . 0 1 0


.

Observe that [CN ]pq = 1 if and only if 〈〈p− q〉〉N = 1. I leave it for you to verify
that

CShift1(x) = CNx for all x ∈ SN .

Since cyclic shifting by no is the same as cyclic shifting by 1 performed no times in
succession, it follows that when 0 ≤ no < N we have

CShiftno
(x) = Cno

N x for all x ∈ SN ,

where Cno

N is the matrix product of CN with itself no times, and by convention
C0

N = IN , the (N ×N) identity matrix.
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Given a positive integer N and N -point signals h and x, the N -point circular
convolution of h and x is the N -point signal CConvN (h, x) with specification

CConvN (h, x)(n) =
N−1∑
m=0

h(m)x( 〈〈n−m〉〉N ) for 0 ≤ n < N .

Like ordinary convolution, circular convolution is a commutative operation in the
sense that CConvN (h, x) = CConvN (x, h). To see this, observe that

CConvN (h, x)(n) =
N−1∑
m=0

h(m)x( 〈〈n−m〉〉N )

=
n∑

m=0

h(m)x(n−m) +
N−1∑

m=n+1

h(m)x(N + n−m)

=
n∑

l=0

h(n− l)x(l) +
N−1∑

l=n+1

h(N + n− l)x(l)

=
N−1∑
l=0

x(l)h( 〈〈n− l〉〉N )

= CConv(x, h)(n) for 0 ≤ n < N .

On the third line, I changed indices of summation to l = n −m in the first sum
and l = N + n−m in the second sum.

As with cyclic shifting, we can represent circular convolution using matrices
and vectors associated with signals. Note first that from the identity

CConvN (h, x)(n) =
N−1∑
m=0

x(m)h( 〈〈n−m〉〉N ) for 0 ≤ n < N

along with the fact that for each m

h( 〈〈n−m〉〉N ) = CShiftm(h)(n) for 0 ≤ n < N

it follows that

CConvN (h, x) =
N−1∑
m=0

x(m)CShiftm(h) ,

where the terms on either side of the last equation are whole N -point signals. Think
of the x(m)-values on the right-hand side as coefficients in a linear combination of
cyclically shifted h’s. Now define H as the (N × N) matrix whose qth column is
the signal vector for CShiftq−1(h). If N = 4, for example,

H =


h(0) h(3) h(2) h(1)
h(1) h(0) h(3) h(2)
h(2) h(1) h(0) h(3)
h(3) h(2) h(1) h(0)

 .

Then

(13) CConvN (h, x) = Hx for all h, x in SN .

A matrix such as H, whose qth column is Cq−1
N times its first column for each q, is

called a circulant matrix. Observe that CN itself is a circulant matrix.
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The N-point DFT of an N-point signal

An N -point signal has finite duration, so it has a DTFT. Let x be an N -point signal
and let X̂ be its DTFT, i.e.

X̂(ω) =
∞∑

n=−∞
x(n)e−jnω =

N−1∑
n=0

x(n)e−jnω for all ω ∈ R .

Consider “sampling” X̂ at the N equally spaced ω-values k2π/N , where k ranges
from 0 to N − 1. You get

X̂

(
k

2π
N

)
=

N−1∑
n=0

x(n)e−jnk 2π
N for 0 ≤ k < N .

For notational convenience, set

ψN = ej 2π
N and X̂k = X̂

(
k

2π
N

)
for 0 ≤ k < N .

The formula for X̂k in terms of x becomes

(DFT ) X̂k =
N−1∑
n=0

x(n)ψ−nk
N for 0 ≤ k < N .

12.1 Definition: The N -point DFT of the N -point signal x is the ordered
N -tuple of complex numbers X̂0, X̂1, . . . , X̂N−1 given by equation DFT .

The initials “DFT” stand for “discrete Fourier transform,” but everyone just
says “DFT.” If you form a column N -vector X̂ with the X̂k as entries, i.e.

X̂ =
[
X̂0 X̂1 X̂2 . . . X̂N−1

]T
,

then you’ll find that
X̂ = ΨNx ,

where ΨN is the (N ×N) matrix whose (p, q)-entry is

[ΨN ]pq = ψ
−(p−1)(q−1)
N .

Here’s what ΨN looks like.

ΨN =



1 1 1 . . 1 1
1 ψ−1

N ψ−2
N ψ−3

N . . ψ
−(N−1)
N

1 ψ−2
N ψ−4

N ψ−6
N . . ψ

−2(N−1)
N

1 ψ−3
N ψ−6

N . . . ψ
−3(N−1)
N

. . . . . . .

. . . . . . .

1 ψ
−(N−1)
N ψ

−2(N−1)
N . . . ψ

−(N−1)(N−1)
N


.
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As it happens, ΨN is invertible. You can see this in at least two ways. First of all,
ΨN is a so-called Vandermonde matrix. It takes the form

VN (α0, α1, . . . , αN−1) =



1 α0 α2
0 . . αN−1

0

1 α1 α2
1 . . αN−1

1

1 α2 α2
2 . . αN−1

2

. . . . .

. . . . .

1 αN−1 α2
N−1 . . αN−1

N−1


with αk = ψ−k

N for 0 ≤ k < N . A nice fact about the Vandermonde matrix is that
it’s invertible if and only if all the αk are different, which is the case for ΨN . The
Vandermonde argument proves ΨN ’s invertibility, but it doesn’t provide a formula
for the inverse of ΨN . It turns out that

Ψ−1
N = (1/N)ΨN ,

where overbar denotes complex conjugate. The argument rests on the identity

(14) ψlN
N = 1 for all l ∈ Z ,

which holds because ψlN
N = ej2πl = 1 for every integer l. Observe that

[
(1/N)ΨNΨN

]
pq

=
1
N

N∑
r=1

[
ΨN

]
pr

[ΨN ]rq

=
1
N

N∑
r=1

ψ
(p−1)(r−1)
N ψ

−(r−1)(q−1)
N

=
1
N

N∑
r=1

ψ
(p−q)(r−1)
N

for 1 ≤ p, q ≤ N . If p = q, each term in the sum is 1, so the value of the right-hand
side is 1. If p 6= q, the sum is a partial geometric series and evaluates to

N−1∑
m=0

(
ψp−q

N

)m
=

1− ψ(p−q)N
N

1− ψp−q
N

= 0

by identity (14). Accordingly,[(
1
N

ΨN

)
ΨN

]
pq

=
{

1 when p = q
0 when p 6= q ,

which is the same as saying (
1
N

ΨN

)
ΨN = IN

or, equivalently,

Ψ−1
N =

1
N

ΨN .

Since ΨN is invertible, you can recover an N -point signal from its N -point
DFT. In terms of the vectors x and X̂,

x = Ψ−1
N X̂ =

1
N

ΨN X̂ .
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In components, this last equation reads

(DFT −1) x(n) =
1
N

N−1∑
k=0

X̂kψ
nk
N for 0 ≤ n < N .

Thus N -point signals and their N -point DFTs stand in one-to-one correspondence.
The signal determines the DFT through equation DFT and the DFT determines
the signal through equation DFT −1. While this observation might not seem pro-
found, it has a noteworthy consequence that reads like a “reverse sampling theo-
rem.”

12.2 Theorem: The DTFT X̂ of any x ∈ SN is determined for all ω ∈ R by
its values at the N equally spaced ω-values 0, 2π/N , 4π/N , . . . , (N − 1)2π/N .
Alternatively, given any N complex numbers c0, c1, c2, . . . , cN−1, there exists a
unique x ∈ SN whose DTFT X̂ satisfies X̂(k2π/N) = ck for 0 ≤ k < N .

Proof: The first statement follows from the fact that the N values X̂(k2π/N),
0 ≤ k < N , determine the N -point signal x via equation DFT −1, and x in turn
determines X̂. As for the second statement, let x be the N -point signal with N -
point DFT X̂k = ck, 0 ≤ k < N . Then x’s DTFT X̂ satisfies X̂(k2π/N) = ck
for 0 ≤ k < N , and x is the only N -point signal with that property by equation
DFT −1. �

Many authors approach the DFT from the standpoint of orthogonal expan-
sions. Although I’ve adopted a different line of attack, it’s useful to understand the
orthogonal-expansion approach. We’ve noted already that SN is an inner product
space with the usual l2 inner product. Since SN has dimension N , it possesses
orthonormal bases by Fact 9.9. The N -tuple of signals

(δ,Shift1(δ),Shift2(δ), . . . ,ShiftN−1(δ))

is one orthonormal basis for SN , and it maps to the standard basis of CN under the
signal-vector correspondence. Another orthonormal basis for SN arises as follows.
For each k, 0 ≤ k < N , let wk be the N -point signal with specification

wk(n) =
1√
N
ψnk

N for 0 ≤ n < N .

The N -tuple (w0, w1, w2, . . . , wN−1) is an orthonormal basis for SN . To verify
orthonormality, note that given p and q we have

〈wp, wq〉 =
N−1∑
n=0

wp(n)wq(n)

=
1
N

N−1∑
n=0

ψ
n(p−q)
N .
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If p = q, every term in the sum on the second line is 1, so 〈wp, wq〉 = 1. If p 6= q,
the sum takes the form of a partial geometric series and evaluates to

N−1∑
n=0

(
ψp−q

N

)n
=

1− ψN(p−q)
N

1− ψp−q
N

= 0

by identity (14). So 〈wp, wq〉 = 0 if p 6= q. Since the wk are orthonormal, they’re
linearly independent and hence form a basis for SN . Consequently, every x ∈ SN

has an orthogonal expansion

x =
N−1∑
k=0

〈x,wk〉wk .

Because

〈x,wk〉 =
N−1∑
n=0

x(n)wk(n)

=
1√
N

N−1∑
n=0

x(n)ψ−nk
n

=
1√
N
X̂k for 0 ≤ k < N ,

the orthogonal expansion for any N -point signal x is

(15) x =
N−1∑
k=0

(
1√
N
X̂k

)
wk ,

which is equivalent to

x(n) =
1√
N

N−1∑
k=0

X̂kwk(n) =
1
N

N−1∑
k=0

X̂kψ
nk
N for 0 ≤ n < N ,

and this is simply equation DFT −1. In short, taking the N -point DFT of an N -
point signal x amounts to finding the coefficients in the orthogonal expansion of
x in terms of the orthonormal basis (w0, . . . , wN−1) for SN , and equation DFT −1

exhibits the orthogonal expansion itself.
Let’s re-cast these orthogonal-expansion ideas in terms of the linear algebra of

signal vectors. Recall that the inner product on SN maps to

〈x, y〉 = yHx ,

the usual inner product on CN . The signal vectors wk corresponding to the signals
wk above constitute an orthonormal basis for CN with respect to this inner product.
Thus we can expand any x ∈ CN as

x =
N−1∑
k=0

〈x,wk〉wk

=
N−1∑
k=0

(
wk

Hx
)
wk

=
N−1∑
k=0

(
1√
N
X̂k

)
wk ,
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which is the vector version of (15).

Operational rules and a symmetry property

Associated with the DFT are operational rules analogous to those for the DTFT.
Most important to us are two that I’ll state and prove first using the language of
N -point signals and then reformulate in terms of signal vectors. Before moving on
to those rules, let’s record a simple observation about N -point DFTs of real-valued
N -point signals.

12.3 Fact: If x is a real-valued N -point signal with N -point DFT X̂k, 0 ≤ k <
N , then X̂0 is real, and

X̂N−k = X̂k when1 ≤ k < N .

The proof is simple. X̂0 =
∑N−1

n=0 x(n) is obviously real when x is. For 1 ≤ k < N
we have

X̂N−k =
N−1∑
n=0

x(n)ψ−n(N−k)
N

=
N−1∑
n=0

x(n)ψnk
N

= X̂k ,

where the second line holds because ψ−nN
N = 1 and the third line because x is

real-valued. �

Now for the aforementioned operational rules.

12.4 Cyclic Shift Rule: If x is an N -point signal whose N -point DFT is
{X̂k : 0 ≤ k < N}, then for any no satisfying 0 ≤ no < N , y = CShiftno(x) has
N -point DFT specified by

Ŷk = ψ−nok
N X̂k for 0 ≤ k < N .
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To see this, write out the formula for Ŷk.

Ŷk =
N−1∑
n=0

y(n)ψ−nk
N

=
N−1∑
n=0

x( 〈〈n− no〉〉N )ψ−nk
N

=
N−1∑
n=no

x(n− no)ψ−nk
N +

no−1∑
n=0

x(N + n− no)ψ−nk
N

=
N−no−1∑

m=0

x(m)ψ−(m+no)k
N +

N−1∑
m=N−no

x(m)ψ−(m−N+no)k
N

= ψ−nok
N

N−1∑
m=0

x(m)ψ−mk
N

= ψ−nok
N X̂k .

On the fourth line, I changed summation index to m = n− no in the first sum and
m = N +n−no in the second sum. To get the fifth line from the fourth line, I used

ψ
−(m−N+no)k
N = ψ

−(m+no)k
N ψNk

N = ψ
−(m+no)k
N ,

where ψNk
N = 1 follows from identity (14). �

12.5 Circular Convolution Rule: If h and x are N -point signals with
respective N -point DFTs {Ĥk : 0 ≤ k < N} and {X̂k : 0 ≤ k < N}, then
y = CConvN (h, x) has DFT specified by

Ŷk = Ĥk X̂k for 0 ≤ k < N .

Again it pays to plug and chug starting with the definition of Ŷk.

Ŷk =
N−1∑
n=0

y(n)ψ−nk
N

=
N−1∑
n=0

(
N−1∑
m=0

h(m)x( 〈〈n−m〉〉N )

)
ψ−nk

N

=
N−1∑
m=0

h(m)

(
N−1∑
n=0

x( 〈〈n−m〉〉N )ψ−nk
N

)

=

(
N−1∑
m=0

h(m)ψ−mk
N

)
Ĥk

= Ĥk X̂k .

To get the third line from the second line, I interchanged order of summation. To
get the fourth line from the third line, I applied the Cyclic Shift Rule to the inner
sum on the third line. �
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Reformulating the Cyclic Shift Rule and Circular Convolution Rule in terms
of signal vectors unearths a significant and widely applicable linear-algebraic fact.
Let’s start with the signal-vector rendering of y = CShiftno

(x), which reads

y = Cno

N x .

Multiplying a vector by ΨN produces the vector of values of the N -point DFT of
the vector’s corresponding signal. Thus from

ΨN y = ΨN Cno

N x =
(
ΨN Cno Ψ−1

N

)
ΨN x for all x ∈ CN

it follows that
Ŷ =

(
ΨN CN Ψ−1

N

)
X̂ for all X̂ ∈ CN .

By the Cyclic Shift Rule, we have

Ŷk = ψ−nok
N X̂k for 0 ≤ k < N ,

which means that the matrix in parentheses must be diagonal. Specifically,[
ΨN CN Ψ−1

N

]
pq

=
{
ψ

no(p−1)
N if p = q

0 if p 6= q .

In the terminology of Chapter 14, taking the N -point DFT diagonalizes the linear
mapping on CN associated with cyclic shifting. That linear mapping arises from
multiplication of vectors by a circulant matrix, in this case a power of CN . As
it happens, taking the DFT diagonalizes any linear operation on CN induced in
similar fashion by a circulant matrix.

The Circular Convolution Rule also corresponds to such an operation on signal
vectors. Start with (13) and multiply both sides by ΨN . That yields

ΨN y = ΨN H x =
(
ΨN H Ψ−1

N

)
ΨN x for all x ∈ CN ,

meaning
Ŷ =

(
ΨN H Ψ−1

N

)
X̂ for all X̂ ∈ CN .

The Circular Convolution Rule stipulates that Ŷk = ĤkX̂k for all k, so the matrix
in parentheses must be the diagonal matrix whose pth diagonal entry is Ĥp−1 for
1 ≤ p ≤ N . Note that since h is an arbitrary N -point signal, H is an arbitrary
circulant matrix. It follows that the DFT matrix ΨN diagonalizes any circulant
matrix. Proving the following formal elaboration of this last observation requires
material from Chapter 14.

12.6 Fact: Let H he an (N ×N) circulant matrix whose first column is

h =
[
h(0) h(1) h(2) . . . h(N − 1)

]T
and whose qth column is Cq−1

N h for 2 ≤ q ≤ N . The eigenvalues of H are

Ĥk =
N−1∑
n=0

h(n)ψ−nk
N for 0 ≤ k < N ,

and for each k an eigenvector of H corresponding to eigenvalue Ĥk is

wk =
[

1 ψk
N ψ2k

N . . . ψ
(N−1)k
N

]T
.
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Three applications of the DFT

People have developed extremely fast algorithms for computing and inverting DFTs.
If you can reduce a signal-processing calculation to one involving only DFT com-
putations, chances are you’ll be able to do your calculation more efficiently than
by “brute force.” In what follows, I’ll describe three such applications of DFTs.

First consider the problem of finding the ordinary convolution y = h ∗ x of two
finite-duration signals h and x. Suppose for simplicity that h(n) = x(n) = 0 for
n < 0. If that’s not the case, you can always find n1 and n2 so that Shiftn1(x)(n) =
Shiftn2(x)(n) = 0 for n < 0, then compute Shiftn1(h) ∗ Shiftn2(x), and finally note
that

y = h ∗ x = Shift−n1−n2 (Shiftn1(h) ∗ Shiftn2(x)) .

Since h and x have finite duration, there exist positive integers P and L so that
h(n) = 0 for n ≥ P and x(n) = 0 for n ≥ L. Thus h is a P -point signal and x is
an L-point signal. The discussion of Criterion 5.1 taught us that h ∗ x(n) = 0 for
n < 0 and for n ≥ P +L− 1, so h = h ∗x is an N -point signal with N = P +L− 1.

We can also think of h and x themselves as N -point signals that just happen to
be zero for n ≥ P and n ≥ L, respectively. Adopting that view of h and x, we can
find their N -point circular convolution, and we can do that using N -point DFTs
as follows.

• Find the N -point DFTs of h and x viewed as N -point signals, where
N = P + L − 1, with P and L defined as above. Call these DFTs {Ĥk}
and {X̂k}, respectively.

• Let Ẑk = Ĥk X̂k for 0 ≤ k < N . Find the N -point signal z whose N -point
DFT is {Ẑk : 0 ≤ k < N}. By the Circular Convolution Rule 12.5, z is
the circular convolution of h and x viewed as N -point signals.

As it happens, the ordinary convolution y = h ∗ x is the same as the circular
convolution z = CConvN (h, x), the latter computed as above by viewing h and
x as N -point signals. Let’s see why. The ordinary convolution x of h and x has
specification

y(n) =
∞∑

m=−∞
h(m)x(n−m)

=
n∑

m=0

h(m)x(n−m)

=

 0 when n < 0∑n
m=0 h(m)x(n−m) when 0 ≤ n < N

0 when n ≥ N .

The range of summation in the second line takes into account that h(m) = 0 when
m < 0 and x(n−m) = 0 whenm > n. The last line holds because h(m)x(n−m) = 0
for every m in the range of summation when n < 0 or when n ≥ N = P + L − 1.
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Meanwhile, the N -point signal z = CConvN (h, x) has specification z(n) = 0 for
n < 0, z(n) = 0 for n ≥ N , and

z(n) =
N∑

m=0

h(m)x( 〈〈n−m〉〉N )

=
n∑

m=0

h(m)x(n−m) +
N∑

m=n+1

h(m)x(N + n−m) for 0 ≤ n < N .

Consider the second sum on the second line. Because h(m) = 0 for m ≥ P , the
only possibly nonzero terms in the sum are those for which m < P . For those
terms, N + n−m > L− 1 + n. Since n ≥ 0, N + n−m > L− 1 for these terms,
so x2(N + n −m) = 0. It follows that the second sum is zero and therefore that
z(n) = y(n) for all n.

So the DFT helps us compute ordinary convolutions of finite-duration signals.
A technique called block convolution extends this DFT application somewhat. Sup-
pose we want to compute h∗x when h has finite duration but x does not. I’m using h
and x for the two signals to suggest a typical context for block convolution, namely
computing the output of an FIR system in response to a possibly infinite-duration
input. Suppose for simplicity that h(n) = 0 when n < 0 and h(n) = 0 when n ≥ P ,
so h is a P -point signal.

Block convolution begins by dividing x into blocks of length L. Typically, L is
much larger than P , but not always — L is a “user choice.” For each r ∈ Z, define
the L-point signal xr as follows:

xr(n) =
{
x(rL+ n) for 0 ≤ n < L

0 otherwise.

The possibly nonzero values in xr are the values of the signal x that occur in the
“rth time-block of length L,” which begins at time rL and extends through time
(r + 1)L− 1. Because

x =
∞∑

r=−∞
ShiftrL(xr) ,

we know that

h ∗ x =
∞∑

r=−∞
h ∗ ShiftrL(xr)

=
∞∑

r=−∞
ShiftrL(h ∗ xr)

=
∞∑

r=−∞
ShiftrL(yr) ,

where yr = h ∗ xr. Since h is a P -point signal and each xr is an L-point signal, we
can use DFTs to compute the yr’s, which are all (L+ P − 1)-point signals.

Finishing the computation of h ∗ x entails shifting each yr by rL and then
adding all those shifted signals together. That may seem like a tall order, but it’s
not difficult if P isn’t too large. The key observation is that if L is significantly
larger than P , then the “duration interval” of each shifted yr overlaps the duration
intervals only of its “nearest neighbors,” the shifted yr−1 and yr+1. These overlaps
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are all of length P − 1, so adding all the shifted yr’s together requires that you
perform batches of P − 1 additions widely separated in time. A glance at Figure
1 might prove helpful. For example, y0 starts at 0 and ends at L + P − 2 and y1
starts at L and ends at 2L+ P − 1. So the overlap between the duration intervals
of y0 and y1 extends only from L to L+ P − 2, an interval of length P − 1.

Block convolution is particularly useful when the signal x parses into blocks
that look substantially alike. For example, suppose x is periodic and L is a period
of x. Then every xr is the same L-point signal, and you need compute yr = h ∗ xr

only once — i.e. yr = y0 for all r. The real work comes with the splicing, but note
that all the splicing computations are the same because each entails splicing the
left end of a a y0 with the right end of another y0.

A final application of DFTs plays an important role in FIR filter design, so
I’ll frame the discussion in those terms. Suppose you want to design an FIR filter
whose frequency response is a reasonable approximation of some desired frequency
response Ĥdes. The desired frequency response Ĥdes might not be achievable by an
FIR filter, but in any event Ĥdes is the DTFT of some possibly infinite-duration
impulse response hdes. A popular technique for coming up with an FIR filter
that, with any luck, behaves much like the filter with frequency response Ĥdes is
frequency-sampling design. Choose an integer N > 0 and record the values of Ĥdes

at the N equally spaced frequencies k2π/N for 0 ≤ k < N . Then find the N -point
signal h whose N -point DFT is

Ĥk = Ĥdes

(
k

2π
N

)
for 0 ≤ k < N .

Note that larger N means more “frequency samples” of Ĥdes distributed more
densely in the ω-interval [0, 2π]. Denote the frequency response of the FIR filter
with impulse response h in the usual way as ω 7→ Ĥ(ω). By definition of the DFT,
Ĥk = Ĥ(k2π/N) for all k, so we will always have

Ĥ

(
k

2π
N

)
= Ĥdes

(
k

2π
N

)
for 0 ≤ k < N .

Thus Ĥ matches Ĥdes at the frequency-sampling points, but Ĥ(ω) might deviate
significantly from Ĥdes(ω) at other ω-values.

Back in the time domain, one might hope that if N is large enough, then h
will resemble hdes on the time interval 0 ≤ n < N . Suppose, for instance, that
most of the “action” in hdes occurs on the time interval 0 ≤ n < N . An extreme
example would be if hdes were actually an N -point signal, in which case we would
have h = hdes by Theorem 12.2. Generally, though, hdes has infinite duration. Let’s
find a formula for h in terms of hdes that illuminates what’s happening in the time
domain. By equation DFT −1,

h(n) =
1
N

N−1∑
k=0

Ĥkψ
nk
N

=
1
N

N−1∑
k=0

Ĥdes

(
k

2π
N

)
ejnk 2π

N for 0 ≤ n < N .
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Assuming equation DT FT holds for hdes, which it will, for example, if hdes is an
l1-signal, we have

Ĥdes

(
k

2π
N

)
=

∞∑
m=−∞

hdes(m)e−jmk 2π
N for 0 ≤ k < N .

Accordingly,

h(n) =
1
N

N−1∑
k=0

( ∞∑
m=−∞

hdes(m)e−jmk 2π
N

)
ejnk 2π

N

=
∞∑

m=−∞
hdes(m)

(
1
N

N−1∑
k=0

ej(n−m)k 2π
N

)
for 0 ≤ n < N . Interchanging the order of summation is fine if hdes is an l1-signal.
The inner sum on the second line looks more familiar if we re-write it as

N−1∑
k=0

ψ
(n−m)k
N .

If n−m is an integer multiple of N , say m = n− rN for some r ∈ Z, all the terms
in the sum are 1 and the expression in parentheses evaluates to 1. If n−m is not
an integer multiple of N , then ψn−m

N 6= 1 and the inner sum is a partial geometric
series that evaluates to

1− ψ(n−m)N
N

1− ψn−m
N

= 0

by identity (14). Consequently, the only m-values that contribute to the outer sum
are those of the form m = n− rN for r ∈ Z. For those m-values, the expression in
parentheses evaluates to 1, and it follows that

(16) h(n) =
∞∑

r=−∞
hdes(n− rN) =

∞∑
r=−∞

ShiftrN (hdes)(n) for 0 ≤ n < N .

What to make of equation (16)? It expresses h on the time interval 0 ≤ n < N
as the infinite sum of shifted replicas of the desired impulse response hdes. Recall
our hope that if hdes is most active on that time interval, then h will resemble
hdes on that interval. Figure 2 illustrates schematically what’s going on. Relative
inactivity of hdes outside the interval 0 ≤ n < N means that the shifted replicas of
hdes other than the one corresponding to r = 0 don’t “pollute” the r = 0-replica
too much, at least on the time interval 0 ≤ n < N . In this case, h(n) does indeed
approximate hdes(n) for 0 ≤ n < N .

Nonetheless, if hdes(n) 6= 0 for any n outside the interval 0 ≤ n < N , as
generally happens in the filter-design setting, replicas ShiftrN (hdes) for r 6= 0 will
contribute to the sum defining the N -point signal h on the interval 0 ≤ n <
N . When that happens, people often say that “frequency sampling has led to
time-aliasing.” The terminology makes sense in light of our earlier discussion of
aliasing as it arises from sampling signals slower than their Nyquist rates, wherein
we saw collisions, albeit in ω-space, between shifted replicas of various things. Not
surprisingly, larger N leads to less time-aliasing and a better approximation of
hdes(n) for 0 ≤ n < N . This amounts to a time-domain version of our earlier
observation that larger N means more frequency samples of Ĥdes distributed more
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densely over [0, 2π] and, one might hope, a tighter match between Ĥ and Ĥdes.

The FFT

What makes these DFT applications a source of real computational economy is
the availability of fast algorithms for computing DFTs and inverse DFTs. These
algorithms are known as FFTs, or Fast Fourier Transforms. James Cooley and
John Tukey, the latter credited with coining the term “bit” for “binary digit,”
published the first FFT algorithms in the 1960s. I’ll describe one particular FFT
that illustrates most of the important ideas.

Suppose x is an N -point signal and N = 2L for some positive integer L. As-
suming N is a power of 2 loses us no generality since we can regard any N -point
signal as a 2L-point signal provided N ≤ 2L. Define the two N/2-point signals xe

and xo as follows:

xe(m) = x(2m) for 0 ≤ m <
N

2
and

xo(m) = x(2m+ 1) for 0 ≤ m <
N

2
.

The N/2-point DFTs of xe and xo have specifications

(
X̂e

)
k

=
N/2−1∑
m=0

xe(m)ψ−mk
N
2

for 0 ≤ k < N

2

and (
X̂o

)
k

=
N/2−1∑
m=0

xo(m)ψ−mk
N
2

for 0 ≤ k < N

2
.

By equation DFT ,

X̂k =
N−1∑
n=0

x(n)ψ−nk
N for 0 ≤ k < N .

Separate the sum on the right-hand side into terms indexed by even values of n
and terms indexed by odd values of n and you obtain

X̂k =
∑

n even

x(n)ψ−nk
N +

∑
n odd

x(n)ψ−nk
N

=
N/2−1∑
m=0

x(2m)ψ−2mk
N +

N/2−1∑
m=0

x(2m+ 1)ψ−(2m+1)k
N

=
N/2−1∑
m=0

xe(m)ψ−mk
N
2

+ ψ−k
N

N/2−1∑
m=0

xo(m)ψ−mk
N
2

for 0 ≤ k < N .

I used ψ2
N = ψN/2 to get the last line. This equation almost says that

X̂k =
(
X̂e

)
k

+ ψ−k
N

(
X̂o

)
k
,
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but not quite. The N/2-point DFTs of xe and xo are defined only for indices
0 ≤ k < N/2 − 1, and k runs from 0 to N − 1 in the equation above for X̂k. The
difficulty evaporates because

(
ψN/2

)N/2 = 1, so

N/2−1∑
m=0

xe(m)ψ−mk
N
2

=
N/2−1∑
m=0

xe(m)ψ−m(k−N/2)
N
2

=
(
X̂e

)
k−N/2

and
N/2−1∑
m=0

xo(m)ψ−mk
N
2

=
N/2−1∑
m=0

xo(m)ψ−m(k−N/2)
N
2

=
(
X̂o

)
k−N/2

when N/2 ≤ k < N . Accordingly, you can compute the N -point DFT of the N -
point signal x by first finding the N/2-point DFTs of xe and xo and then assembling
them according to

X̂k =


(
X̂e

)
k

+ ψ−k
N

(
X̂o

)
k

when 0 ≤ k < N
2(

X̂e

)
k−N/2

+ ψ−k
N

(
X̂o

)
k−N/2

when N
2 ≤ k < N .

The last equation has the more compact representation

(FFT ) X̂k =
(
X̂e

)
〈〈k〉〉N/2

+ ψ−k
N

(
X̂o

)
〈〈k〉〉N/2

for 0 ≤ k < N .

Figure 3 illustrates this maneuver schematically for the case N = 8. Why
is it useful? Keep in mind that multiplications consume far more computational
time than additions. Computing the N -point DFT directly using equation DFT
requires N2 multiplications nominally, although to be fair some of those are triv-
ial multiplications by 1. Computing an N/2-point DFT directly requires (N/2)2

multiplications nominally. Thus computing the N -point DFT of x by computing
the N/2-point DFTs of xe and xo directly and then assembling them via equation
FFT requires a nominal

2
(
N

2

)2

+N

multiplications. When N = 8, direct computation requires 64 multiplications
whereas computation using equation FFT requires only 40 multiplications, and
the savings are even more significant for larger values of N .

But let’s not stop there. We can compute the N/2-point DFTs of xe and xo by
dividing those signals into even- and odd-indexed N/4-point subsignals, computing
those subsignals’ N/4-point DFTs, and assembling them as in FFT . Two compu-
tations each of which requires a nominal (N/2)2 multiplications can each be done
with a nominal

2
(
N

4

)2

+
N

2

multiplications, which means that computing the original N -point DFT now re-
quires only

2

(
2
(
N

4

)2

+
N

2

)
+N = 4

(
N

4

)2

+ 2N
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multiplications. Since N = 2L, we can carry out this divide-and-conquer procedure
a total of L times, thereby reducing the original nominal N2 multiplications to

2L

(
N

2L

)2

+ LN = N +N log2N

multiplications when all is said and done. The economies are stunning for large
N . For example, if N = 210, the nominal 1,048,576-multiplication total shrinks by
nearly two orders of magnitude to 11,264.

Figure 4 completes the picture for N = 8. You can see how the FFT comprises
three stages. The first stage computes the 2-point DFTs of four 2-point signals.
The second stage pairs up the outputs of the first stage and assembles each pair
into a 4-point DFT. The third and final stage assembles the two 4-point DFTs from
the second stage into the 8-point DFT of the original signal x. The FFT for general
N = 2L operates similarly as an L-stage process. The first stage computes a bunch
of 2-point DFTs, the second stage pairs these up into 4-point DFTs, and so on,
until the Lth stage implements equation FFT and assembles two N/2-point DFTs
into the N -point DFT of the original signal.

A closer look at Figure 4 reveals additional computational advantages that the
FFT algorithm provides. You can think of the output of each stage as an ordered
list of N numbers, where N = 8 in Figure 4. The algorithm generates the output
of stage m+ 1 by assembling the items in the output of stage m, and the assembly
occurs pairwise and in place in the following sense. If the output of stage 1 is y1(0),
y1(1), . . . , y1(N − 1), then to get y2(0) and y2(2) you combine y1(0) and y1(2)
according to

y2(0) = y1(0) + y1(2)

y2(2) = y1(0) + ψ−2
4 y1(2) .

Similarly, y1(1) and y1(3) determine y2(1) and y2(3); y1(4) and y1(6) determine
y2(4) and y2(6); and y1(5) and y1(7) determine y2(5) and y2(7). The same kind of
pairwise in-place computation occurs at every stage of the algorithm for general N .
The indices {1, 2, . . . , N} break up into pairs (p, q) for which the p- and q-indexed
elements of the mth list determine the p- and q-the elements of the (m+ 1)th list.
You can check that the (p, q)-pairing of the elements in the output list of stage m
always obeys

q = p+ 2m for 1 ≤ m ≤ L− 1

when N = 2L. The pairwise in-place nature of the computations makes the FFT a
good candidate for parallel processing.

A further economy arises because of the nature of the individual pairwise in-
place computations I’ve just described. Consider the 2-point DFTs that the first
stage of the algorithm calculates. For example, in the notation of the preceding
paragraph,

y1(0) = x(0) + x(2)

y1(1) = x(0) + ψ−1
2 x(2) = x(0)− x(2) ,

where the last equality holds because ψ2 = ejπ = −1. So you can think of each
two-point DFT as coming from the so-called butterfly diagram in Figure 5(a). The
only multiplication that occurs is by −1, which in a computer usually entails the
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flip of a sign bit. A general in-place pairwise computation takes the form

ym+1(p) = ym(p) + (ψ2m+1)−p
ym(q)

ym+1(q) = ym(p) + (ψ2m+1)−q
ym(q) ,

where q = p + 2m. Since (ψ2m+1)2
m

= −1, we can implement this computation
with the diagram in Figure 5(b), which features only one true multiplication and
contains a standard butterfly embedded in it.

Finally, you’ve probably noticed that the x-values in Figure 4 appear in a spe-
cial order reading from top to bottom. Accordingly, implementing the FFT requires
shuffling the x-values before processing, and you might expect the appropriate shuf-
fle for large N to be complicated and computationally demanding. Miraculously,
that’s not the case. I’ve listed to the left of each x-value in Figure 2 a pair of binary
numbers. The left number is the x-value’s time index and the right number is its
position on the list counting from top to bottom. As you can see, the shuffling pro-
cess entails a simple bit reversal. If you think about the general L-stage even-odd
divide-and-conquer procedure for N = 2L, you’ll be able to convince yourself that
the bit-reversal shuffling procedure works in general and not just for N = 8. If the
x-values arrive in an ordered array with entries time-indexed, the pre-processing
shuffle simply bit-reverses the indices of the array entries.

As I mentioned before, the FFT algorithm I’ve presented is only one of many
available. This particular algorithm is known as a decimation in time FFT. The
word “decimation” refers to the separations between even- and odd-indexed items
that occur at each stage. Qualitatively, the FFT reduces the computation of an
N -point DFT to a pre-processing permutation followed by several stages of in-place
pairwise parallel computations each of which looks like Figure 5(b). Quantitatively,
it results in a nominal reduction of N2 multiplications to N +N log2N multiplica-
tions. Ingenious, powerful, revolutionary — all those descriptors apply.



CHAPTER 13

The z-Transform

Plenty of discrete-time signals don’t have discrete-time Fourier transforms,
and plenty of discrete-time LTI systems don’t have frequency responses. The z-
transform allows us to bring transform analysis to bear on problems involving such
signals and systems. The definition of the z-transform resembles the definition
of the DTFT morphologically, and most z-transform applications and operational
rules have DTFT analogues. While an exhaustive treatment of the z-transform
would require more tools from complex analysis than we have at our disposal, we’ll
be able to penetrate the theory to a depth sufficient for common applications. I’ll
assume without loss of generality, as in recent chapters, that all the signals we en-
counter are complex-valued.

Definition of the z-transform

We’ll need to understand infinite series of the form

(17)
∞∑

n=−∞
x(n)z−n ,

where z is a complex variable and x is a discrete-time signal. Such a series is called
a power series because each of its terms is a multiple of an integer power of z. We’ll
want to know whether the series converges for at least some z ∈ C and, if so, for
what values of z the series converges. The special form of power series leads to a
fairly tidy theory of convergence. Recall from Chapter 3 that the two-sided infinite
series in (17) converges if and only if both of the one-sided series

(18)
∞∑

n=0

x(n)z−n

and

(19)
−1∑

n=−∞
x(n)z−n

converge. Understanding convergence of these one-sided series hinges on the geo-
metric series, which we first met in Chapter 1. When γ ∈ C, the geometric series

∞∑
n=0

γn

converges to 1/(1− γ) if |γ| < 1 and diverges if |γ| > 1.

197
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13.1 Fact: If (18) converges when z = zo, then it converges for all z satisfy-
ing |z| > |zo|, In fact, for such z, the series converges absolutely in the sense that∑∞

n=0 |x(n)||z|−n converges. If (19) converges when z = zo, then it converges for
all z satisfying |z| < |zo|, In fact, for such z, the series converges absolutely in the
sense that

∑−1
n=−∞ |x(n)||z|−n converges.

Proof: If
∑∞

n=0 x(n)z−n
o converges, the sequence (x(n)z−n

o )n≥0 is bounded
from above in magnitude, say by M > 0. If |z| > |zo|, then

N∑
n=0

|x(n)z−n| =
N∑

n=0

|x(n)z−n
o |(|zo|/|z|)n

≤ M
N∑

n=0

(|zo|/|z|)n

≤ M
∞∑

n=0

(|zo|/|z|)n

= M/(1− |zo|/|z|) ,

where the last equality holds by geometric-series reasoning since |zo|/|z| < 1. It fol-
lows from Fact 3.7 that the infinite sequence (x(n)z−n)n≥0 is absolutely summable,
proving the assertion in the theorem statement about absolute convergence. The
sequence is summable by Fact 3.3, so (18) converges. Similarly, if

∑−1
n=−∞ x(n)z−n

o

converges and (x(n)z−n
o )n<0 is bounded from above in magnitude by M , then for

|z| < |zo| we have
−1∑

n=−N

|x(n)z−n| =
−1∑

n=−N

|x(n)z−n
o |(|zo|/|z|)n

≤ M
N∑

m=1

(|z|/|zo|)m

≤ M
∞∑

m=0

(|z|/|zo|)m

= M/(1− |z|/|zo|) ,

so the infinite sequence (x(n)z−n)n<0 is absolutely summable by Fact 3.7, proving
the assertion in the theorem statement about absolute convergence. The sequence
is summable by Fact 3.3, so (19) converges. �

Fact 13.1 implies that if the series in (17) converges for some zo ∈ C, then the
“right side” of the series converges for every z satisfying |z| > |zo| and the “left
side” converges for every z satisfying |z| < |zo|. Assuming such a zo exists, define
Ra as follows:

Ra = inf

({
|z| :

∞∑
n=0

x(n)z−n converges

})
.

Observe that Ra = 0 is possible. By definition of Ra, the series (18) diverges for
every z ∈ C satisfying |z| < Ra. On the other hand, if |z1| > Ra there exists some
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zo for which (18) converges at zo and for which |z1| > |zo| > Ra, and it follows from
Fact 13.1 that (18) converges at z = z1. Define Rb similarly via

Rb = sup

({
|z| :

−1∑
n=−∞

x(n)z−n converges

})
.

By convention we take Rb = ∞ if the set whose sup we’re taking is unbounded.
By definition of Rb, the series (19) diverges if |z| > Rb. On the other hand, if
|z1| < Rb there exists some zo for which (19) converges at z = zo and for which
|z1| < |zo| < Rb, and it follows from Fact 13.1 that (19) converges at z = z1.

The two-sided infinite series (17) therefore converges at least for z-values in
the region Ra < |z| < Rb. Such z-values exist if and only if Ra < Rb, in which
case the indicated set of z-values constitutes an annular or doughnut-shaped region
centered on z = 0 in the complex plane. The series may or may not converge
for some z-values satisfying |z| = Ra or |z| = Rb, but we pay little attention to
those borderline values. In most cases, the series diverges for at least one z-value
satisfying |z| = Ra and at least one z-value satisfying |z| = Rb. Consider, however,
the signal x with specification

x(n) =
{

1
n2 if n > 0
0 if n ≤ 0 .

For this signal, Ra = 1 and Rb =∞, and the series
∑∞

n=−∞ x(n)z−n converges for
all z satisfying |z| = 1 because (x(n))n∈Z is absolutely summable. We’re ready now
for the formal definition of the z-transform.

13.2 Definition: Let x be a complex-valued discrete-time signal. We say that
x is z-transformable when the following conditions hold:

• There exists some z ∈ C for which
∑∞

n=−∞ x(n)z−n converges.
• Ra < Rb, where

Ra = inf

({
|z| :

∞∑
n=0

x(n)z−n converges

})
.

and

Rb = sup

({
|z| :

−1∑
n=−∞

x(n)z−n converges

})
.

In that case, we define the z-transform of x in two-part fashion as follows:

X(z) =
∞∑

n=−∞
x(n)z−n

︸ ︷︷ ︸
Formula

Ra < |z| < Rb︸ ︷︷ ︸
Region of convergence

.

We also write
x

z←→ X (ROC)X ,

where (ROC)X abbreviates the specification Ra < |z| < Rb.
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Fact 13.1 has three noteworthy consequences pertinent to Definition 13.2. First,
x is z-transformable if and only if there exists a whole range of R-values for which
|x(n)|R−n decays exponentially to zero as n→ ±∞. That requirement surfaces in
the stipulation Ra < Rb in Definition 13.2. The signal y with specification

y(n) =
{

0 if n = 0
1

n2 if n 6= 0

fails that test. Even though y satisfies
∞∑

n=−∞
y(n) 1−n =

∞∑
n=−∞

y(n) =
π2

3

and thus complies with the first bullet in Definition 13.2, (y(n)z−n)n≥0 is un-
bounded when |z| < 1 and (y(n)z−n)n<0 is unbounded when |z| > 1, so Ra = Rb =
1 for y, and y has no z-transform. Second, the series (17), which appears as the
formula part of the z-transform of a signal x, converges at least for all z in (ROC)X

and diverges for all z lying “strictly outside” (ROC)X in the sense that |z| < Ra

or |z| > Rb. The series might, in addition, converge for some z-values satisfying
|z| = Ra or |z| = Rb. Third, and perhaps most important, the series (17) converges
absolutely on (ROC)X in the sense that

∞∑
n=−∞

|x(n)||zo|−n

converges for all zo ∈ (ROC)X .
If you like, you can think of the z-transform of x as a complex-valued func-

tion whose domain is the set (ROC)X , which is a proper subset of the complex
plane. As we’ll see, it’s convenient at times to think of the formula part of the
z-transform as a function z 7→ F (z) with a domain larger than (ROC)X accompa-
nied by the stipulation that the infinite series

∑∞
n=−∞ x(n)z−n converges to F (z)

only for z ∈ (ROC)X . That distinction is subtle, but I hope the ensuing discussion
illuminates it.

Prototype examples, operational rules, and z-transform inversion

We’ll build up a list of what I call prototype examples of z-transforms. These ex-
amples show how easy it is to compute Ra and Rb in important special cases. As
you might imagine, geometric-series reasoning makes life simple for us. Here are
the first few prototype examples.

13.3 Example: x = δ. In this case, the infinite series in Definition 13.2
converges trivially to 1 for all z ∈ C, since x(0) = 1 and x(n) = 0 for all n 6= 0.
Accordingly, Ra = 0 and Rb =∞, and the z-transform of x is

X(z) = 1 0 < |z| <∞ .

By convention, we don’t include z = 0 in (ROC)X even though the series converges
when z = 0.
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13.4 Example: x is the signal with specification x(n) = zn
o u(n) for n ∈ Z,

where zo ∈ C is given and nonzero. The series for X(z) is

X(z) =
∞∑

n=−∞
x(n)z−n =

∞∑
n=0

(zo/z)n ,

which is a geometric series that converges if |z| > |zo| and diverges if |z| < |zo|.
Accordingly, the z-transform of x is

X(z) =
1

1− (zo/z)
=

z

z − zo
|zo| < |z| <∞ .

13.5 Example: x is the signal with specification x(n) = −zn
o u(−n − 1) for

n ∈ Z, where zo ∈ C is given and nonzero. The series for X(z) is

x(z) =
∞∑

n=−∞
x(n)z−n = −

−1∑
n=−∞

(z/zo)−n = −
∞∑

m=1

(z/zo)m ,

which is a geometric series minus its m = 0-term, and it converges if |z| < |zo| and
diverges if |z| > |zo|. Accordingly, the z-transform of x is

X(z) = −
(

1
1− (z/zo)

− 1
)

=
z

z − zo
0 < |z| < |zo| .

Examples 13.4 and 13.5 illustrate why it’s important to lug the region of con-
vergence along with the formula for the z-transform. The two examples feature the
same simplified formula for X(z) but different regions of convergence. Recall also
how I mentioned earlier that one might embody the formula part of the z-transform
of x in a function z 7→ F (z) whose domain of definition is larger than (ROC)X .
The operative F in these two examples has specification

F (z) =
z

z − zo
.

F (z) is well defined for every z except z = zo, but the power series defining X(z)
in Examples 13.4 and 13.5 converge to F (z) only for z in the respective regions of
convergence.

Like the continuous- and discrete-time Fourier transforms, the z-transform
obeys operational rules that streamline computations and contribute to the trans-
form’s utility. In proving a few of these rules, I’ll try to give you a sense of how
regions of convergence come into play.

13.6 Linearity: Suppose

x1
z←→ X1 (ROC)X1

and
x2

z←→ X2 (ROC)X2 .
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Suppose (ROC)X1 ∩ (ROC)X2 6= φ. Then for any c1 and c2 in C, the signal x =
c1x1 + c2x2 has z-transform with specification

X(z) = c1X1(z) + c2X2(z) (ROC)X ⊃ (ROC)X1 ∩ (ROC)X2 .

Usually, (ROC)X = (ROC)X1∩(ROC)X2 , but sometimes the containment is proper.
If (ROC)X1 ∩ (ROC)X2 = φ, then x = c1x1 + c2x2 does not have a z-transform
when c1 and c2 are both nonzero.

Proof: Let the respective regions of convergence be Ra < |z| < Rb for X1

and Qa < |z| < Qb for X2. If their intersection is empty, then either Ra ≥ Qb or
Qa ≥ Rb. Suppose Ra ≥ Qb, in which case we have

Qa < Qb ≤ Ra < Rb .

Since
∑∞

n=0 x1(n)z−n diverges and
∑∞

n=0 x2(n)z−n converges when |z| < Ra and
|z| > Qa, and since Qa < Qb ≤ Ra, the series

∞∑
n=0

(c1x1(n) + c2x2(n)) z−n

diverges when Qa < |z| < Ra when both c1 and c2 are nonzero. The series actually
diverges for all z with |z| < Ra because if it converged for some zo with |zo| ≤ Qa it
would converge whenever |z| > |zo| by Fact 13.1. Similarly, since

∑−1
n=−∞ x1(n)z−n

converges and
∑−1

n=−∞ x2(n)z−n diverges when |z| > Qb and |z| < Rb, and since
Qb ≤ Ra < Rb, the series

−1∑
n=−∞

(c1x1(n) + c2x2(n)) z−n

diverges when Qb < |z| < Rb and both c1 and c2 are nonzero. It actually diverges
when |z| ≥ Rb since if it converged for some zo with |zo| ≥ Rb it would also converge
for all z with |z| < |zo| by Fact 13.1. Hence if Ra > Qb, there exists no z for which
the series (17) converges. If Ra = Qb, it is possible that (17) converges, but only
when |z| = Ra. In either case, c1x1+c2x2 doesn’t satisfy the conditions of Definition
13.2 and therefore doesn’t have a z-transform. The foregoing argument began with
the assumption that Ra ≥ Qb, and a parallel argument interchanging the roles of
x1 and x2 works when Qa ≥ Rb.

If the regions of convergence intersect, then the intersection takes the form
Pa < |z| < Pb, where Pa = max ({Ra, Qa}) and Pb = min ({Rb, Qb}). In particular,
(17) converges when Pa < |z| < Pb. Accordingly, c1x1+c2x2 is z-transformable and
its z-transform has region of convergence that contains the region Pa < R < Pb.
The region of convergence could be larger because it’s possible that

inf

({
|z| :

∞∑
n=0

(c1x1(n) + c2x2(n)) z−n converges

})
< Pa

or

sup

({
|z| :

−1∑
n=−∞

(c1x1(n) + c2x2(n)) z−n converges

})
> Pb .

In any event, it’s clear in this case that the formula for the z-transform of c1x1+c2x2

is c1X1 + c2X2. �
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You may wonder under what circumstances the z-transform of a linear com-
bination of x1 and x2 has a region of convergence larger than the intersection of
(ROC)X1 with (ROC)X2 . Here’s a simple example. Let x1 = u and x2 = Shift1(u).
By Example 13.4 with zo = 1, (ROC)X1 is 1 < |z| <∞, and it’s easy to show that
(ROC)X2 is the same. Meanwhile, x1 − x2 = δ, whose z-transform has region of
convergence 0 < |z| <∞.

13.7 Time-shift Rule: Suppose x has z-transform X with region of conver-
gence (ROC)X . Then for any no ∈ Z the signal y = Shiftno

(x) has z-transform
with specification

Y (z) = z−noX(z) (ROC)Y = (ROC)X .

Proof: Let’s plug y into the formula for the z-transform and see what happens.

Y (z) =
∞∑

m=−∞
y(m)z−m

=
∞∑

m=−∞
x(m− no)z−m

=
∞∑

n=−∞
x(n)z−(n+no)

= z−noX(z)

for all z ∈ (ROC)X . It’s obvious from that chain of equalities that the series for
Y (z) converges for exactly the same z-values as the series for X(z), so (ROC)Y is
the same as (ROC)X . �

13.8 Convolution Rule: Suppose

x1
z←→ X1 (ROC)X1

and
x2

z←→ X2 (ROC)X2 .

If (ROC)X1 ∩ (ROC)X2 6= φ, then the convolution x = x1 ∗ x2 exists and has
z-transform with specification

X(z) = X1(z)X2(z) (ROC)X ⊃ (ROC)X1 ∩ (ROC)X2 .

Usually, (ROC)X = ROCX1 ∩ (ROC)X2 , but sometimes the containment is proper.

Proof: Suppose zo lies in (ROC)X1 ∩ (ROC)X2 . Then the signals y1 and y2
with specifications y1(n) = x1(n)z−n

o and y2(n) = x2(n)z−n
o are both absolutely

summable signals since, as we noted earlier by appealing to Fact 13.1, earlier, the
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series
∞∑

n=−∞
|x1(n)||zo|−n

converges when zo ∈ (ROC)X1 and
∞∑

n=−∞
|x2(n)||zo|−n

converges when zo ∈ (ROC)X2 . By Criterion 5.5, y1∗y2 exists and is also absolutely
summable. Meanwhile,

y1 ∗ y2(n) =
∞∑

k=−∞

y1(k)y2(n− k)

= z−n
o

∞∑
k=−∞

x1(k)x2(n− k)

= z−n
o x1 ∗ x2(n) for all n ∈ Z ,

and it follows not only that x = x1 ∗ x2 exists but also that n 7→ x1 ∗ x2(n)z−n
o is

absolutely summable and hence summable by Fact 3.3. Thus
∞∑

n=−∞
x1 ∗ x2(n)z−n

o

converges for all zo in (ROC)X1 ∩ (ROC)X2 . Accordingly, x = x1 ∗ x2 has a z-
transform whose region of convergence includes (ROC)X1 ∩ (ROC)X2 . When z lies
in that intersection,

X(z) =
∞∑

n=−∞
x(n)z−n

=
∞∑

n=−∞

( ∞∑
k=−∞

x1(k)x2(n− k)

)
z−n

=
∞∑

k=−∞

x1(k)

( ∞∑
n=−∞

x2(n− k)z−n

)

=

( ∞∑
k=−∞

x1(k)z−k

)
X2(z) because z ∈ (ROC)X2

= X1(z)X2(z) because z ∈ (ROC)X1 .

Interchanging the order of summation is legal because of the way all the series con-
verge. The Time-shift Rule 13.7 applied to the inner summation on the third line
yields the expression on the fourth line. It follows that X(z) = X1(z)X2(z) and
that (ROC)X includes (ROC)X1 ∩ (ROC)X2 . �

Only rarely does x1 ∗ x2 exist when x1 and x2 have z-transforms with non-
intersecting regions of convergence. For example, if x1 = u and x2 is the signal
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with specification

x2(n) =
{

1
n2 when n < 0
0 when n ≥ 0 ,

then (ROC)X1 is 1 < |z| < ∞ and (ROC)X2 is 0 < |z| < 1. Nonetheless, x1 ∗ x2

exists and has specification

x1 ∗ x2(n) =
{

π2

6 if n ≥ 0∑n
k=−∞

1
k2 if n < 0 .

Observe that x1 ∗ x2 is not z-transformable because
∑∞

n=0 x1 ∗ x2(n)z−n converges
if and only if |z| > 1 whereas

∑−1
n=−∞ x1 ∗ x2(n)z−n diverges when |z| > 1 because

|x1 ∗ x2(n)| ≥ 1/n2 for all n < 0.

13.9 z-differentiation Rule: If x has z-transform X with region of conver-
gence (ROC)X , then the signal y with specification

y(n) = (n− 1)x(n− 1) for all n ∈ Z

has z-transform with specification

Y (z) = − d

dz
X(z) (ROC)Y = (ROC)X .

Proof: As it happens, (y(n)z−n)n∈Z decays geometrically as n → ∞ for the
same z-values as does (x(n)z−n)n∈Z, so y is z-transformable and (ROC)Y is the
same as (ROC)X . To find the formula for Y (z), start with the series formula for
X(z) and differentiate it term-by-term, which is legal because of the way the series
converges on (ROC)X .

− d

dz
X(z) = − d

dz

∞∑
m=−∞

x(m)z−m

=
∞∑

m=−∞
mx(m)z−m−1

=
∞∑

n=−∞
(n− 1)x(n− 1)z−n

=
∞∑

n=−∞
y(n)z−n ,

and the series on the last line is the formula for Y (z). �

The Time-shift Rule 13.7 and the z-differentiation Rule 13.9 provide means to
expand the list of prototype examples. I’ll take notational liberties in what follows
by writing signal and z-transform specifications on either end of the z-transform
arrow rather than whole signals and whole functions of z, for instance rendering
Example 13.4 as

zn
o u(n) z←→ z

z − zo
|zo| < |z| <∞ .
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Let’s start with that example and apply the Time-shift Rule to obtain

z(n−1)
o u(n− 1) z←→ 1

z − zo
|zo| < |z| <∞ .

By the z-differentiation Rule we have

(n− 1)zn−2
o u(n− 2) z←→ 1

(z − zo)2
|zo| < |z| <∞ ,

and another application of the time-shift rule leads to

nzn−1
o u(n− 1) z←→ z

(z − zo)2
|zo| < |z| <∞ .

Observe finally that nzn−1
o u(n − 1) = nzn−1

o u(n) for all n ∈ Z. The final form of
our first new prototype example is

(1a) nzn−1
o u(n) z←→ z

(z − zo)2
|zo| < |z| <∞ .

Now go through the same drill starting from example (1a). You get

(n− 1)z(n−2)
o u(n− 1) z←→ 1

(z − zo)2
|zo| < |z| <∞

from the Time-shift Rule and then

(n− 1)(n− 2)zn−3
o u(n− 2) z←→ 2

(z − zo)3
|zo| < |z| <∞

from the z-differentiation Rule and finally

(2a)
n(n− 1)

2
zn−2
o u(n) z←→ z

(z − zo)3
|zo| < |z| <∞ ,

where I first used linearity to transplant the factor of 2 and then applied the fact
that n(n− 1)u(n− 1) = n(n− 1)u(n) for all n ∈ Z.

If you keep this up you end up with the following prototype example for every
nonnegative integer k:

(ka)
(
n

k

)
zn−k
o u(n) z←→ z

(z − zo)k+1
|zo| < |z| <∞ .

Similar plug-and-chug using the Time-shift Rule and the z-differentiation Rule
starting from Example 13.5 leads to

(kb) −
(
n

k

)
zn−k
o u(−n− 1) z←→ z

(z − zo)k+1
0 < |z| < |zo|

for every nonnegative integer k. Observe that for every k, the z-transforms in (ka)
and (kb) feature the same formula but different regions of convergence. Note also
that Examples 13.4 and 13.5 instantiate (0a) and (0b) respectively.

Setting the prototype examples aside for the moment, let’s confirm that a
signal’s z-transform determines the signal unambiguously. A good way to do that
is to demonstrate how to recover a signal x from its z-transform. Suppose x has
z-transform with region of convergence given by Ra < |z| < Rb. For any R̂ lying
strictly between Ra and Rb, the signal y with specification y(n) = R̂−nx(n) decays



13. THE z-TRANSFORM 207

geometrically as n→ ±∞, so it’s an absolutely summable signal and therefore has
DTFT with specification

Ŷ (ω) =
∞∑

n=−∞
y(n)e−jnω =

∞∑
n=−∞

x(n)
(
R̂ejω

)−n

for all ω ∈ R .

Ŷ is a continuous function of ω because y is absolutely summable. Observe that the
sum in the rightmost term is X(R̂ejω), i.e. the z-transform of x evaluated along the
circle of radius R̂ centered at z = 0. Applying equation DT FT −1 from Chapter 11
to y yields

y(n) =
1
2π

∫ π

−π

Ŷ (ω)ejnωdω =
1
2π

∫ π

−π

X(R̂ejω)ejnωdω for all n ∈ Z ,

and, since x(n) = y(n)R̂n for all n,

(Z−1) x(n) =
1
2π

∫ π

−π

X
(
R̂ejω

)
R̂nejnωdω for all n ∈ Z ,

Complex-analysis aficionados might prefer to express the right-hand side of equation
Z−1 as a contour integral along the counterclockwise-directed circle of radius R̂
centered at z = 0, which I’ll denote by Ĉ. Along Ĉ, z = R̂ejω, so dz = jR̂ejωdω,
or, equivalently, dω = dz/jz. Accordingly,

x(n) =
1

2πj

∮
bC X(z)zn−1dz for all n ∈ Z .

Soon we’ll learn an easier method for recovering x from X in the special case
that X is given on (ROC)X by a proper rational function of z. For now, let’s see
how the inversion formula Z−1 applies to the prototype examples. The region of
convergence for example (ka) is |zo| < |z| <∞, so R̂ in the inversion formula must
satisfy R̂ > |zo|. Similarly, applying the inversion formula to example (kb) requires
R̂ < |zo|. It follows that if X(z) is the z-transform formula from example (ka) or
example (kb), then for every n ∈ Z we have

(20)
1
2π

∫ π

−π

X
(
R̂ejω

)
R̂nejnωdω =

{ (
n
k

)
zn−k
o u(n) if R̂ > |zo|

−
(
n
k

)
zn−k
o u(−n− 1) if R̂ < |zo| .

The z-transform and LTI systems

First let’s establish the relationship between the z-transform and the discrete-time
Fourier transform. Suppose x is z-transformable and (ROC)X contains the unit
circle |z| = 1, which is the set of all z-values of the form ejω for ω ∈ R. Evaluating
X(z) at z = ejω yields

X(ejω) =
∞∑

n=−∞
x(n)e−jnω = X̂(ω) for all ω ∈ R .

Thus x has a DTFT if x is z-transformable and the region of convergence of x’s
z-transform includes the unit circle |z| = 1 in the complex plane. Note, however,
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that a z-transformable x can have a DTFT even when this condition fails. For
example, the signal x with specification

x(n) =
{

1
n2 for n > 0
0 for n ≤ 0

is absolutely summable and therefore has a DTFT, but its z-transform has region
of convergence 1 < |z| <∞, which doesn’t include the unit circle. Furthermore, as
we noted earlier, the signal x with specification

x(n) =
{

1
n2 when n 6= 0
0 when n = 0

is absolutely summable and has a DTFT but doesn’t have a z-transform. Nor
does a signal whose DTFT contains impulses — for example, a constant signal
or a discrete-time sinusoid of the form n 7→ ejnωo — possess a z-transform. At
the same time, plenty of signals that have z-transforms don’t have DTFTs. Any
z-transformable x for which (ROC)X is “bounded away” from the unit circle in the
sense that Ra > 1 or Rb < 1 has no DTFT.

These complications aside, we learned in Chapter 11 that the frequency re-
sponse of a discrete-time LTI system, if it exists, is the DTFT of the system’s
impulse response h. We discovered that a system’s frequency response facilitates
analyzing how the system responds to pure discrete-time sinusoidal inputs and,
more generally, to inputs possessing DTFTs. The z-transform enables us to ex-
pand the scope of transform-domain analysis to encompass a wide class of systems,
including many that lack frequency responses, and a wide class of input signals,
including many that lack DTFTs.

13.10 Definition: We say that a LTI system with impulse response h has a
transfer function when h is z-transformable, in which case the transfer function of
the system is the z-transform of h.

Suppose h is the impulse response of a LTI system with system mapping S,
and h is z-transformable, so the system has transfer function

H(z) =
∞∑

n=−∞
h(n)z−n (ROC)H .

Consider driving the system with input x specified by x(n) = zn
o for all n ∈ Z,

where zo is a given complex number. The input x is admissible if and only if x
lies in Dh, the set of all signals whose convolution with h exists. In that case,
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S(x) = h ∗ x, so

S(x)(n) =
∞∑

k=−∞

h(k)x(n− k)

=
∞∑

k=−∞

h(k)zn−k
o

=

( ∞∑
k=−∞

h(k)z−k
o

)
zn
o for all n ∈ Z .

It follows that x ∈ Dh if zo ∈ (ROC)H , in which case the expression in parentheses
is simply H(zo) and the overall equation reads

S(x)(n) = H(zo)zn
o = H(zo)x(n) for all n ∈ Z .

Since S(x) = constant × x, x is an “eigen-input” to the system much like pure
discrete-time sinusoids are eigen-inputs to systems possessing frequency responses.
It’s possible that x ∈ Dh even when zo /∈ (ROC)H , but only if zo lies on one of the
boundary circles of (ROC)H , because the series

∑∞
k=−∞ h(k)z−k

o diverges when zo

is “strictly outside” (ROC)H .
Definition 11.4 states that a LTI system with impulse response h has a frequency

response when every pure discrete-time sinusoidal input n 7→ ejnωo lies in Dh. The
computations in the preceding paragraphs demonstrate that if every z-value of the
form ejωo lies in (ROC)H — which is the same as saying that the unit circle in
the complex plane lies in (ROC)H — then the system has a frequency response Ĥ,
and Ĥ(ω) = H(ejω) for all ω ∈ R. Note that it’s possible for a system to possess a
frequency response Ĥ and a transfer function H even when the unit circle doesn’t
lie in (ROC)H . To recycle an example we’ve seen before, if h has specification

h(n) =
{

1
n2 if n > 0
0 if n ≤ 0 ,

then the system has a frequency response because h is absolutely summable, and
the system has a transfer function H whose region of convergence is 1 < |z| < ∞,
which doesn’t include the unit circle. Worse yet, a system can have a frequency
response and not even have a transfer function. An example is the system with the
absolutely summable impulse response

h(n) =
{

1
n2 if n 6= 0
0 if n < 0 ,

which we learned earlier doesn’t have a z-transform.
Next, suppose a LTI system with system mapping S and impulse response h has

a transfer function, and suppose x is a z-transformable signal. The Convolution
Rule 13.8 implies that if (ROC)H ∩ (ROC)X 6= φ, then h ∗ x exists, so x is an
admissible input for the system and the corresponding output y = S(x) = h∗x has
z-transform with specification

Y (z) = H(z)X(z) (ROC)Y ⊃ (ROC)H ∩ (ROC)X .

As I noted before while discussing the Convolution Rule, a nonempty intersection
between two z-transforms’ regions of convergence is a sufficient but not quite nec-
essary condition for the existence of the corresponding signals’ convolution. In
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the present context, x ∈ Dh is possible even when (ROC)H and (ROC)X don’t
intersect, but only rarely.

If a LTI system with impulse response h is causal, then h(n) = 0 for all n < 0
by Theorem 6.5, so the series (19) converges trivially for all z. It follows that if h
is z-transformable, i.e. if the system has a transfer function, then (ROC)H must
take the form Ra < |z| < ∞. Note that many non-causal systems have transfer
functions whose regions of convergence take that form. A simple example is the
system with impulse response h = Shift−1(δ). In any event, suppose we have a
causal system whose transfer function H has region of convergence Ra < |z| <∞.
If Ra > 1, Fact 13.1 implies that the signal h isn’t absolutely summable, so by
Theorem 6.7 the system isn’t BIBO stable. On the other hand, suppose Ra < 1,
which is the same as saying that the unit circle lies in (ROC)H . Then Fact 13.1
implies that h is absolutely summable and the system is therefore BIBO stable by
Theorem 6.7. It’s possible for a causal system to be BIBO stable even when the
region of convergence for its transfer function doesn’t include the unit circle, but
Ra = 1 is the only option in this case. Again, the signal with specification

h(n) =
{

1
n2 if n > 0
0 if n ≤ 0 ,

is absolutely summable, so the system with impulse response h is BIBO stable, but
(ROC)H is 1 < |z| <∞. We’ll see shortly that this borderline scenario can’t arise
when the system’s transfer function H is given on its region of convergence by a
rational function of z.

Rational functions and rational z-transforms

A rational function of z is a function F with specification

F (z) =
p(z)
q(z)

,

where p and q are polynomials in z with complex coefficients. F is a proper rational
function of z when the degree of p is less than or equal to the degree of q. When
the degree of p is strictly less than the degree of q, F is a strictly proper rational
function of z. If p and q have no common factors, as we may always assume, then
the roots of q are called the poles of F . Clearly, F (z) is well-defined if and only if
z is not a pole of F . Any linear combination

F = c1F1 + c2F2 + · · ·+ cnFn

of rational functions Fi is a rational function, and if all the Fi are proper or strictly
proper, then so is F . It’s easy to see that every pole of F must be a pole of at least
one of the Fi, since if F (zo) is undefined, then Fi(zo) must be undefined for at least
one i. In most cases, every pole of every Fi is also a pole of F , but certain special
linear combinations lead to pole cancellations. For example,

z

z − 1
− 1
z − 1

= 1 .

We say that a z-transformable signal x has a rational z-transform when the
z-transform of x is given on its region of convergence by a rational function of z.
Each of the prototype-example signals we considered earlier has a proper rational
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z-transform. If x has a rational z-transform and X(z) is a proper rational function
of z, then X(z)/z is a strictly proper rational function of z, so we can expand
X(z)/z in partial fractions, thereby expressing X(z)/z as the sum of terms like

co

(z − zo)
k+1

where k ≥ 0 and zo is either 0 or a pole of X. The reason zo = 0 can arise even
when 0 is not a pole of X is that we divided by z prior to doing the partial fraction
expansion. Multiplying through by z yields an expansion of X(z) itself as a sum of
terms like co or

coz

(z − zo)
k+1

,

where zo is a pole of X. If X(z) is not proper, X(z)/z won’t be strictly proper. In
that case, you can use long division to write

X(z)
z

= po(z) +
p1(z)
q(z)

,

where the second term is strictly proper. Expand the second term in partial frac-
tions and multiply both sides by z. You end up expressing X(z) itself as a superpo-
sition of terms like coz/(z− zo)k+1, as before, along with positive-power-of-z-terms
of the form coz

l that come from zpo(z).
The foregoing analysis tempts us to say that any signal x with a rational

z-transform is some linear combination of prototype-example signals, whose z-
transform formulas take the form z/(z − zo)k+1, and left-shifted impulses, since

Shift−l(δ)
z←→ zl 0 < |z| <∞

for every l > 0. However, we have yet to take (ROC)X into account. Since X(z)
must be finite for every z ∈ (ROC)X , no pole of X may lie in (ROC)X . Accordingly,
the annular region (ROC)X separates the poles of X into two sets in the following
fashion. If (ROC)X is Ra < |z| < Rb, the only possible locations for poles of X are
0 < |z| ≤ Ra and Rb ≤ |z| <∞. The poles in the first set I’ll call the inward poles
and those in the second set the outward poles of X.

The inversion formula (20) determines x unambiguously. Plugging a term of
the form coz/(z− zo)k+1 into the inversion formula leads to the prototype-example
signal from (ka) if zo is an inward pole of X and the prototype-example signal from
(kb) if zo is an outward pole of X. This is because if zo is an inward pole, then
R̂ in equation (20) must satisfy R̂ > |zo| whereas if zo is an outward pole, then
R̂ < |zo|. Obviously we need not plug X into the inversion formula when we know
what the answer will be. We can find the signal x whose z-transform is X with
region of convergence (ROC)X by simply going through the partial-fractions drill
and expressing x via “table lookup” as a linear combination of prototype-example
signals and left-shifted impulses.

I’ll do an example in a moment, but first I’d like to demonstrate that when x
has a rational z-transform and (ROC)X is Ra < |z| < Rb then, if Ra > 0, X must
have at least one pole on the circle of radius Ra, and, if Rb <∞, X must have at
least one pole on the circle of radius Rb. In other words, (ROC)X is “bounded by
poles” of X. Start by writing x as a sum

x = x1 + x2 + · · ·+ xn
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where none of the xi is the zero signal and where each z-transform formula Xi has
a single pole. Each of the xi is a linear combination of prototype-example signals
whose z-transforms share the same pole, and we may assume that the poles of Xi

and Xj are different when i 6= j. This last assumption guarantees that the poles
of the Xi are all poles of X. By the linearity property 13.6, the regions of conver-
gence (ROC)Xi

of all the z-transforms Xi must have a non-empty intersection, and
(ROC)X will contain that intersection.

Suppose next that (ROC)Xi is Rai < |z| < Rbi for 1 ≤ i ≤ n. Observe that for
each positive Rai and each finite Rbi the circle of radius Rai or Rbi passes through
the pole of Xi, which is also a pole of X by construction. The intersection of all
the regions of convergence will be Qa < |z| < Qb, where Qa = max({Rai}) and
Qb = min({Rbi}). Note that Qa = 0 and Qb = ∞ are possible. If (ROC)X is
Ra < |z| < Rb, we must have Ra ≤ Qa and Rb ≥ Qb because |ROCX must contain
the region Qa < |z| < Qb. It turns out that Ra = Qa and Rb = Qb. If Qa = 0,
then Ra = Qa trivially. If Qa > 0, then X has a pole on the circle of radius Qa,
so we can’t have Ra < Qa, and Ra = Qa once again. If Qb = ∞, then Rb = Qb

trivially. If Qb is finite, then X has a pole on the circle of radius Qb, so we can’t
have Rb > Qb, and Rb = Qb once again. It follows that Ra = Qa and Rb = Qb, so
X has at least one pole on the circle of radius Ra if Ra > 0 and at least one pole
on the circle of radius Rb if Rb is finite.

The foregoing discussion has repercussions for signals with rational z-transforms.
I’ll leave it to you to prove the following assertions:

• If x is right-sided and has a rational z-transform, then (ROC)X is the
part of the complex plane outside all the poles of X; i.e., (ROC)X is the
set of all z ∈ C satisfying |z| > |zo|, where zo is the pole of X with largest
magnitude.
• If x is left-sided and has a rational z-transform, (ROC)X is the part of

the complex plane inside all the poles of X; i.e., (ROC)X is the set of
all z ∈ C satisfying |z| < |zo|, where zo is the pole of X with smallest
magnitude.
• If x has finite duration, then (ROC)X is 0 < |z| <∞.

An important consequence is the following result concerning causal BIBO stable
systems with rational transfer functions.

13.11 Theorem: Let h be the impulse response of a causal LTI system with
system mapping S and suppose h has a proper rational z-transform. If

h
z←→ H Ra < |z| <∞ ,

then the system is BIBO stable if and only if no pole of H lies in |z| ≥ 1. Alterna-
tively, the system is BIBO stable if and only if Ra < 1.

Proof: Since the system is causal, h is right-sided so (ROC)H is the part of
the complex plane outside of all the poles of H. Now suppose zo is a pole of H
that lies strictly outside the unit circle |z| = 1. It follows that 1 < |zo| ≤ Ra, so
by definition of Ra,

∑∞
n=0 h(n)z−n diverges when z = 1, meaning that h is not

summable, much less absolutely summable, which in turn implies via Theorem 6.7
that the system is not BIBO stable. If zo is a pole of H that lies on the unit circle,
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then n 7→ zn
o is a bounded signal inadmissible as an input to the system since

h ∗ x(n) =
∞∑

k=−∞

h(k)zn−k
o =

( ∞∑
k=−∞

h(k)z−k
o

)
zn
o ,

and the expression in parentheses blows up because zo is a pole of H. Accordingly,
for the system to be BIBO stable, every pole of H must have magnitude less than 1,
and Ra < 1. Conversely, if every pole zo of H satisfies |zo| < 1, then Ra < 1, so the
unit circle lies in (ROC)H which implies, as we noted earlier, that h is absolutely
summable, so the system is BIBO stable by Theorem 6.7. �

Now for the promised example of rational z-transform inversion.

13.12 Example: Suppose the z-transform of x has specification

X(z) =
(z + 1) + (7z2 − 3z)(z − 1)(z − 2)(z − 3)

(z − 1)(z − 2)(z − 3)
2 < |z| < 3 .

The poles ofX(z) are 1, 2, and 3. 1 and 2 are inward poles and 3 is the only outward
pole. Following the recipe, you divide both sides by z and use long division to get

X(z)
z

= 7z − 3 +
z + 1

z(z − 1)(z − 2)(z − 3)
.

Expand the second term in partial fractions and you obtain

X(z)
z

= 7z − 3 +
−(1/6)
z

+
1

z − 1
+
−(3/2)
z − 2

+
2/3
z − 3

,

so

X(z) = 7z2 − 3z − 1
6

+
z

z − 1
+
−(3/2)z
z − 2

+
(2/3)z
z − 3

.

Finally, invoke the prototype examples to obtain

x(n) = 7δ(n+2)−3δ(n+1)− 1
6
δ(n)+u(n)− 3

2
2nu(n)− 2

3
3nu(−n−1) for all n ∈ Z .

Reminder: you can always check your answer to a computation of this kind by
taking the z-transform of the x you obtain and making sure it agrees with what
you started with.

Signal flow graphs

Suppose we have a causal discrete-time LTI system with a proper rational transfer
function. The system’s impulse response h is right-sided because the system is
causal, so (ROC)H , the region of convergence for the system’s transfer function, is
the part of the complex plane outside all the poles of H. In other words, knowing
the formula forH determines the whole transfer function under the assumption that
the system is causal. For that reason, people don’t worry much about regions of
convergence when discussing causal systems with rational transfer functions, saying



214 13. THE z-TRANSFORM

simply that the system “has transfer function H.” Suppose, then, that a causal
system has transfer function H and

H(z) =
p(z)
q(z)

,

where

p(z) =
m∑

k=0

pkz
m−k

and

q(z) = zm +
m∑

k=1

qkz
m−k .

For the purposes of this discussion, we need not assume that the polynomials p and
q have no factors in common. We can re-write H(z) as a ratio of polynomials in
z−1 by multiplying top and bottom by z−m:

H(z) =
∑m

k=0 pkz
−k

1 +
∑m

k=1 qkz
−k

.

If x is a z-transformable input to the system and y is the corresponding output,
then Y (z) = H(z)X(z) implies that(

1 +
m∑

k=1

qkz
−k

)
Y (z) =

(
m∑

k=0

pkz
−k

)
X(z) .

By the time-shift rule, this last expression corresponds to the time-domain rela-
tionship

(21) y(n) +
m∑

k=1

qky(n− k) =
m∑

k=0

pkx(n− k) for all n ∈ Z .

Equation (21) is a linear difference equation relating the input and output
signals of the system. Linear difference equations play a role in discrete time similar
to the role that linear differential equations play in continuous time. A given causal
LTI system with a rational transfer function has infinitely many such difference-
equation “implementations.” For example, one difference equation implementing
the sliding-window M -fold averager is

y(n) =
1
M

M−1∑
k=0

x(n− k) for all n ∈ Z .

In the notation of the preceding paragraph, m = M − 1, qk = 0 for 1 ≤ k ≤ m, and
pk = 1/M for 0 ≤ k ≤ m. Another difference equation implementing the averager
is

(22) y(n)− y(n− 1) =
1
M
x(n)− 1

M
x(n−M) for all n ∈ Z .

For this one, m = M , q1 = 1, qk = 0 for 2 ≤ k ≤ m, p0 = pm = 1/M , and pk = 0
for 2 ≤ k ≤ m− 1.

A signal flow graph is a connected labeled directed graph that helps us visualize
how to “realize” a difference equation (21) in “pseudo-code,” or software. At time
n, the value of some signal at time n “sits” at each node in the graph. If a node has
incoming branches, the signal value sitting at that node is the sum of the signals
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arriving over all the incoming branches. The label on a branch determines what
happens to the signal flowing along it.

• A branch without a label simply passes the value of a signal from the node
it exits to the node it enters. See Figure 1(a).
• A branch labeled by a number co multiplies by co the value of the signal

at the node it exits and sends that value to the node it enters. See Figure
1(b).
• A branch labeled z−1 delays by one time unit the signal at the node it

exits and passes that to the node it enters. See Figure 1(c).
To get a feel for how signal flow graphs work, it pays to start with FIR systems.

Suppose a causal FIR system’s impulse response h satisfies h(n) = 0 when n > m.
The transfer function of the system is

H(z) =
m∑

k=0

h(k)z−k =
∑m

k=0 h(k)z
m−k

zm
0 < |z| <∞ .

One difference equation of the form (21) that implements the FIR system is

y(n) =
m∑

k=0

h(k)x(n− k) .

It’s pretty clear that the signal flow graph in Figure 2, which takes the form of a
so-called tapped delay line, realizes this difference equation. You can think of the
graph as a snapshot taken at time n of on algorithm simulating the system. The
signal values sitting at the outputs of the delay branches represent the contents of
the algorithm’s memory at time n. Computing y(n) at time n requires not only
x(n) but also x(n − k) for 1 ≤ k ≤ m, so those past values must be available at
time n. Most people use graphs of the type in Figure 2 to describe FIR systems.
The sliding-window M -fold averager is, of course, such a system.

I’ll describe in what follows three methods for constructing signal flow graphs
realizing more general causal LTI systems implemented by difference equations of
the form (21). I’ll stick to the case m = 2 for simplicity, but it will be clear how to
extend the construction to larger m. Equation (21) when m = 2 is

y(n) + q1y(n− 1) + q2y(n− 2) = p0x(n) + p1x(n− 1) + p2x(n− 2) .

The transfer function of this system is

H(z) =
p0z

2 + p1z + p2

z2 + q1z + q2

=
p0 + p1z

−1 + p2z
−2

1 + q1z−1 + q2z−2
,

with region of convergence given by Ra < |z| < ∞, where Ra is the largest of the
magnitudes of the poles of H(z). The formulas for the z-transforms of the system’s
input x and output y are related by Y (z) = H(z)X(z).

To obtain the so-called Direct Form I signal flow graph for the system, first
define

g(n) = p0x(n) + p1x(n− 1) + p2x(n− 2) for all n ∈ Z .

Rewrite the difference equation as

y(n) = g(n)− q1y(n− 1)− q2y(n− 2) ,
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and you’ll see that the signal flow graph in Figure 3 realizes the system. The graph
employs four delay branches. Again, you can think of the delay-branch outputs as
the contents of memory at time n. To compute y(n) using the algorithm represented
in Figure 3, you need y(n − 1), y(n − 2), and g(n); in order to compute g(n), you
need x(n), g(n− 1), and g(n− 2).

The Direct Form II signal flow graph arises as follows. First set

W (z) =
1

1 + q1z−1 + q2z−2
X(z) .

Then we have (
1 + q1z

−1 + q2z
−2
)
W (z) = X(z) ,

which in the time domain reads

w(n) = x(n)− q1w(n− 1)− q2w(n− 2) .

The graph in Figure 4(a) generates w(n); note that the outputs of the delay
branches are just time-delayed w(n)-terms. Next, it follows from Y (z) = H(z)X(z)
that Y (z) =

(
p0 + p1z

−1 + p2z
−2
)
W (z), which translates to the time-domain ex-

pression

y(n) = p0w(n) + p1w(n− 1) + p2w(n− 2) .

The resulting Direct Form II signal flow graph appears in Figure 4(b). The Direct
Form II realization requires less memory than the Direct Form I. To compute y(n)
at time n, you need w(n) along with two stored values w(n − 1) and w(n − 2).
Together with x(n), those stored values also suffice to compute w(n) at time n.

To get the Transposed Direct Form II signal flow graph, first manipulate the
difference equation relating x and y to obtain

y(n) = p0x(n) + (p1x(n− 1)− q1y(n− 1)) + (p2x(n− 2)− q2y(n− 2)) .

If you empty your mind and stare for a while at this equation alongside the graph
in Figure 5, you’ll see that the graph generates y from x just as the other ones do.
I’d suggest that you “chase some signals around the diagram” to see what happens
to them. Note that you can get the Transposed Direct Form II from the Direct
Form II by reversing all the arrows and interchanging the roles of x and y. Like the
Direct Form II, the Transposed Direct Form II employs only two delay branches
and therefore requires storing only two signal values in memory at any given time.

I mentioned earlier that any LTI system with a rational transfer can be imple-
mented in infinitely many ways using a difference equation of the form (21). This
is easy to see when you consider that

H(z) =
p(z)
q(z)

=
p(z)r(z)
q(z)r(z)

for every nonzero polynomial r(z). Any two distinct choices of r(z) will lead to
different difference-equation implementations of the system with transfer function
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H. We came up earlier with two difference equations implementing the sliding-
window M -fold averager. For that system,

H(z) =
1
M

(
zM−1 + zM−2 + · · ·+ 1

)
zM−1

=
1
M

(
zM−1 + zM−2 + · · ·+ 1

)
(z − 1)

zM−1(z − 1)

=
1
M

(
zM − 1

)
zM − zM−1

.

The representations of H(z) on the first and third lines correspond with the two
difference equations we discussed earlier.

If difference-equation implementations and their attendant signal flow graphs
describe distinct possible software realizations of a LTI system, how might one
such realization offer computational advantages over another? Back when memory
was costly, people focused attention largely on constructing signal-flow-graph re-
alizations containing as few delay branches as possible. One can show that if the
polynomials p and q have no common factors, then any signal flow graph realizing
the corresponding difference equation (21) employs at least m delay branches. In
that sense, m is the “order” of the system with transfer function H = p/q. Memory
considerations aside, errors arising from finite-precision arithmetic can compromise
the behavior of software realizations of LTI systems. The fewer multiplications and
additions a realization requires, the less deleterious those errors will be.

Consider, for example, realizing the M -fold averager with the signal flow graph
in Figure 2 with h(k) = 1/M for all k. Ostensibly, computing y(n) requires M
multiplications and M − 1 additions. Moving the 1/M coefficient to the input
branch or the output branch reduces the number of multiplications but not the
number of additions. On the other hand, the Direct Form II signal flow graph
for the averager implemented by the difference equation (22) requires only two
additions and at most three multiplications for any M no matter how large. For
the price of some additional memory we have bought ourselves substantial immunity
to finite-precision effects.

The unilateral z-transform

The unilateral z-transform of a signal x ∈ CZ, if it exists, is the z-transform of
the signal xu. Since xu is a right-sided signal, the region of convergence for the
unilateral z-transform of x takes the form Ra < |z| < ∞. The formula for the
unilateral z-transform of x is

XI(z) =
∞∑

n=0

x(n)z−n .

The unilateral z-transform of x determines the signal xu unambiguously via equa-
tion Z−1. Alternatively, x’s unilateral z-transform determines x(n) for all n ≥ 0
but says nothing about x(n) for n < 0. A signal can have a unilateral z-transform
but no z-transform. Typical examples are constant signals and every signal x with
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specification x(n) = zn
o , which has unilateral z-transform

XI(z) =
z

z − zo
|zo| < |z| <∞ .

The unilateral z-transform has its own time-shift rule, namely, if x has unilat-
eral z-transform XI with region of convergence (ROC)X , then the signal Shift1(x)
has unilateral z-transform with specification

z−1XI(z) + x(−1)

and the same region of convergence (ROC)X . I’ll leave the simple proof rule as
an exercise. Applying the rule iteratively shows that Shift2(x) has unilateral z-
transform with specification

z−2XI(z) + z−1x(−1) + x(−2) ,

Shift3(x) has unilateral z-transform with specification

z−3XI(z) + z−2x(−1) + z−1x(−2) + x(−3) ,

and so on.
The time-shift rule makes the unilateral z-transform useful as a tool for solving

difference equations of the form (21) subject to initial conditions. Suppose in equa-
tion (21) we have x(n) = 0 for all n < 0 and we want to compute y(n) for all n ≥ 0
given x(n) for all n ≥ 0. That computation requires specifying the values of y(−1),
y(−2), . . . , and y(−m). Given those initial conditions, we can solve recursively for
y(0), y(1), etc. Suppose for simplicity that m = 2, in which case we can re-write
(21) as

y + q1Shift1(y) + q2Shift2(y) = p0x+ p1Shift1(x) + p2Shift2(x) .

Assuming x and y have unilateral z-transforms, we can apply the time-shift rule to
conclude that

YI(z) =
p(z)
q(z)

(XI(z) + c(z)) ,

where p(z) = p0z
2 + p1z + p2, q(z) = z2 + q1z + q2, and

c(z) =
(
p1 + p2z

−1
)
x(−1) + p2x(−2)−

(
q1 + q2z

−1
)
y(−1)− q2y(−2) .

It follows that if XI is a proper rational function, then so is YI , and we can compute
y(n) for n ≥ 0 using the recipe for inverting rational z-transforms. The foregoing
discussion generalizes easily to m > 2.



CHAPTER 14

Linear Algebra II: Eigenvalues, Eigenvectors, and
all that

A linear mapping T that maps a vector space V into itself demands closer
inspection than a linear mapping between arbitrary vector spaces. Numerous ques-
tions about such a T make sense only because T maps V into V . For example,
the zeroes on the left- and right-hand sides of the equation T (0) = 0 are the same;
accordingly, 0 is a fixed point of the mapping T : V → V . Does T have other fixed
points? Do there exist nonzero vectors v such that, for example, T (v) = −v or
T (v) = 3v? If T mapped V into some other vector space W , these and other simi-
lar questions would never arise. Understanding the properties of T : V → V entails
posing and answering such questions in a systematic way. The theory is cleanest
when V is a finite-dimensional complex vector space, and I’ll focus primarily on
that case. At the end of the chapter I’ll attempt to show how the abstract results
underpin certain more or less familiar notions such as eigenvalues and eigenvectors
of real and complex square matrices.

Invariant subspaces

Let V be a vector space over F, where F is R or C. I’ll use the notation End(V ) to
denote the set of all linear mappings from V to V , which in the notation of Chap-
ter 4 is Hom(V, V ). Incidentally, “End” stands for “endomorphism.” End(V ) is a
vector space over F and by Theorem 4.11 has dimension n2 if V has dimension n.
Defined on End(V ) is the multiplication-type operation that arises from composing
two linear mappings S and T in End(V ) to obtain the mapping ST ∈ End(V ) with
specification

ST (v) = S(T (v)) for all v ∈ V .

That operation, which is not commutative in general, makes End(V ) a noncom-
mutative algebra over F. By composing a linear mapping T with itself, we obtain
powers of T such as T 2, which has specification

T 2(v) = T (T (v)) for all v ∈ V .

For every k ≥ 0, T k+1 has specification

T k+1(v) = T
(
T k(v)

)
for all v ∈ V ,

where T 0, by convention, is the identity mapping on V , which I’ll denote by I in
what follows.

Given T ∈ End(V ), a subspace W of V is invariant under T when T (w) ∈ W
for every w ∈ W . Thus W is invariant under T when T maps W into itself. If
you think of W as a vector space in its own right, the restriction of T to the

219
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subspace W defines a linear mapping from W to W , i.e. a member of End(W ). In
a sense, the restriction of T to W constitutes a “sub-mapping” of T . Note that
the zero subspace and V itself are invariant under any T ∈ End(V ), so every T
has at least two trivial invariant subspaces. The range and nullspace of T are also
invariant under T since T (v) ∈ range(V ) for every v ∈ V and a fortiori for every
v ∈ range(V ), while

T (v) = 0 ∈ nullspace(V ) for all v ∈ nullspace(V ) .

Observe also that if W is invariant under T , then W is also invariant under T k for
every k > 0 because when w ∈ W , so is T (w), hence so is T (T (w)) = T 2(w), and
therefore so is T (T 2(w)) = T 3(w), and so on.

Suppose now that W1, . . . , Ws are nonzero mutually disjoint subspaces of V
and suppose also that

V = W1 + · · ·+Ws .

By Lemma 4.5, every v ∈ V has a unique expansion of the form

v = w1 + · · ·+ ws ,

where wk ∈Wk for all k, so to understand what T does to vectors in V , it suffices
to understand what T does to vectors in each of the Wk. If Wk is invariant under
T for every k, and Tk ∈ End(Wk) is the restriction of T to the subspace Wk, then

T (v) = T (w1) + · · ·+ T (ws)
= T1(w1) + · · ·+ Ts(ws) .

Accordingly, understanding the mapping T ∈ End(V ) entails understanding the
“sub-mappings” Tk ∈ Hom(Wk). One might hope that the Tk would be simpler in
general that T because each Wk, being a proper subspace of V , is in some sense
smaller than V , making the possibilities for mappings in End(Wk) more limited
than the possibilities for mappings in End(V ).

Our central project in this chapter will be to start with an arbitrary T ∈
End(V ), where V is a finite-dimensional complex vector space, and find mutually
disjoint subspaces W1, . . . , Ws of V , all invariant under T , whose vector sum is
V and on each of which T acts in a relatively simple fashion. By doing that, we’ll
arrive at a “decomposition” of T into simpler sub-mappings Tk ∈ End(Wk), where
Tk is the restriction of T to Wk. Sometimes, the Tk take a particularly elementary
form.

Eigenvalues, eigenvectors, and eigenspaces

Although we’ll focus on finite-dimensional complex vector spaces, the following def-
inition makes sense for arbitrary vector spaces.

14.1 Definition: Let V be a vector space over F, where F is R or C. If
T ∈ End(V ), a vector vo ∈ V is an eigenvector of T when vo 6= 0 and there exists
λo ∈ F for which

T (vo) = λovo .

In this case, we say that λo is an eigenvalue of T and that vo is an eigenvector of
T corresponding to eigenvalue λo.
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You can think of T ∈ End(V ) as “moving vectors around” in V by means of the
mapping v 7→ T (v). An eigenvector vo of T is a vector that T “moves” in the
simplest way possible, namely by multiplying vo by a scalar λo ∈ F.

Observe that any eigenvector vo of T spans a one-dimensional subspace of V
invariant under T , namely span({vo}). This is because we can write any v in
span({vo}) as v = covo for some co ∈ F, and

T (covo) = coT (vo) = coλovo ∈ span({vo}) .

Because T (covo) = λo(covo), every nonzero v ∈ span({vo}) is an eigenvector of T
corresponding to eigenvalue λo. In fact, any one-dimensional subspace W invariant
under T is span({vo}) for some eigenvector vo of T . To see why, let vo be any
nonzero vector in W , which means W = span({vo}). Since T (vo) ∈W , we can find
λo ∈ F such that T (vo) = λovo, which means vo is an eigenvector of T corresponding
to eigenvalue λo.

Note that vo is an eigenvector of T corresponding to eigenvalue λo if and only
if vo 6= 0 and

0 = T (v)− λov

= (T − λoI)(v) ,

where I is the identity mapping on V . Thus saying that vo is an eigenvector of T
corresponding to eigenvalue λo is the same as saying that vo is a nonzero vector in
nullspace(T − λoI). In particular, for λo to be an eigenvalue of T , T − λoI must
have a nonzero nullspace, and the nonzero vectors in that nullspace are precisely the
eigenvectors corresponding to eigenvalue λo. For that reason, we call nullspace(T −
λoI) the eigenspace of T corresponding to eigenvalue λo. I’ll use the notation E(λo)
for that, i.e.

E(λo) = nullspace(T − λoI)

whenever λo is an eigenvalue of T . The eigenspace E(λo) is invariant under T
because if v ∈ E(λo), then

(T − λoI)(T (v)) =
(
T 2 − λoT

)
(v) = T ((T − λoI)(v)) = T (0) = 0 ,

so T (v) is also in E(λo).
The following central result holds for any vector space.

14.2 Theorem: If λ1, λ2, . . . , λk are distinct eigenvalues of T ∈ End(V ),
where V is a real or complex vector space, then the corresponding eigenspaces
E(λ1), E(λ2), . . . , E(λk) are mutually disjoint subspaces of V .

Proof: Suppose vj ∈ E(λj) for 1 ≤ j ≤ k and that

v = v1 + v2 + · · ·+ vk = 0 .
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Note that

(T − λ1I)(v) = (T − λ1I)(v1) +
k∑

j=2

(T − λ1I)(vj)

=
k∑

j=2

(λj − λ1)vj

because T (vj) = λjvj for all j. Next, apply to the vector on the last line the linear
mappings T − λ2I, T − λ3I, . . . , T − λk−1I in succession. One by one you kill off
the vj-terms for 2 ≤ j < k, arriving at

(λk − λ1)(λk − λ2) · · · (λk − λk−1)vk = 0 ,

implying that vk = 0 because λj 6= λk for all j < k. In a similar fashion you can
prove that vj = 0 for all 1 ≤ j < k. It follows from Lemma 4.5 that E(λ1), E(λ2),
. . . , E(λk) are mutually disjoint subspaces of V . �

An important consequence of Theorem 14.2 follows from Theorem 4.6. Suppose
that V has dimension n and that λ1, . . . , λk are distinct eigenvalues of T ∈ End(V ).
Since E(λj) 6= {0} for all j, each E(λj) is at least a one-dimensional subspace of
V . Mutual disjointness and Theorem 4.6 imply that

dim (E(λ1) + · · ·+ E(λk)) ≥ k .

Since the subspace on the left-hand side is a subspace of V , its dimension is at most
n, from which it follows that k ≤ n. Thus when V is finite-dimensional, no linear
mapping in End(V ) has more than dim(V ) distinct eigenvalues.

When does a linear mapping have eigenvectors and eigenvalues at all? If T ∈
End(V ) is the zero mapping, then T (v) = 0 for every v ∈ V , so every nonzero
vector v ∈ V is an eigenvector of T corresponding to eigenvalue 0. If I ∈ End(V ) is
the identity mapping on V , then I(v) = v for every v ∈ V , so every nonzero vector
v ∈ V is an eigenvalue of I corresponding to eigenvalue 1. In these special cases, T
has only one eigenvalue, but every vector in V is an eigenvector corresponding to
that eigenvalue.

When V is a vector space over R, a linear mapping T ∈ End(V ) need not
have any eigenvalues and eigenvectors. Suppose, for example, that V is a two-
dimensional vector space over R, (v1, v2) is a basis for V , and T ∈ End(V ) has
specification

T (c1v1 + c2v2) = c2v1 − c1v2 for all c1 , c2 ∈ R; .

If vo = c1v1 + c2v2 were an eigenvector of T corresponding to eigenvalue λo, we
would have

T (vo) = c2v1 − c1v2 = λoc1v1 + λoc2v2

with at least one of the cj nonzero. Linear independence of v1 and v2 yields
c2 = λoc1 and −c1 = λoc2, implying c1 = −λ2

oc1 and c2 = −λ2
oc2. Since λ2

o = −1
is impossible when λo ∈ R, we must have c1 = c2 = 0, which contradicts vo 6= 0.
On the other hand, every T ∈ End(V ) has at least one eigenvector when V is a
finite-dimensional complex vector space.
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14.3 Fact: If V is a finite-dimensional vector space over C and T ∈ End(V ),
then T has at least one eigenvector.

Proof: Suppose V has dimension n. Recall from Theorem 4.11 that for any
real or complex vector spaces V and W the vector space Hom(V,W ) has dimension
mn when V has dimension n and W has dimension m. In particular, End(V ) =
Hom(V, V ) has dimension n2 when V has dimension n. It follows from Theorem 4.3
that I, T , T 2, . . . , Tn2

are linearly dependent in End(V ), so we can find constants
cj ∈ C not all zero for which

c0I + c1T + c2T
2 + · · ·+ cn2Tn2

= 0 .

Let k be the largest value of j for which cj 6= 0 and consider the polynomial

λk +
ck−1

ck
λk−1 +

ck−2

ck
λk−2 + · · ·+ c0

ck
.

The Fundamental Theorem of Algebra implies that the polynomial factors as

(λ− λ1)(λ− λ2) · · · (λ− λk)

where the complex numbers λj are not necessarily distinct. It follows from simple
polynomial algebra that the left-hand side of the equation

T k +
ck−1

ck
T k−1 +

ck−2

ck
T k−2 + · · ·+ c0

ck
I = 0

factors similarly, so that

(T − λ1I)(T − λ2I) · · · (T − λkI) = 0 .

At least one of the linear mappings in parentheses must have a nonzero nullspace.
If none of them did, then v 6= 0 would imply that (T − λkI)(v) 6= 0, implying in
turn that (T − λk−1I)(T − λkI)(v) 6= 0, and so on, leading eventually to

(T − λ1I)(T − λ2I) · · · (T − λkI)(v) 6= 0 ,

which is impossible. Accordingly, T − λjI must have a nonzero nullspace for at
least one j, implying that T has at least one eigenvalue and hence at least one
eigenvector. �

The argument in the proof of Fact 14.3 fails for real vector spaces because there
exist polynomials with real coefficients that possess no real roots. The canonical
example is λ2 + 1 = 0, which we encountered in the earlier example of a linear
mapping on a real vector space that had no eigenvalues.

Geometric multiplicity and diagonalizability

Remember that our mission is to find for a given T ∈ End(V ) a set of mutually
disjoint subspaces of V whose vector sum is V , each of which is invariant under
T and on each of which T “acts” in a relatively straightforward fashion. Theorem
14.2 nominates the eigenspaces of T as candidates for those subspaces. We’ll find
that the eigenspaces do the job under certain circumstances, but sometimes we’ll
need to look further.
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If V is a finite-dimensional vector space over R or C and T ∈ End(V ) has
distinct eigenvalues λ1, . . . , λs, the geometric multiplicity of eigenvalue λj , which
I’ll denote by mj , is the dimension of the eigenspace E(λj). By Theorems 14.2 and
4.6, the dimension of the subspace

W = E(λ1) + E(λ2) + · · ·+ E(λs)

is m1 +m2 + · · ·+ms. If V has dimension n, then the only n-dimensional subspace
of V is V itself, so we have W = V if and only if the geometric multiplicities of
T ’s eigenvalues sum to n. In that case, we say that T is diagonalizable. Stringing
together bases for T ’s eigenspaces as in the proof of Theorem 4.6 generates a basis
for V consisting solely of eigenvectors of T . Thus a diagonalizable linear mapping
T ∈ End(V ) has the property that its eigenvectors span V .

When T is diagonalizable, the eigenspaces of T provide the invariant-subspace
decomposition of V we’ve been looking for. If T is diagonalizable and has distinct
eigenvalues λ1, . . . , λs, then

V = E(λ1) + E(λ2) + · · ·+ E(λs) ,

and each E(λj) is invariant under T . Furthermore, since T (v) = λjv for every
v ∈ E(λj), the restriction Tj of T to the subspace E(λj) is particularly simple. We
can carry the process one step further in this case by choosing a basis (vj1, . . . , vjmj

)
for each E(λj) and noting that each of the n one-dimensional subspaces

Vjk = span ({vjk}) , 1 ≤ j ≤ s , 1 ≤ k ≤ mj

is invariant under T . Furthermore, they have vector sum V because, for each j,

E(λj) = Vj1 + Vj2 + · · ·+ Vjmj .

Thus a diagonalizable T has the property that V is the vector sum of mutually
disjoint one-dimensional subspaces, each invariant under T . Alternatively, T is di-
agonalizable when T has enough eigenvectors to span V , which is tantamount to
saying that T ’s eigenspaces are “big enough” to sum to V in the sense of vector
sum. One case deserves special mention.

14.4 Fact: If V is an n-dimensional real or complex vector space and T ∈
End(V ) has n distinct eigenvalues λ1, λ2, . . . , λn, then T is diagonalizable.

Proof: By Theorem 14.2, the eigenspaces E(λ1), E(λ2), . . . , E(λn) are mu-
tually disjoint subspaces of V . Theorem 4.6 implies that

dim(E(λ1) + E(λ2) + · · ·+ E(λn)) = m1 +m2 + · · ·+mn .

The vector sum on the left-hand side is a subspace of V and therefore has dimension
at most n. Since mj ≥ 1 for each j, we must have mj = 1 for all j, which means
that the eigenspaces’ dimensions sum to n, making T diagonalizable. �

I’d like to stress that Fact 14.4 provides a sufficient but by no means necessary
condition for diagonalizability. As I mentioned earlier, if T is the zero or identity
mapping on V , then T has only a single eigenvalue but is diagonalizable because
its single eigenspace is V itself. Of course, not every T is diagonalizable. If V
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is a vector space over R, for example, any T ∈ End(V ) lacking eigenvalues and
eigenvectors is obviously not diagonalizable.

The following less trivial example foreshadows our general approach to non-
diagonalizable linear mappings. Let V be a two-dimensional vector space over F
with basis (v1, v2) and let S ∈ End(V ) have specification

S(c1v1 + c2v2) = c2v1 for all c1, c2 ∈ F .

In particular, S(v1) = 0 and S(v2) = v1. Since S(v1) = 0, λ1 = 0 is an eigenvalue
of S. You can check that nullspace(S) = E(0) = span({v1}), so the geometric
multiplicity of λ1 is m1 = 1. Moreover, S has no eigenvalues other than λ1 = 0.
Note first that S2(v) = 0 for all v ∈ V . If S(vo) = λovo and vo = c1v1 + c2v2, then

0 = S2(vo) = λ2
oc1v1 + λ2

oc2v2 ,

implying that λo = 0 if at least one of c1 and c2 is nonzero, which must be the case if
vo is an eigenvector of S. Thus S has only the single eigenspace E(0) which, having
dimension 1, is a proper subspace of V , and S is therefore not diagonalizable.

Nilspaces and nilpotence

Let V be an n-dimensional vector space over F and suppose S ∈ End(V ). We know
that nullspace(S) and range(S) are both invariant under S. Furthermore, Theorem
4.9 tells us that

dim(nullspace(S)) + dim(range(S)) = n .

If nullspace(S) and range(S) were disjoint, Theorem 4.9 would give us the disjoint
vector sum

V = nullspace(S) + range(S) .
But the nullspace and range of S are not in general disjoint. For example, the
nullspace and range of the S from the preceding paragraph are both equal to
span({v1}). Let’s define the nilspace of S ∈ End(V ) as the set of all v ∈ V
satisfying Sk(v) = 0 for some k > 0. I warn you that “nilspace” is my own coinage.
The nilspace of S contains the nullspace of S. The nilspace of S is also invariant
under S because if Sk(v) = 0, then Sk−1(S(v)) = 0, so S(v) is in the nilspace of S
whenever v is.

Now let d be the dimension of nilspace(S). I claim that Sd(v) = 0 for every
v ∈ nilspace(S). To see why, suppose v ∈ nilspace(S) but Sd(v) 6= 0. We know
then that Sl(v) 6= 0 when l ≤ d but that Sk(v) = 0 for some smallest k > d by
definition of the nilspace, and thus Sl(v) = 0 for all l > k. Consider a relation of
the form

c0v + c1S(v) + c2S
2(v) + · · ·+ cdS

d(v) = 0 ,
where the cl are in F. Operating on both sides with Sk−1 yields

c0S
k−1(v) = 0 ,

implying that c0 = 0 since Sk−1(v) 6= 0 by assumption. Operating on the resulting
relation

c1S(v) + c2S
2(v) + · · ·+ cdS

d(v) = 0
with Sk−2 yields

c1S
k−1(v) = 0 ,
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so c1 = 0, as well. You can keep this up and show that all the cl must be zero. Thus
the only linear combination of {Sl(v) : 0 ≤ l ≤ d} equal to zero is the trivial linear
combination, implying that {Sl(v) : 0 ≤ l ≤ d} is a linearly independent subset of
nilspace(S), which is impossible by Theorem 4.3 since nilspace(S) has dimension
d. It follows that nilspace(S) ⊂ nullspace

(
Sd
)

when nilspace(S) has dimension d.
Since nullspace

(
Sd
)
⊂ nilspace(S) by definition of the nilspace, we conclude that

nilspace(S) = nullspace
(
Sd
)
. Let’s summarize the foregoing discussion, along with

an important embellishment, as follows.

14.5 Theorem: Let V be an n-dimensional vector space over F, where F is R
or C, and suppose S ∈ End(V ). Define

nilspace(S) =
{
v ∈ V : Sk(v) = 0 for some k > 0

}
and suppose nilspace(S) has dimension d. Then nilspace(S) = nullspace

(
Sd
)
.

Furthermore, nilspace(S) and range
(
Sd
)

are disjoint subspaces of V , both invariant
under S, and

V = nilspace(S) + range
(
Sd
)
.

Proof: We’ve shown already that nilspace(S) = nullspace
(
Sd
)

and noted
that nilspace(S) is invariant under S. The range of Sd is also invariant under S
because if w = Sd(v), then S(w) = Sd(S(v)) ∈ range

(
Sd
)
. As for disjointness, if

w ∈ range
(
Sd
)
, and w = Sd(v), and w also lies in nilspace(S), then Sd(w) = 0, so

S2d(v) = 0. It follows that v ∈ nilspace(S) and therefore that Sd(v) = 0, implying
that w = 0. Accordingly, nilspace(S) and range

(
Sd
)

have only the zero vector in
common and are disjoint subspaces of V . By Theorem 4.6,

dim
(
nilspace(S) + range

(
Sd
))

= dim (nilspace(S)) + dim
(
range

(
Sd
))

.

Meanwhile, since nilspace(S) = nullspace
(
Sd
)
, Theorem 4.9 yields

dim (nilspace(S)) + dim
(
range

(
Sd
))

= n ,

from which it follows that

dim
(
nilspace(S) + range

(
Sd
))

= n ,

implying that
V = nilspace(S) + range

(
Sd
)

since the only n-dimensional subspace of V is V itself. �

Theorem 14.5 leaves open the possibility that nilspace(S) = V , which is the
same as saying that d = n and, because Sd(v) = 0 for all v ∈ V , Sd = Sn = 0. In
this case, we say that S is a nilpotent linear mapping. An important property of
nilpotent mappings is the following.

14.6 Fact: Let V be an n-dimensional vector space over F, where F is R or C,
and suppose S ∈ End(V ) is nilpotent, i.e. Sn = 0. Then λo = 0 is an eigenvalue of
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S, and S has no other eigenvalues.

Proof: Suppose S ∈ End(V ) is nilpotent. If S = 0, then, as we’ve noted
already, λo = 0 is the only eigenvalue of S and every v ∈ V is a corresponding
eigenvector. If S 6= 0, there exists some v ∈ V for which S(v) 6= 0. Since Sn = 0,
there exists some k < n for which Sk(v) 6= 0 but Sk+1(v) = 0, which makes Sk(v)
an eigenvector of S corresponding to eigenvalue λo = 0 because

S
(
Sk(v)

)
= Sk+1(v) = 0

and Sk(v) 6= 0. S has no eigenvalue other than λo = 0 because if λ1 6= 0 were such
an eigenvalue with corresponding eigenvector v1, we would have Sn(v1) = λn

1 v1 6= 0,
contradicting Sn = 0. �

The converse of Fact 14.6 holds when V is a complex vector space but not when
V is a real vector space. For example, suppose V is a three-dimensional vector space
over R and (v1, v2, v3) is a basis for V . Define T ∈ End(V ) as follows:

T (c1v1 + c2v2 + c3v3) = −c1v2 + c2v1 for all c1 , c2 ∈ R .

Because T (v3) = 0, v3 is an eigenvector of T corresponding to eigenvalue 0. If
vo = c1v1 + c2v2 + c3v3 is an arbitrary eigenvector of T corresponding to eigenvalue
λo, we must have

−c1v2 + c2v1 = λoc1v1 + λoc2v2 + λoc3v3 .

Linear independence of v1 and v2 then implies that c2 = λoc1 and c1 = −λoc2, so
c2 = −λ2

oc2 and c1 = −λ2
oc1. Since λ2

o = −1 is impossible when λo ∈ R, c1 = c2 = 0,
which means vo = c3v3 and λo = 0. Accordingly, λo = 0 is T ’s only eigenvalue, but
T is not nilpotent because, for example, T 3(v1) = v2, so T 3 6= 0. Fact 14.3 ensures
that such an eventuality never arises when V is a complex vector space.

14.7 Fact: Let V be an n-dimensional vector space over C. If S ∈ End(V ) has
only λo = 0 as an eigenvalue, then S is nilpotent.

Proof: If S is not nilpotent, then nilspace(S) 6= V and by Theorem 14.5 we
have the vector-sum decomposition

V = nilspace(S) + range
(
Sd
)
,

where d is the dimension of nilspace(S). Note that W = range
(
Sd
)

is nonzero and
is invariant under S, so S restricts to a linear mapping S1 ∈ End(W ). By Fact 14.3
there exists a nonzero wo ∈W and some λo ∈ C such that

S1(wo) = λowo .

Since S1(wo) = S(wo), wo must also be an eigenvector of S, and λo must also be
an eigenvalue of S, so λo = 0 by assumption and therefore wo ∈ nullspace(S). But
W and nilspace(S) are disjoint by Theorem 14.5, and nullspace(S) ⊂ nilspace(S),
so wo = 0, which contradicts our starting assumption that range

(
Sd
)

is nonzero.
It follows that Sd = 0 and nilspace(S) = V , so S is nilpotent. �
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Observe that if V is any n-dimensional vector space and S ∈ End(V ) is nilpo-
tent, then S isn’t diagonalizable unless S = 0. To see why, note that S 6= 0 implies
that the eigenspace of S corresponding to eigenvalue 0 — namely, the nullspace of
S — has dimension less than n. Since 0 is the only eigenvalue of S by Fact 14.6,
the eigenvectors of S can’t span V .

Generalized eigenvectors and algebraic multiplicity

Nonzero nilpotent mappings are the quintessential examples of non-diagonalizable
mappings, and they furnish a clue as to how to approach general non-diagonalizable
mappings T . By Theorem 14.5, the nilspace of a nilpotent linear mapping S ∈
End(V ) is always all of V even when the nullspace of S — i.e. the eigenspace of S
corresponding to eigenvalue 0 — is not. When T ∈ End(V ) isn’t diagonalizable, the
eigenspaces of T don’t “add up” to V in the sense of vector sum. Each eigenspace is
the nullspace of T −λjI for some eigenvalue λj of T . Perhaps we’ll have better luck
spanning V with vectors from the nilspaces of T − λjI rather than the nullspaces.

14.8 Definition: Let V be a finite-dimensional vector space over R or C and
let λo be an eigenvalue of T . The generalized eigenspace of T corresponding to
eigenvalue λo, denoted by G(λo), is the nilspace of T − λoI, i.e.

G(λo) = {v ∈ V : (T − λoI)k(v) = 0 for some k > 0} .

Every nonzero v ∈ G(λo) is called a generalized eigenvector of T corresponding to
eigenvalue λo, and the dimension of G(λo) is called the algebraic multiplicity of λo.

Observe that if λo is an eigenvalue of T , then

E(λo) = nullspace(T − λoI) ⊂ nilspace(T − λoI) = G(λo) .

It follows that every eigenvector of T is also a generalized eigenvector of T and that

dim(E(λo)) ≤ dim(G(λo)) ,

so the geometric multiplicity of λo cannot exceed the algebraic multiplicity of λo.
Suppose now that V is a complex vector space and T ∈ End(V ) has only a

single eigenvalue λ1. I claim that S = T − λ1I is nilpotent. If λo is an eigenvalue
of S and vo a corresponding eigenvector, then

T (vo) = (S + λ1I)(vo) = (λo + λ1)vo ,

implying that vo is an eigenvalue of T corresponding to eigenvalue λo + λ1. It
follows that λ0 = 0 because λ1 is T ’s only eigenvalue. Thus S has sole eigenvalue
0, and S is nilpotent by Fact 14.7. Since S is nilpotent, the nilspace of S — which
is the generalized eigenspace of T corresponding to eigenvalue λ1 — is all of V .
Thus the generalized eigenvectors of T span V even if T ’s eigenvalues don’t. As it
happens, this last assertion holds for arbitrary T ∈ End(V ).

While the assertion holds in general only when V is a complex vector space,
the proof I give below makes frequent use of the following basic facts about linear
mappings in End(V ), where V is a vector space over F = R or C. First, if vo is an



14. LINEAR ALGEBRA II: EIGENVALUES, EIGENVECTORS, AND ALL THAT 229

eigenvector of T corresponding to eigenvalue λo, then by simple polynomial algebra
we have

(T − λI)k(vo) = (λo − λ)kvo

for all λ ∈ F and every integer k > 0. For example,

(T − λoI)2(vo) = T 2(vo)− 2λT (vo) + λ2vo

= λ2
ovo − 2λoλvo + λ2vo

= (λo − λ)2vo .

Second, also by simple polynomial algebra, the mappings T and (T − λI)k com-
mute, i.e. T (T − λI)k = (T − λI)kT for every λ ∈ F and integer k > 0.

14.9 Theorem: Let V be a finite-dimensional vector space over C and suppose
T ∈ End(V ) has distinct eigenvalues λ1, . . . , λs. For each j, let G(λj) be the
generalized eigenspace corresponding to eigenvalue λj . Then theG(λj) are mutually
disjoint subspaces of V each of which is invariant under T . Furthermore,

V = G(λ1) +G(λ2) +G(λ3) + · · ·+G(λs) .

Proof: To see why the G(λj) are mutually disjoint, suppose vj ∈ G(λj) for
1 ≤ j ≤ s and that

v = v1 + v2 + · · ·+ vs = 0 .
Let dj = dim(G(λj)) denote the algebraic multiplicity of λj for each j. We know
that (T − λjI)dj (vj) = 0 for all j by Theorem 14.5. Note that

(T − λ1I)d1(v) = (T − λ1I)d1(v1) +
k∑

j=2

(T − λ1I)d1(vj)

=
k∑

j=2

(λj − λ1)d1vj

because T (vj) = λjvj for all j. Next, apply to the vector on the last line in
succession the linear mappings (T − λ2I)d2 , (T − λ3I)d3 , . . . , (T − λs−1I)ds−1 and
one by one you kill off the vj-terms for 2 ≤ j < s, arriving at

(λs − λ1)d1(λs − λ2)d2 · · · (λs − λs−1)ds−1vs = 0 ,

implying that vs = 0 because λj 6= λs for all j < s. In a similar fashion you can
prove that vj = 0 for all 1 ≤ j < s. It follows from Lemma 4.5 that the G(λj) are
mutually disjoint subspaces of V .

Next, by Theorem 14.5, v ∈ G(λj) if and only if (T − λjI)dj (v) = 0. Since

(T − λjI)dj (T (v)) = T
(
(T − λjI)dj (v)

)
= 0

whenever v ∈ G(λj), we have T (v) ∈ G(λj) whenever v ∈ G(λj), so G(λj) is
invariant under T for all j.

It remains to show that the vector sum of the G(λj) is V . I’ll prove the result by
induction on s, the number of distinct eigenvalues of T . We’ve noted already that
the result holds for s = 1, in which case T has a single eigenvalue λ1 and T − λ1I
is nilpotent, implying that G(λ1) = V . Suppose we have shown that any complex
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vector space W can be written as the vector sum of the generalized eigenspaces of
any T ∈ End(W ) possessing s− 1 distinct eigenvalues. Referring now to T and V
in the theorem statement, it follows from Theorem 14.5 that

V = G(λ1) +W ,

where W = range
(
(T − λ1I)d1

)
. The two subspaces in the vector sum are disjoint,

and W is invariant under T because for w ∈W with w = (T − λ1I)d1(v) we have

T (w) = T
(
(T − λ1I)

d1 (v)
)

= (T − λ1I)d1(T (v)) ∈W .

Thus T restricts to a mapping T1 ∈ End(W ) with specification

T1(w) = T (w) for all w ∈W .

I claim that the eigenvalues of T1 are λ2, . . . , λs. To see why this is true, note first
that any eigenvector of T1 is also an eigenvector of T corresponding to the same
eigenvalue, so the eigenvalues of T1 must lie among the eigenvalues of T . Second,
if vo is an eigenvector of T corresponding to eigenvalue λ1, then vo ∈ G(λ1), so
vo /∈ W because G(λ1) and W are disjoint and vo 6= 0. Thus the eigenvalues of T1

must lie among λ2, . . . , λs. Finally, if vo ∈ V is an eigenvector of T corresponding
to λj with j > 1, then

(T − λ1I)d1(vo) = (λj − λ1)d1vo ,

so vo ∈W because W = range
(
(T − λ1I)

d1
)

and λj 6= λ1. Since T1(v) = T (v) for
all v ∈ W , vo is also an eigenvector of T1 corresponding to eigenvalue λj , and, in
particular, λj is an eigenvalue of T1. Thus T1 has exactly the s− 1 eigenvalues λ2,
. . . , λs.

By the induction assumption, W is the vector sum of the mutually disjoint
generalized eigenspaces of T1 corresponding to eigenvalues λ2, . . . , λs. But these
are also generalized eigenspaces of T because when w ∈W and l ≥ 0,

(T − λjI)l(w) = 0⇐⇒ (T1 − λkIW )l(w) = 0 for 2 ≤ j ≤ s ,
where IW is the identity mapping on W . Accordingly,

W = G(λ2) +G(λ3) + · · ·+G(λs) ,

and therefore
V = G(λ1) +G(λ2) +G(λ3) + · · ·+G(λs)

since V = G(λ1) +W . �

Theorem 14.9 states that when V is a finite-dimensional complex vector space
and T ∈ End(V ), the generalized eigenvectors of T span V even if T ’s eigenvectors
don’t. Note that when λj is an eigenvalue of T , E(λj) ⊂ G(λj), so

mj = dim(E(λj)) ≤ dim(G(λj)) = dj

and
E(λ1) + · · ·+ E(λs) ⊂ G(λ1) + · · ·+G(λs) = V

when T has distinct eigenvalues λ1, . . . , λs. By definition, T is diagonalizable
when the vector sum of the E(λj) is V , which occurs only when

m1 + · · ·+ms = d1 + · · ·+ ds = n
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when V has dimension n. Since mj ≤ dj for all j, this happens only when mj = dj

for all j, which is the same as saying that E(λj) = G(λj) for all j. In short, T is
diagonalizable if and only if every generalized eigenvector of T is also an eigenvector
of T . Alternatively, T is diagonalizable if and only if the geometric multiplicity of
every eigenvalue λj of T equals λj ’s algebraic multiplicity.

Theorem 14.9 has abundant noteworthy consequences. Recall that in the proof
of Fact 14.3 we observed that if V is an n-dimensional vector space over F and
T ∈ End(V ) there exist constants ck such that

c0I + c1T + c2T
2 + · · ·+ cn2Tn2

= 0 .

In other words, we can find a polynomial in T of degree n2 that evaluates to 0. As
it happens, there exists a polynomial of degree n with the same property.

14.10 Definition: Let V be an n-dimensional vector space over C and sup-
pose T ∈ End(V ) has distinct eigenvalues λ1, . . . , λs with respective algebraic
multiplicities d1, . . . , ds. The characteristic polynomial of T is

pT (λ) = (λ− λ1)d1(λ− λ2)d2 · · · (λ− λs)ds .

Note that pT (λ) has degree n because d1 + · · ·+ ds = n by Theorem 14.9.

14.11 Cayley-Hamilton Theorem: Let V be an n-dimensional vector space
over C and suppose T ∈ End(V ) has distinct eigenvalues λ1, . . . , λs with respective
algebraic multiplicities d1, . . . , ds. The characteristic polynomial of T “evaluated
at T” equals zero in the sense that

pT (T ) = (T − λ1I)d1(T − λ2I)d2 · · · (T − λsI)ds = 0 .

Proof: By Theorem 14.9,

V = G(λ1) +G(λ2) + · · ·+G(λs) ,

where G(λj) is the generalized eigenspace of T corresponding to λj for each j.
Since the G(λj) are mutually disjoint, Lemma 4.5 permits us to write every v ∈ V
uniquely as

v = v1 + v2 + · · ·+ vs

with vj ∈ G(λj) for all j. Since G(λj) is the nilspace of T −λjI and has dimension
dj , Theorem 14.5 tells us that

(T − λjI)dj (vj) = 0

for all j. The factors in the product defining pT (λ) commute, so operating on vj

with pT (T ) yields 0 for all j. For example,

pT (λ)(v1) = (T − λ1I)d1(T − λ2I)d2 · · · (T − λsI)ds(v1)

= (T − λ2I)d2 · · · (T − λsI)ds(T − λ1I)d1(v1)
= 0 .

Thus pT (T )(vj) = 0 for all j, so pT (T )(v) = 0. It follows pT (T ) = 0 because v was
an arbitrary vector in V . �
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You might wonder under what circumstances you can find a polynomial q(λ)
of degree less than n satisfying q(T ) = 0. The following special example is worth
mentioning. If T is diagonalizable and has distinct eigenvalues λ1, . . . , λs, then
you can write any v ∈ V as

v = v1 + v2 + · · ·+ vs

with vj ∈ E(λj) for all j. Furthermore,

(T − λjI)(vj) = 0

for all j. Applying the argument in the proof of the Cayley-Hamilton Theorem
14.11, you discover that

(T − λ1I)(T − λ2I) · · · (T − λsI)(v) = 0 for all v ∈ V ,

so if s < n you’ve discovered a polynomial in T of degree less than n that evaluates
to zero.

Eigenvalues as growth rates: the diagonalizable case

If V is a complex vector space and vo is an eigenvector of T ∈ End(V ) corresponding
to eigenvalue λo, then T k(vo) = λk

ov for every integer k > 0, so if ‖ ‖ is any norm
on V , ∥∥T k(vo)

∥∥ = |λo|k ‖vo‖ for all k > 0 .

In particular,
∥∥T k(vo)

∥∥ → 0 as k → ∞ if |λo| < 1 and
∥∥T k(vo)

∥∥ → ∞ as k → ∞
if |λo| > 1. Thus the magnitudes of T ’s eigenvalues specify the growth or decay
rates of the quantity

∥∥T k(v)
∥∥ at least when v is an eigenvector of T . If V is

finite-dimensional and T is diagonalizable, then any v ∈ V has an expansion

v = v1 + v2 + · · ·+ vn

where n is the dimension of V , each vj is an eigenvector of T corresponding to
eigenvalue λj , and the λj are not necessarily distinct. Thus

T k(v) = λk
1v1 + λk

2v2 + · · ·+ λk
nvn for all k ≥ 0 .

It follows that if all of T ’s eigenvalues have magnitudes less than 1, then T k(v)→ 0
as k →∞ for every v ∈ V . If we reason more quantitatively, our intuition might lead
us to expect that the largest of T ’s eigenvalues’ magnitudes dictates the worst-case
growth or decay rate of the quantity

∥∥T k(v)
∥∥ as k →∞ when T is diagonalizable.

Is that expectation justified? If so, does it extend to non-diagonalizable T?
If V is a finite-dimensional complex vector space and T ∈ End(V ), the spectral

radius of T , which I’ll denote by ρ(T ), is the maximum of the magnitudes of the
eigenvalues of T , i.e.

ρ(T ) = max ({|λo| : λo is an eigenvalue of T}) .

Suppose T is diagonalizable and (v1, v2, . . . , vn) is a basis for V consisting of eigen-
vectors of T corresponding to not necessarily distinct eigenvalues λ1, λ2, . . . , λn.
Let ‖ ‖1, ‖ ‖2, and ‖ ‖∞ denote, respectively, the 1-norm, the 2-norm, and the
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infinity-norm associated with the eigenvector basis, as defined at the end of Chapter
4. If v ∈ V has representation

v = c1v1 + c2v2 + · · ·+ cnvn ,

then ∥∥T k(v)
∥∥

1
=

∥∥c1λk
1v1 + c2λ

k
2v2 + · · ·+ cnλ

k
nvn

∥∥
1

=
n∑

j=1

|λj |k|cj |

≤ (ρ(T ))k

 n∑
j=1

|cj |


= (ρ(T ))k‖v‖1 .

Similarly, ∥∥T k(v)
∥∥

2
=

∥∥c1λk
1v1 + c2λ

k
2v2 + · · ·+ cnλ

k
nvn

∥∥
2

=

 n∑
j=1

|λj |2k|cj |2
1/2

≤ (ρ(T ))k

 n∑
j=1

|cj |2
1/2

= (ρ(T ))k‖v‖2

and ∥∥T k(v)
∥∥
∞ =

∥∥c1λk
1v1 + c2λ

k
2v2 + · · ·+ cnλ

k
nvn

∥∥
∞

= max
(
{|λj |k|cj | : 1 ≤ j ≤ n}

)
≤ (ρ(T ))k max ({|cj | : 1 ≤ j ≤ n})
= (ρ(T ))k‖v‖∞ .

In short,
∥∥T k(v)

∥∥ grows at worst as fast, or decays at least as rapidly, as (ρ(T ))k‖v‖
when ‖ ‖ is the 1-, 2-, or infinity-norm associated with the eigenvector basis. If
‖ ‖ is any norm on V , then by Theorem 4.12 there exist A and B such that

‖v‖ ≤ A‖v‖1 and ‖v‖1 ≤ B‖v‖

for every v ∈ V . It follows that for any norm ‖ ‖ on V we have∥∥T k(v)
∥∥ ≤ A

∥∥T k(v)
∥∥

1

≤ A(ρ(T ))k‖v‖1
≤ AB(ρ(T ))k‖v‖

for all v ∈ V . The foregoing discussion proves the following result about diagonal-
izable linear mappings.
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14.12 Theorem: Let V be a finite-dimensional vector space over C. If T ∈
End(V ) is diagonalizable and ρ(T ) is the spectral radius of T , then for any norm
‖ ‖ on V there exists M > 0 such that∥∥T k(v)

∥∥ ≤M(ρ(T ))k‖v‖

for every k > 0 and v ∈ V . �.

Theorem 14.12 confirms our suspicion that eigenvalues influence growth and
decay rates of

∥∥T k(v)
∥∥ as k →∞, at least when T is diagonalizable. The diagonal-

izability assumption is indispensable. For example, if S ∈ End(V ) is nilpotent, then
ρ(S) = 0 by Fact 14.6, and if S is nonzero there exists v ∈ V for which S(v) 6= 0,
which precludes ‖S(v‖ ≤ Mρ(S)‖v‖ for all v. Fortunately, we can approximate
Theorem 14.12 arbitrarily closely for non-diagonalizable T .

Eigenvalues as growth rates: the non-diagonalizable case

Here’s what I mean when I say we can approximate Theorem 14.12 arbitrarily
closely for non-diagonalizable linear mappings.

14.13 Theorem: Let V be a finite-dimensional vector space over C. If ρ(T )
is the spectral radius of T ∈ End(V ) and ζ > ρ(T ), then for any norm ‖ ‖ on V
there exists M > 0 such that ∥∥T k(v)

∥∥ ≤Mζk‖v‖

for every k > 0 and v ∈ V . �.

For diagonalizable T , Theorem 14.13 follows directly from the stronger Theorem
14.12. The intricate construction I’ll employ to prove Theorem 14.13 for general T
is of independent interest. For one thing, it buttresses the iconic Jordan canonical
form for complex square matrices.

Given a finite-dimensional real or complex vector space V , suppose S ∈ End(V )
has a d-dimensional nilspace, where d > 0. A Jordan basis for nilspace(S) is a basis
(v1, v2, . . . , vd) with the following properties: S(vd) = 0 and, for each j, either
S(vj) = 0 or S(vj) = vj+1. Any Jordan basis for nilspace(S) concatenates chains
of vectors each of which takes the form

vjo , vjo+1, . . . , vjo+l ,

where

S(vj) =
{
vj+1 when jo ≤ j < jo + l

0 when j = jo + l .

For any such chain I’ll call vjo the root of the chain and vjo+l the terminus of the
chain. Jordan bases take their name from French mathematician Camille Jordan,
who lived during the late nineteenth and early twentieth centuries.

I’ll demonstrate shortly how to build a Jordan basis for an arbitrary nilspace(S),
but for now I’d like to point out that the termini of the chains in any Jordan basis
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constitute a linearly independent spanning set for nullspace(S), which means in
particular that the number of chains in the Jordan basis is the same as the dimension
of nullspace(S). To see why, note first that because nullspace(S) ⊂ nilspace(S), any
v ∈ nullspace(S) can be expressed as a linear combination

v =
d∑

j=1

cjvj

of the Jordan basis vectors. Because S annihilates the terminus vectors, S(v) = 0
reveals a zero linear combination of the non-terminus basis vectors, all of whose
coefficients must be zero by linear independence. Accordingly, the only possibly
nonzero coefficients in the original linear combination yielding v are the terminus
vectors’ coefficients, which means those vectors span nullspace(S). Furthermore,
they’re linearly independent because they came from a basis in the first place.

I’ll give a constructive argument below proving existence of Jordan bases for
arbitrary nonzero nilspaces. For now, let’s assume Jordan bases exist and see how
they help us finish proving Theorem 14.13 for arbitrary non-diagonalizable T .

Suppose T has distinct eigenvalues λ1, λ2, . . . , λs. If Sj = T − λjI for each j,
then the generalized eigenspace G(λj) is nilspace(Sj) for each j. By Theorem 14.9,
the G(λj) are mutually disjoint and

V = G(λ1) +G(λ2) + · · ·+G(λs) .

Form a basis for V by first finding a Jordan basis for each G(λj) — which we can do
because G(λj) = nilspace(Sj) — and then stringing those Jordan bases together.
Supposing V has dimension n, let (v1, v2, v3, . . . , vn) be the resulting basis. Each
vk is in nilspace(Sj) for some j. Accordingly, for each k, there’s some j for which

(T − λjI)(vk) = vk+1 or 0

because vk is a member of a Jordan basis for G(λj). So for each k we can find a j
for which

T (vk) = λjvk + vk+1 or λjvk .

Given ε > 0, define a new basis for V as follows:

(w1, w2, w3, . . . , wn) = (εn−1v1, ε
n−2v2, ε

n−3v3, . . . , εvn−1, vn) ,

and let ‖ ‖1 be the 1-norm associated with the w-basis. Note that for each k we
can find a j for which

T (wk) = λjε
n−kvk + εn−kvk+1 or λjε

n−kvk

= λjwk + εwk+1 or λjwk .

Because ‖wk‖1 = 1 for all k,

‖T (wk)‖1 ≤ ρ(T )‖wk‖1 + ε‖wk+1‖1 = ρ(T ) + ε for all k

where ρ(T ) is the spectral radius of T . If v ∈ V has expansion v =
∑n

k=1 wk, then

‖T (v)‖1 ≤
n∑

k=1

|ck| ‖T (wk)‖1

≤ (ρ(T ) + ε)
n∑

k=1

|ck|

= (ρ(T ) + ε)‖v‖1 .
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Since ε > 0 was arbitrary, we conclude that for any ζ > ρ(T ) we can find a basis
for V with associated 1-norm ‖ ‖1 so that∥∥T k(v)

∥∥
1
≤ ζk‖v‖1 for all v ∈ V ,

and the conclusion of Theorem 14.13 follows in turn from Theorem 4.12 on equiv-
alence of norms. In particular, if ρ(T ) < 1 we know that T k(v)→ 0 as k →∞ for
all v ∈ V .

Existence of Jordan bases

It’s time to prove that a Jordan basis exists for for nilspace(S) whenever V is finite-
dimensional and S ∈ End(V ). My argument is constructive and produces an array
of vectors. The vectors in the array constitute a linearly independent spanning set
for nilspace(S), and the resulting Jordan basis consists of the list of vectors you ob-
tain by concatenating the rows of the array. Each row in the array displays exactly
one chain in the Jordan basis, so the number of rows in the array is the dimension
of nullspace(S). A typical row in the array looks like

wi0 wi1 wi2 . . . wil ,

where wik = Sk(wi0) for 0 ≤ k ≤ l. The root of the chain in this row is wi0 and
the terminus is wil, so S(wil) = 0. Now let’s get to work.

Begin by setting

Nk = nullspace(S) ∩ range
(
Sk
)

for 0 ≤ k ≤ d

and let nk = dim(Nk) for each k. Note that N0 = nullspace(S). Furthermore,
because nullspace(S) ⊂ nilspace(S) and because nilspace(S) and range(Sd) are
disjoint by Theorem 14.5, Nd = {0}. Let d∗ be the smallest k-value for which
Nk = {0}. Because range

(
Sk
)
⊃ range

(
Sk+1

)
for all k ≥ 0, we have the chain of

inclusions
nullspace(S) = N0 ⊃ N1 ⊃ N2 ⊃ · · · ⊃ Nd∗ = {0} .

Two extreme cases are worth mentioning. In one case d∗ = d, which is the largest
possible value for d∗. By definition of d∗ we have

Nd−1 = nullspace(S) ∩ range
(
Sd−1

)
6= {0} ,

If w is a nonzero vector in Nd−1, then S(w) = 0 and w = Sd−1(v) for some v ∈ V .
Since Sd(v) = 0, v lies in nilspace(S), and an argument such as the one featured in
the discussion leading up to Theorem 14.5 enables us to conclude that{

v, S(v), S2(v), . . . , Sd−1(v)
}

is a linearly independent subset of the d-dimensional nilspace(S) and hence a lin-
early independent spanning set for nilspace(S). In this case, since Sk(v) 6= 0 when
k < d, the nullspace of S is the one-dimensional subspace span

({
Sd−1(v)

})
. Fur-

thermore,
Nk = nullspace(S) when 0 ≤ k < d ,

so all the Nk are all the same one-dimensional subspace of V when k < d. In
particular, nilspace(S) has dimension d and nullspace(S) has dimension 1. The
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other extreme case has d∗ = 1, which is the smallest possible value for d∗. In this
case, by definition of d∗,

N1 = nullspace(S) ∩ range(S) = {0} ,

implying that every v ∈ V satisfying Sk(v) = 0 for some k > 0 also satisfies
S(v) = 0, which is the same as saying that nilspace(S) = nullspace(S).

Time now to build the promised array. Recall that each row in the array will
exhibit a chain from a Jordan basis for nilspace(S). The procedure I’m about to
describe fills the array from top to bottom and essentially from right to left — you’ll
see what I mean, although it gets a bit hairy at times. The procedure features a
nonnegative integer variable k that indexes columns of the array and a set of vectors
N that fills up as we progress. I’ll denote the number of vectors in N by |N |

14.14 Procedure: Initialize by setting k = d∗ − 1 and N = φ, so |N | = 0.
Now go to Step 1.

Step 1: If the vectors in N span Nk, go to Step 2. If not, extend N to a linearly
independent spanning set for Nk by adding vectors. List those vectors in column
k of the array in rows |N |+ 1 through nk. The vector you place in row i is of the
form Sk(wi0) for some wi0 ∈ R0. Fill in row i for |N |+ 1 ≤ i ≤ nk as follows:

wi0 S(wi0) S2(wi0) . . . Sk(wi0) .

Now go to Step 2.

Step 2: If k = 0, stop. If k > 0, decrement k by 1 and return to Step 1. �

Now for a couple of comments. Note first that every vector in the array gen-
erated by Procedure 14.14 lies in nilspace(S). Say, for example, that you fill in
row i as indicated in the description of Step 1. Since Sk(wi0) ∈ nullspace(S),
Sk+1(wi0) = 0, so every vector in row i is annihilated by some power of S between
1 and k + 1. Second, note that when the algorithm stops the set N is a linearly
independent spanning set for nullspace(S). When you start instance k of Step 1,
N contains a linearly independent spanning set for Nk+1. It might happen that
Nk = Nk+1, in which case you add no vectors to N at that point. Performing
instance k = 0 of Step 1 completes N to a linearly independent spanning set for
N0 = nullspace(S). The vectors in N are the rightmost vectors in the rows of the
array.

Let’s see how things go in the extreme cases I mentioned earlier. If d∗ = d,
instance k = d∗ − 1 of Step 1 fills row 1 of the array with a chain of vectors

w10 S(w10) S2(w10) . . . Sd−1(w10)

that constitute a linearly independent spanning set for nilspace(S). Subsequent
instances of Step 1 add no additional vectors to the array because all the Nk are the
same subspace span

({
Sd−1(w10)

})
. For the other extreme d∗ = 1, the procedure

terminates after one round because the first instance of Step 1 occurs when k = 0.
The resulting array consists of a single column containing d vectors that constitute
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a linearly independent spanning set for nullspace(S), which is the same in this case
as nilspace(S).

To understand in general why the vectors produced by Procedure 14.14 form
a linearly independent spanning set for nilspace(S), let’s first apply an inductive
argument to confirm that the vectors are linearly independent. Consider the right-
most column of the array, indexed by k = d∗ − 1. By construction in Step 1, the
vectors in that column are linearly independent. Now suppose we’ve proven lin-
ear independence of the vectors in columns strictly to the right of column k (i.e.
columns indexed by k + 1 or greater). Applying S to a linear dependence relation
between vectors in columns to the right of and including column k results in a
dependence relation between vectors in columns strictly to the right of column k
because the array’s structure features chains across the rows. The coefficients in
this second dependence relation must be zero by induction, but some coefficients
in the original dependence relation — the coefficients of the rightmost vectors in
the array — disappear when we apply S because S annihilates the rightmost vec-
tors in the array. Thus there remains an unaccounted-for zero linear combination
of the rightmost vectors in the array, but that’s no cause for alarm because those
vectors, which are members of N , form a linearly independent spanning set for
nullspace(S), and their coefficients must therefore be zero as well. The bottom
line: only the trivial linear combination of vectors in the array yields zero, and the
vectors in the array are linearly independent.

To see why the vectors in the array span nilspace(S), first let’s count them up.
I claim that column k of the array contains exactly nk vectors. You can see this
easily by referring to Step 1. When we reach instance k of Step 1, which is our last
opportunity to put vectors in column k, one of two things can happen. Either we
put no new vectors in column k, which means nk = nk+1, or we fill out column k
through row nk. In either case, we end up with exactly nk vectors in column k.
Accordingly, the array contains

n0 + n1 + n2 + · · ·+ nd∗−1

vectors when all is said and done. If we can show that this number matches the
dimension of nilspace(S), we’ll know that the vectors in the array span nilspace(S).

To that end, let R0 = nilspace(S) and let

Rk = nilspace(S) ∩ range
(
Sk
)

for each k > 0. As with the Nk, Rk ⊃ Rk+1 for all k ≥ 0. Furthermore, Rd = {0} by
Theorem 14.5. In fact, Rd∗ = {0}. To see why, suppose k is such that Rk−1 6= {0}
but Rk = {0}. Then there’s some v ∈ V such that Sk−1(v) 6= 0 and Sk(v) = 0, so
not only is Sk−1(v) in Rk−1, but Sk−1(v) ∈ Nk−1, so k ≤ d∗ because Nd∗ = {0}.
Thus Rd∗ = {0} and we have the chain of inclusions

nilspace(S) = R0 ⊃ R1 ⊃ R2 ⊃ · · · ⊃ Rd∗ = {0} .

14.15 Fact: With notation as in the foregoing,

nk + dim(Rk+1) = dim(Rk) for 0 ≤ k < d∗ ,

Furthermore, dim(Rd∗−1) = nd∗−1, so

dim(nilspace(S)) = dim(R0) = n0 + n1 + n2 + · · ·+ nd∗−1 .
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Proof: Each Rk is invariant under S, so we can consider the restriction Sk ∈
End(Rk) of the mapping S to the subspace Rk. A vector w lies in R1 if and only
if w lies in nilspace(S) and w = S(v) for some v ∈ V . Stipulating w ∈ nilspace(S)
requires v ∈ nilspace(S) as well, because Sd(w) = 0 implies that Sd+1(v) = 0.
Accordingly, v ∈ R0, which means that R1 is precisely the set of vectors you
get by applying S to vectors in R0 — i.e. R1 = range(S)). A similar argument
demonstrates that

Rk+1 = {S(v) : v ∈ Rk} = range(Sk) for 1 ≤ k < d∗ .

Next, observe that

Nk = nullspace(Sk) for 1 ≤ k < d∗ ,

so from Theorem 4.9 we obtain the recursion

nk + dim(Rk+1) = dim(Rk) for 0 ≤ k < d∗ .

Since Rd∗ = {0}, dim(Rd∗−1) = nd∗−1. The formula for dim(nilspace(S)) results
from iterating the recursion from k = d∗ − 1 to k = 0 starting with boundary
condition dim(Rd∗−1) = nd∗−1. �

Thus the vectors in the array generated by Procedure 14.14 constitute a linearly
independent spanning set for nilspace(S). Laying the rows end to end results in
an ordered list of vectors that parses into chains — to wit, a Jordan basis for
nilspace(S).

Eigenvalues and eigenvectors of matrices

For F = R or C, denote by Fn×n the set of all (n × n) matrices with entries in F.
Any A ∈ Fn×n defines a linear mapping TA ∈ End(Cn) via the prescription

TA(v) = Av for all v ∈ Cn .

Here I’m regarding Cn as the n-dimensional complex vector space consisting of all
n-dimensional column vectors with complex entries. Note that TA as I’ve defined
it lies in End(Cn) even when A has real entries. If 0n×n is the (n × n) matrix of
zeroes, then T0n×n

is clearly the zero mapping on Cn, and if In×n is the (n × n)
identity matrix, then TIn×n

is the identity mapping on Cn. If A and B are in Fn×n,
then

TAB(v) = ABv = A(Bv) = TA(TB(v)) for all v ∈ Cn ,

from which follows the convenient fact that TAB = TATB .
A matrix A ∈ Fn×n is invertible when there exists a matrix A−1 ∈ Fn×n such

that A−1A = AA−1 = In×n. If A is invertible, then

TATA−1 = TAA−1 = TIn×n

and
TA−1TA = TA−1A = TIn×n

.
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Since TIn×n is the identity mapping on Cn, it follows that if A is invertible, then
TA is linearly invertible and is therefore bijective by Theorem 4.8. By Fact 4.7, TA

is injective if and only if nullspace(TA) = 0, which by definition of TA is equivalent
to the statement that Av = 0 if and only if v = 0. Similarly, TA is surjective if
and only if for every w ∈ Cn there exists v ∈ Cn such that Av = w. Theorem 4.10
establishes the equivalence of invertibility, bijectivity, surjectivity, and injectivity
of TA, thus almost proving the following parallel assertion about matrices.

14.16 Theorem: The following conditions on A ∈ Fn×n are equivalent in the
sense that any one of them implies the other two:

• A is invertible
• The only v ∈ Cn satisfying Av = 0 is v = 0
• For every w ∈ Cn there exists a v ∈ Cn such that Av = w

—
Proof: We’ve shown so far that the last two bullet points are equivalent and

that if A is invertible, then TA is invertible, so both of the last two bullet points
hold. How do we know that A is invertible when the last two bullet points hold?
Assuming they do, let ej be the jth column of In×n for 1 ≤ j ≤ n. Invoking the
third bullet point, we can solve for bj ∈ Cn such that Abj = ej for all j. The matrix
B with jth column bj then satisfies

AB = In×n .

This last equation implies that the only v ∈ Cn satisfying Bv = 0 is v = 0, which is
equivalent to saying that the columns of B are linearly independent, from which it
follows that (b1, b2, . . . , bn) is a basis for the n-dimensional vector space Cn. Because
AB = In×n,

BAB = (BA)B = B ,

so (BA)bj = bj for all j. By writing an arbitrary v ∈ Cn as a linear combination
of the bj , you’ll see that BAv = v for every v ∈ Cn, from which it follows that
BA = In×n. Thus AB = BA = In×n, so A is invertible and A−1 = B. �

If you’ve been reading carefully, you might have noticed a loose end hanging off
of Theorem 14.16. If A has real entries and is invertible, does A−1 necessarily have
real entries? The answer is yes, and perhaps your best bet for figuring out why is
to proceed as follows. Note first that when A is real, TA restricts to linear mapping
TR

A in End(Rn). Now carry through the argument leading up to and including the
statement and proof of Theorem 14.16 substituting TR

A for TA and R for C and for
F everywhere you can. Believe me, it works.

An eigenvalue of a matrix A ∈ Fn×n is simply an eigenvalue of the correspond-
ing linear mapping TA. Similarly, eigenvectors and generalized eigenvectors of A.
are just eigenvectors and generalized eigenvectors of TA. Trudging onward, we
identify the eigenspaces, generalized eigenspaces, and algebraic and geometric mul-
tiplicities of eigenvalues of A with the corresponding objects associated with TA.
We also say that the matrix A is diagonalizable if and only if TA is diagonalizable.

If A has real entries, i.e. A ∈ Rn×n, its eigenvalues and eigenvectors possess
some important symmetry properties.
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14.17 Fact: If A ∈ Rn×n, its eigenvalues and eigenvectors come in complex-
conjugate pairs in the following sense. If λo ∈ C is an eigenvalue of A, then so is
λo. If vo is an eigenvector corresponding to eigenvalue λo, then vo is an eigenvector
corresponding to eigenvalue λo, where vo is the elementwise complex conjugate of vo.

Proof: If λo is an eigenvalue of A and vo a corresponding eigenvector, then
vo 6= 0 and Avo = λovo. Take the elementwise complex conjugate of this last re-
lation and you obtain Avo = λovo since A has real entries, and the result follows
because vo 6= 0. �

Given A ∈ Fn×n, it’s possible that some or all of A’s eigenvalues are real. If A is
real and has a real eigenvalue, then we can always find bases for the corresponding
eigenspace and generalized eigenspace consisting solely of real vectors.

14.18 Fact: If λo ∈ R is an eigenvalue of A ∈ Rn×n, then there exist bases for
E(λo) and G(λo) consisting solely of real vectors.

Proof: As usual, let mo = dim (E(λo)) and do = dim (G(λo)) be, respectively,
the geometric and algebraic multiplicities of λo. If (v1, v2, . . . , vmo

) is a basis for
E(λo), we can write

vk = Re{vk}+ jIm{vk}
for all k, where j =

√
−1. Since each vk is an eigenvector of A corresponding to λo,

we have Avk = λovk for all k, so

ARe{vk}+ jA Im{vk} = λoRe{vk}+ jλoIm{vk} .
Equating real and imaginary parts and keeping in mind that both λo and A are
real, we have

ARe{vk} = λoRe{vk} and A Im{vk} = λoIm{vk}
for all k. It follows that every nonzero vector in the set

{Re{vk} : 1 ≤ k ≤ mo} ∪ {Im{vk} : 1 ≤ k ≤ mo}
is an eigenvector of A corresponding to eigenvalue λo, hence lies in E(λo). It’s
clear that the vectors in this set are real and span E(λo). Procedure 1 from the
discussion preceding Lemma 4.2 reduces it to a linearly independent spanning set
that we can assemble into a basis for E(λo) consisting solely of real vectors.

A similar argument works for the generalized eigenspaceG(λo). If (v1, v2, . . . , vdo
)

is a basis for G(λo), then (A− λoI)dovk = 0 for all k, so

(A− λoI)doRe{vk}+ j(A− λoI)doIm{vk} = 0 .

Equating real and imaginary parts and keeping in mind that both λo and A are
real, we have

(A− λoI)doRe{vk} = (A− λoI)doIm{vk} = 0
for all k. It follows that every nonzero vector in the set

{Re{vk} : 1 ≤ k ≤ do} ∪ {Im{vk} : 1 ≤ k ≤ do}
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is a generalized eigenvector of A corresponding to eigenvalue λo, hence lies in G(λo).
The vectors in this set are real and span G(λo), so we can reduce it to a linearly
independent spanning set and build a basis for G(λo) consisting solely of real vec-
tors. �

The interplay between matrices and linear mappings goes both ways. If V is
any n-dimensional vector space over F, v = (v1, v2, . . . , vn) is a basis for V , and
T ∈ End(V ), then we can find numbers tij ∈ F such that

T (vj) =
n∑

i=1

tijvi for 1 ≤ j ≤ n .

The matrix of T with respect to the basis v is the matrix Matv(T ) ∈ Fn×n with
specification

[Matv(T )]ij = tij for 1 ≤ i, j ≤ n .
I’ll leave it for you to verify that the matrices with respect to any basis for V of
the zero and identity mappings on V are 0n×n and In×n, respectively. If A ∈ Fn×n

is an arbitrary matrix and e is the standard basis for Cn that we encountered in
Chapter 4, then

Mate(TA) = A .

In other words, A is the matrix of TA with respect to the standard basis for Cn.
You can see this easily by noting that

TA(ej) = Aej =
n∑

i=1

[A]ijei for all j

because Aej is simply the jth column of A.
If for a v ∈ V with expansion v =

∑n
j=1 cjvj we define vecv(v) as the column

vector in Fn with jth element cj , it’s easy to show that

vecv(T (v)) = Matv(T ) vecv(v) for all v ∈ V .

It’s also a simple matter to show that for any S and T in End(V ) we have

Matv(ST ) = Matv(S) Matv(T ) .

A bijective T ∈ End(V ) possesses a linear inverse mapping by Theorem 4.10. Let’s
call that inverse mapping T−1. Since T−1T = TT−1 = I, it must be the case that

Matv
(
T−1

)
Matv(T ) = Matv(T ) Matv

(
T−1

)
= In×n ,

so Matv(T ) is invertible in the matrix sense when T is bijective, and

(Matv(T ))−1 = Matv
(
T−1

)
.

Suppose T ∈ End(V ) is diagonalizable. Let λ1, λ2, . . . , λn be the not nec-
essarily distinct eigenvalues of T and let v1, v2, . . . , vn be corresponding linearly
independent eigenvectors that span V . Let v = (v1, v2, . . . , vn) be the resulting
basis for V . Since T (vj) = λjvj for all j,

[Matv(T )]ij =
{
λj when i = j
0 when i 6= j .

Thus when T is diagonalizable you can find a basis v for V so that the matrix of
T with respect to v is a diagonal matrix, whence the term “diagonalizable.”
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To discover the implications of diagonalizabilty for matrices, recall that saying
A is diagonalizable is the same as saying TA is diagonalizable, which means that
there exists a basis v = (v1, v2, . . . , vn) for Cn consisting solely of eigenvectors of
TA, where vj corresponds to eigenvalue λj for each j. Form the matrix X ∈ Cn×n

whose jth column is vj for each j. Linear independence of the vj implies that the
only v ∈ Cn satisfying Xv = 0 is v = 0. Accordingly, by Theorem 14.16, X is
invertible. Furthermore, since Avj = TA(vj) = λjvj for all j, we have

AX = XΛ ,

where Λ ∈ Cn×n is the diagonal matrix with λj at diagonal position j. Thus arise
the two equations

X−1AX = Λ and A = XΛX−1 ,

which you probably recognize from your earlier training in linear algebra.





CHAPTER 15

Singular-Value Decomposition

The real world offers countless opportunities for error. Noise corrupts mea-
surements, computers perform arithmetic with finite precision, and mathematical
models are approximations at best. At times we even make mistakes. Some errors
are undoubtedly worse than others, and we’re often called upon to assess the rela-
tive impacts of different errors and of different types of errors on the effectiveness
of solutions to engineering problems. The singular-value decomposition breathes
quantitative life into some such assessments in the context of problems involving
matrices. Suppose, for example, that A is a complex (m × n) matrix and we’re
interested in the equation Av = w, where v ∈ Cn and w ∈ Cm. Think of v as raw
data and w as the output we get by “processing” v through A. What’s the effect
on w if we specify v incorrectly, and how does the answer depend on A and on the
exact nature of the incorrect v-specification? Turning things around and making
w the raw data, even if we lack an exact solution to Av = w we might have an
algorithm that produces an approximate solution, i.e. v̂ such that Av̂ ≈ w. What’s
the best approximation possible, and how does that depend on w and A? How does
an error in specifying w affect v̂, and how does the answer depend on A and on the
exact nature of the incorrect w-specification? These are the kinds of questions the
singular-value decomposition answers.

Hermitian matrices and their eigenspaces

To pin things down, I’ll frame the exposition in terms of complex matrices and
comment on how the results specialize when matrices are real. By Cn I mean the
set of all column n-vectors with entries in C, and by Cm×n I mean the set of all
(m×n) matrices with entries in C. The (n×n) identity matrix I’ll denote by In×n.
In Chapter 9 we noted that Cn is an inner product space with inner product

〈v, w〉 = wHv =
n∑

i=1

[v]i [w]i for all v, w ∈ Cn ,

where wH is the Hermitian conjugate — i.e. the conjugate transpose — of w. In
what follows, when I use the word “orthonormal” I’ll be referring to orthonormality
with respect to that inner product. I’ll use ‖ ‖ to denote the norm that arises from
that inner product, i.e.

‖v‖ = 〈v, v〉1/2 =

(
n∑

i=1

|[v]i|2
)1/2

for all v ∈ Cn .

245
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For general A ∈ Cm×n, the Hermitian conjugate of A is the matrix AH ∈ Cn×m

defined by AH = AT or, in terms of elements, by[
AH
]
ij

= [A]ji for 1 ≤ i ≤ n and 1 ≤ j ≤ m .

Note that if A is real, then AH = AT . A necessarily square matrix Q ∈ Cn×n is a
Hermitian matrix if and only if QH = Q. A real Hermitian matrix Q is symmetric,
i.e. Q = QT .

Now for a quick reminder of an elementary fact about matrix multiplication.
If A and B are matrices whose product AB makes sense, then (AB)T = BTAT .
That’s because

[
(AB)T

]
ij

=
n∑

k=1

[A]jk [B]ki =
n∑

k=1

[
BT
]
ik

[
AT
]
kj

=
[
BTAT

]
ij

for all i and j when A has n columns. Taking conjugates reveals that (AB)H =
BHAH . Similarly, the transpose of an arbitrary matrix product is the product of
the factors’ transposes with the order reversed, i.e.

(A1A2 · · ·AN )T = AT
N · · ·AT

2 A
T
1 ,

and the same goes for Hermitian conjugates of matrix products.

15.1 Fact: If Q ∈ Cn×n is Hermitian, then all the eigenvalues of Q are real.

Proof: Let vo ∈ Fn be an eigenvector of Q corresponding to eigenvalue λo.
Because Q is Hermitian,

vH
o Qvo =

(
vH

o Qvo

)H
= vH

o Q
Hvo = vH

o Qvo .

The first equality holds because the transpose of a number — in this case vH
o Qvo —

is the number itself, so the Hermitian conjugate of a number is just the conjugate
of the number. Meanwhile, because Qvo = λovo,

vH
o Qvo = λo‖vo‖2 and vH

o Qvo = λo‖vo‖2 = λo‖vo‖2 ,

from which it follows that λo = λo because vo 6= 0. Hence λo is real. �

15.2 Fact: If Q ∈ Cn×n is Hermitian, then Q is diagonalizable.

Proof: Recall from Chapter 14 that a matrix Q is diagonalizable if and only
if every generalized eigenvector of Q is also an eigenvector of Q. Suppose λo is
an eigenvalue of a Hermitian Q and vo is a corresponding generalized eigenvector,
which means that

(Q− λoIn×n)k
vo = 0
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for some k > 0. If, for example, (Q− λoIn×n)2 vo = 0, multiplying on the left by
vH

o yields

vH
o (Q− λoIn×n)2 vo = vH

o (Q− λoIn×n)H (Q− λoIn×n) vo

= ((Q− λoIn×n) vo)
H (Q− λoIn×n) vo

= |(Q− λoIn×n) vo|2 = 0 ,

where the first equality holds because λo is real by Fact 15.1 and Q is Hermitian.
Thus (Q− λoIn×n) vo = 0, and vo is an eigenvector ofQ corresponding to eigenvalue
λo. If

(Q− λoIn×n)3 vo = 0 ,

then multiplying on the left by vH
o (Q− λoIn×n) yields

vH
o (Q− λoIn×n)4 vo = 0 ,

implying since Q = QH and λo ∈ R that

vH
o

(
(Q− λoIn×n)H

)2

(Q− λoIn×n)2 vo =
∣∣∣(Q− λoIn×n)2 vo

∣∣∣2 = 0 ,

so (Q− λoIn×n)2 vo = 0, and vo is an eigenvector of Q corresponding to eigenvalue
λo by our earlier work. I hope you can see how to carry this argument further to
show that, for any k > 0,

(Q− λoIn×n)k
vo = 0 =⇒ Qvo = λovo ,

so every generalized eigenvector of Q is also an eigenvector of Q, and Q is therefore
diagonalizable. �

Thus if Q ∈ Cn×n is Hermitian with distinct eigenvalues λ1, λ2, . . . , λs

and corresponding eigenspaces E(λ1), E(λ2), . . . , E(λs), we have the vector sum
decomposition

Cn = E(λ1) + E(λ2) + · · ·+ E(λs) .

The E(λj) are mutually disjoint by Theorem 14.2, but much more is true. Eigen-
vectors of Q corresponding to distinct eigenvalues are not just linearly independent
but orthogonal.

15.3 Fact: Let Q ∈ Cn×n be Hermitian and let λ1, λ2, . . . , λs be the distinct
eigenvalues of Q. If vj ∈ E(λj) and vk ∈ E(λk) with j 6= k, 〈vj , vk〉 = 0.

Proof: Start with

Qvj = λjvj and Qvk = λkvk ,

from which it follows that

(vk)H
Qvj = λj (vk)H

vj = λj〈vj , vk〉

and
(vj)

H
Qvk = λk (vj)

H
vk = λk〈vk, vj〉 .
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Because Q is Hermitian, taking the complex conjugate of the second expression
keeping in mind that λk is real yields

λk〈vj , vk〉 = (vk)H
Qvj = λj〈vj , vk〉 ,

so 〈vk, vj〉 = 0 because λj 6= λk. �

By Fact 9.9 we can find for each eigenspace an orthonormal basis. Stringing
these bases together results in an orthonormal basis for Cn because any two basis
vectors lying in different eigenspaces are orthogonal by Fact 15.3. Thus we’ve ar-
rived at a proof of the following fundamental result.

15.4 Theorem: If Q ∈ Cn×n is Hermitian, there exists an orthonormal basis
for Cn consisting solely of eigenvectors of Q. �

When Q is real and Hermitian, which is the same as saying that Q is real
and symmetric, we can refine Theorem 15.4 by applying Fact 14.18. First find
a basis for each E(λj) consisting solely of real vectors. Then follow the Gram-
Schmidt procedure outlined in the proof of Fact 9.9 to transform that basis into an
orthonormal basis for E(λj). Since the Gram-Schmidt procedure operating on real
vectors produces real vectors, the resulting orthonormal basis for E(λj) consists
solely of real vectors. Accordingly, associated with any real Hermitian Q is an
orthonormal basis for Cn consisting solely of real eigenvectors of Q.

Suppose now that Q is Hermitian and (v1, v2, . . . , vn) is an orthonormal basis
for Cn consisting of eigenvectors of Q, where vj corresponds to eigenvalue λj for
1 ≤ j ≤ n. Here I’m not assuming that the λj are distinct. Form a matrix
U ∈ Cn×n whose jth column is vj for each j. Note that[

UHU
]
ij

= vH
i vj =

{
1 if i = j
0 if i 6= j ,

so UHU = In×n. Thus U is invertible and U−1 = UH . A matrix with that property
is called a unitary matrix. Since the jth column of QU is λjvj for all j,

QU = UΛ ,

where Λ is the diagonal matrix with eigenvalue λj at position (j, j) for all j. Ac-
cordingly, there exists a unitary matrix U such that

UHQU = Λ and Q = UΛUH ,

which is why people often say that a Hermitian matrix is unitarily diagonalizable.
If Q is real, we can take U to be real, so UH = UT and therefore U−1 = UT . A
matrix whose inverse is its transpose is called an orthogonal matrix, which is why
people say that a real symmetric matrix is orthogonally diagonalizable.

The singular-value decomposition
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Every A ∈ Cm×n defines a linear mapping TA ∈ Hom(Cn,Cm) by means of the
prescription

TA(v) = Av for all v ∈ Cn .

The nullspace of A is the nullspace of the mapping TA and the range of A is the
range of TA. In more pedestrian terms,

nullspace(A) = {v ∈ Cn : Av = 0}

and
range(A) = {w ∈ Cm : w = Av for some v ∈ Cn} .

The rank of A is the dimension of range(A). By Theorem 4.9,

rank of A = n− dim(nullspace(A)) .

If A ∈ Cm×n, then the matrix AHA ∈ Cn×n is Hermitian. Furthermore, the rank
of AHA is the same as the rank of A. To see this, first observe that A and AHA
have the same nullspace because

AHAv = 0 =⇒ vHAHAv = 0⇐⇒ (Av)H
Av = 0⇐⇒ ‖Av‖2 = 0⇐⇒ Av = 0 ,

so the nullspace of AHA is contained in the nullspace of A. The reverse inclusion
is obvious. Thus

rank(A) = n− dim(nullspace(A)) = n− dim
(
nullspace

(
AHA

))
= rank

(
AHA

)
.

Since AHA is Hermitian, all its eigenvalues are real. In fact, they’re all non-
negative. To see why, note first that if λo is an eigenvalue of AHA and vo a
corresponding eigenvector, then

0 ≤ ‖Avo‖2 = vH
o A

HAvo = λo‖vo‖2 ,

which implies that λo ≥ 0 because vo 6= 0. Suppose that A, and hence AHA, have
rank r. The nullspace of AHA has dimension n − r, and a nonzero vector v is in
the nullspace of AHA if and only if it is an eigenvector of AHA corresponding to
eigenvalue 0. Accordingly, if we invoke Theorem 15.4 and pick an orthonormal basis
(v1, v2, . . . , vn) for Cn consisting solely of eigenvectors for AHA, we can choose the
vj so that (vr+1, vr+2, . . . , vn) is an orthonormal basis for the nullspace of AHA.
If we do that, then each vj for 1 ≤ j ≤ r is an eigenvector of AHA corresponding
to a nonzero eigenvalue λj of AHA. If r = n, which means that the nullspace of
A is {0}, then all the vj for 1 ≤ j ≤ n are eigenvectors corresponding to nonzero
eigenvalues of AHA.

Since the eigenvalues of AHA are real and nonnegative, we can order the eigen-
vectors {vj : 1 ≤ j ≤ r} so that the necessarily strictly positive eigenvalues to which
they correspond occur in decreasing order

λ1 ≥ λ2 ≥ · · · ≥ λr > 0 .

15.5 Definition: Let A ∈ Cm×n have rank r. The singular values of A are the
positive square roots {σj : 1 ≤ j ≤ r} of the nonzero eigenvalues {λj : 1 ≤ j ≤ r}
of AHA. I.e. σj =

√
λj for 1 ≤ j ≤ r.
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Next define vectors wj ∈ Cm by

wj =
1
σj
Avj for 1 ≤ j ≤ r .

The wj are orthonormal because

〈wj , wk〉 =
〈
σ−1

j Avj , σ
−1
k Avk

〉
= (σjσk)−1 (vk)H

AHAvj

= λj (σjσk)−1 〈vj , vk〉

=
{

1 if j = k
0 if j 6= k ,

where the third line holds because vj is an eigenvector of AHA corresponding to
eigenvalue λj and the last line follows from the definition of σj and σk along with
the orthonormality of the vj .

Because the wj are orthonormal, they’re linearly independent. The wj also lie
in the range of A since, for each j, wj is a scalar multiple of Avj . Since the range
of A has dimension r, (w1, w2, . . . , wr) is an orthonormal basis for the range of A.
If v ∈ Cn is any vector, then w = Av is in the range of A, so we can expand w in
terms of the orthonormal basis as

w =
r∑

j=1

〈w,wj〉 wj .

Plugging in w = Av and wj = (1/σj)Avj yields

Av =
r∑

j=1

〈
Av,

1
σj
Avj

〉
wj

=
r∑

j=1

1
σj

(
(vj)

H
AHAv

)
wj

=
r∑

j=1

(
λj

σj
(vj)

H
v

)
wj

=

 r∑
j=1

σjwj (vj)
H

 v for all v ∈ Cn .

The third line follows from the second line because vj is an eigenvector of AHA
corresponding to eigenvalue λj . The term on the third line multiplying wj is a
scalar, so I moved the wj to the left to obtain the fourth line.

The fourth line is of interest because the expression in parentheses is actually
another way of writing the matrix A. The chain of equalities reads

Av = ( ) v for all v ∈ Cn ,

which implies that the expression in parentheses is equal to A.

15.6 Definition: Let A ∈ Cm×n have rank r and define the σj , vj , and wj for
1 ≤ j ≤ r as in the foregoing, with σ1 ≥ σ2 ≥ · · · ≥ σr > 0. The singular-value
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decomposition or SVD of A is

(23) A =
r∑

j=1

σjwj (vj)
H
.

Observe that equation (23) expresses the matrix A as the sum of r (m × n)
matrices each of which takes the somewhat unusual form

σj

 |
wj

|

[ — (vj)
H —

]
.

Each of these matrices has rank 1 because(
σjwj (vj)

H
)
v = σj 〈v, vj〉 wj for all v ∈ Cn ,

so the range of the matrix σjwj (vj)
H is the one-dimensional subspace span ({wj}).

We can re-write (23) in matrix form as follows:

(24) A = WΣV H ,

where

W =

 | | | . |
w1 w2 w3 . wr

| | | . |

 ∈ Cm×r ,

V =

 | | | . |
v1 v2 v3 . vr

| | | . |

 ∈ Cn×r ,

and

Σ =


σ1 0 . . 0
0 σ2 0 . 0
0 0 . . 0
0 . 0 σr−1 0
0 . . 0 σr

 ∈ Rr×r .

Let’s perform a quick reality check on equation (23) by multiplying the right-
hand side by vk and making sure we get Avk. r∑

j=1

σjwj (vj)
H

 vk =
r∑

j=1

σjwj 〈vk, vj〉

=
{
σkwk if 1 ≤ k ≤ r

0 if r + 1 ≤ k ≤ n
= Avk for 1 ≤ k ≤ n .

The second line follows from the first line by orthonormality of the vj . The last
line holds by definition of wk along with the fact that (vr+1, . . . , vn) is a basis for
the nullspace of A by construction.

Equation (23) reveals an alternative interpretation of the way the linear map-
ping TA operates. The subspace of Cn spanned by {vj : 1 ≤ j ≤ r} maps bijectively
onto the range of A, which is the subspace of Cn spanned by {wj : 1 ≤ j ≤ r}.
That’s because Avj = σjwj for 1 ≤ j ≤ r, so the mapping TA takes an orthonormal
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basis for the first subspace onto a basis for the second. You can therefore visualize
the overall mapping TA as comprising two steps:

Step 1 Follow the procedure described after Fact 9.9 to project v ∈ Cn orthog-
onally onto the subspace spanned by {vj : 1 ≤ j ≤ r}. You obtain the
vector

r∑
j=1

〈v, vj〉 vj .

Step 2 Map the vector from Step 1 into Cm using Avj = σjwj to get

r∑
j=1

σj〈v, vj〉wj =

 r∑
j=1

σjwj (vj)
H

 v = Av .

Taking the Hermitian conjugate of equations (23) and (24) yields

(25) AH =
r∑

j=1

σjvj (wj)
H

and the equivalent matrix equation

(26) AH = V ΣWH .

If you think about it, you’ll see that these last two equations constitute the singular-
value decomposition of AH . In particular, the singular values of AH are the same
as the singular values of A. Furthermore, (v1, v2, . . . , vr) is an orthonormal basis
for the range of AH , and the mapping w 7→ AHw maps the range of A, which is a
subspace of Cm and has orthonormal basis (w1, w2, . . . , wr), onto the range of AH .

You might noticed that the entire foregoing exposition has some ragged edges.
For example, I’ve referred to “the singular-value decomposition” throughout, as if
the SVD were uniquely determined. In fact, it’s not. The ambiguity stems from
the fact that we have some wiggle room when specifying the vj . Although all the
λj and hence the singular values σj are uniquely determined, the eigenvectors of
AHA corresponding to the eigenvalues λj are not. It gets even worse (or better,
depending on your point of view) when one or more eigenvalues is repeated. I’d
like to avoid getting hung up on questions of uniqueness here.

The SVD and numerical computations: the condition number

The singular-value decomposition determines various important quantitative prop-
erties of the linear mapping TA specified by TA(v) = Av. Suppose A ∈ Cm×n

has rank r. Recall that the vectors vj appearing in (23) are the first r vectors in
an orthonormal basis (v1, . . . , vn) for Cn and that (vr+1, . . . , vn) is a basis for the
nullspace of A. Any v ∈ Cn has orthogonal expansion

v =
n∑

j=1

〈v, vj〉 vj .
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By orthonormality of the vj ,

‖v‖ =

 n∑
j=1

|〈v, vj〉|2
1/2

.

Now apply (23) to obtain

Av =
r∑

j=1

σj〈v, vj〉wj .

Orthonormality of the wj and the ordering σ1 ≥ · · · ≥ σr imply that

‖Av‖ =

 r∑
j=1

σ2
j |〈v, vj〉|2

1/2

≤ σ1

 r∑
j=1

|〈v, vj〉|2
1/2

≤ σ1‖v‖ ,

with equality holding if v is “aligned” with v1 in the sense that 〈v, vj〉 = 0 for j > 1.
Thus the largest singular value σ1 is the largest factor by which the mapping TA

can “expand” a vector v ∈ Cn. You can also check that if A has rank n, which by
Theorem 4.9 is the same thing as saying that the nullspace of A is {0}, then the
same line of reasoning yields the lower bound

‖Av‖ ≥ σn‖v‖ for all v ∈ Cn ,

with equality holding if v is “aligned” with vn. When A is a square invertible (n×n)
matrix, which by Theorem 14.16 means that A has rank n and nullspace {0}, we
therefore have

(27) σn‖v‖ ≤ ‖Av‖ ≤ σ1‖v‖ for all v ∈ Cn .

The left inequality holds with equality if v is a multiple of vn and the right inequality
holds with equality if v is a multiple of v1.

Furthermore, if A ∈ Cn×n is invertible equation (23) reads

A =
n∑

j=1

σjwj (vj)
H

and equation (24) involves only square invertible matrices. Since the columns of
the matrix V from (24) are orthonormal, V HV = In×n, so V is a unitary matrix.
The same goes for W . The matrix Σ is a diagonal matrix with the positive number
σj in the (j, j)-position for all j. In particular, Σ is invertible, and Σ−1 is the
diagonal matrix with 1/σj in the (j, j)-position for all j. Inverting equation (24)
yields A−1 = V Σ−1WH because V and W are unitary matrices. Expand in terms
of the columns of V and W and you get

(28) A−1 =
n∑

j=1

σ−1
j vj (wj)

H
,
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which is a sort of inverse version of equation (23). Given w ∈ Cn,

w =
n∑

j=1

〈w,wj〉wj ,

and

A−1w =
n∑

j=1

σ−1
j 〈w,wj〉 vj .

Reasoning as we did when bounding ‖Av‖, we find that

(29) σ−1
1 ‖w‖ ≤

∥∥A−1w
∥∥ ≤ σ−1

n ‖w‖ for all w ∈ Cn .

The left inequality holds with equality if w is a multiple of w1 and the right in-
equality holds with equality if w is a multiple of wn.

In applications, one encounters frequently the problem of solving the equation
Av = w for v ∈ Cn given w ∈ Cn and A ∈ Cn×n. If A is invertible, then a
unique solution exists, namely v = A−1w, but computing v numerically can be
problematic. Rather than computing A−1, modern equation solvers employ variants
of Gauss elimination and other algorithmic techniques to compute v, resulting in
huge computational savings. Even so, finite-precision effects such as roundoff errors
can have a significant impact on the accuracy of answers. The SVD illuminates how
properties of A influence that impact.

Suppose, for example, that our goal is to solve the equation Av̂ = ŵ for v̂
given ŵ. Think of ŵ as the “nominal data” and v̂ as the “nominal answer.” In
real life, the “data” might arise from noisy measurements or might suffer numerical
roundoff in preparation for computation. Accordingly, what we’re really doing is
solving Av = w for v given w, where w = ŵ + w̃ is a perturbed version of the
nominal data ŵ. It’s natural to ask what effect the perturbation w̃ has on the
computation. In other words, how far off is v from v̂?

An accepted measure of the sensitivity of the computation to perturbations in
the data is the ratio

percent change in v
percent change in w

,

suitably interpreted as

S =
‖v − v̂‖/‖v̂‖
‖w − ŵ‖/‖ŵ‖

.

We’ve defined w − ŵ = w̃ already, so now set v − v̂ = ṽ. Then

v = A−1w and v̂ = A−1ŵ =⇒ ṽ = A−1w̃ .

The sensitivity measure becomes

S =
‖A−1w̃‖/‖A−1ŵ‖
‖w̃‖/‖ŵ‖

.

Thus S depends only on the nominal data ŷ, the perturbation in the data ỹ, and
the matrix A.

By (29), ∥∥A−1w̃
∥∥ ≤ σ−1

n ‖w̃‖ and
∥∥A−1ŵ

∥∥ ≥ σ−1
1 ‖ŵ‖ ,

so the sensitivity measure S satisfies

S ≤
(
σ−1

n ‖w̃‖
)
/
(
σ−1

1 ‖ŵ‖
)

‖w̃‖/‖ŵ‖
=
σ1

σn
.
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The ratio κ = σ1/σn is known as the condition number of A. Note that
1 ≤ κ < ∞. If κ is large, people call A an ill-conditioned matrix. The reason for
the terminology is that the sensitivity measure S actually achieves its upper bound
κ for certain choices of the nominal data ŵ and perturbation w̃. Conditions for
equality in (29) imply that S = κ if ŵ lies in the direction of w1 and w̃ lies in the
direction of wn. Thus you can always find choices of nominal data and perturbation
that lead to maximal computational sensitivity κ. If κ is large, a small percentage
change in the data w might lead to a massive percentage change in the solution v
to the equation Av = w — undoubtedly not a good thing.

The condition number of A also dictates the worst-case sensitivity of the com-
putation of w to perturbations of v in the equation w = Av. In the notation of the
foregoing discussion, the sensitivity of w to changes in v is

‖w − ŵ‖/‖ŵ‖
‖v − v̂‖/‖v̂‖

=
‖Aṽ‖/‖Av̂‖
‖ṽ‖/‖v̂‖

,

which is the inverse of the sensitivity of v to changes in w. Invoking (27) bounds
this quantity from above by

(σ1‖ṽ‖) / (σn‖v̂‖)
‖ṽ‖/‖v̂‖

=
σ1

σn
= κ .

The upper bound is attained when v̂ lies in the direction of vn and ṽ lies in the
direction of v1.

The Moore-Penrose pseudo-inverse

I’d like to return now to the general case where A ∈ Cm×n has rank r and discuss
an important construction that hinges on the SVD. Recall equation (28) for the
inverse of an invertible A ∈ Cn×n. If we manipulate analogously the SVD of an
arbitrary rank-r matrix A ∈ Cm×n, we get

A# =
r∑

j=1

σ−1
j vj (wj)

H
.

A# is named the Moore-Penrose pseudo-inverse of A after American mathematician
E. H. Moore and British mathematical physicist Roger Penrose. Note that A# ∈
Cn×m and that A# = A−1 when A is square and invertible, so the pseudo-inverse is
indeed the actual inverse when the inverse exists. What, you might ask, is inverse-
like about A# when A is not invertible and perhaps not even square?

We observed earlier that (w1, w2, . . . , wr) is an orthonormal basis for the range
of A and (v1, v2, . . . , vr) is an orthonormal basis for the range of AH , and that the
mapping v 7→ Av maps the range of AH bijectively onto the range of A. These
observations underpin the assertion that the matrix A# acts like an inverse in the
following sense: it “inverts” the one-to-one mapping from the range of AH onto the
range of A that v 7→ Av induces. More precisely,

AA#w = w for every w in the range of A

and
A#Av = v for every v in the range of AH .
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To see how this happens, suppose w is in the range of A. We can write

w =
r∑

k=1

ckwk .

Thus

A#w =

 r∑
j=1

σ−1
j vj (wj)

H

 (
r∑

k=1

ckwk

)
=

r∑
k=1

ck
σk
vk ,

where the last equality holds because the wj are orthonormal. Hence

AA#w =

 r∑
j=1

σjwj (vj)
H

 (
r∑

k=1

ck
σk
vk

)
=

r∑
k=1

ckwk = w ,

where the penultimate equality holds because the vk are orthonormal.
Similarly, if v is in the range of AH , we can write

v =
r∑

k=1

ckvk ,

so

Av =

 r∑
j=1

σjwj (vj)
H

 (
r∑

k=1

ckvk

)
=

r∑
k=1

ckσkwk ,

where the last equality holds because the vj are orthonormal. Hence

A#Av =

 r∑
j=1

σ−1
j vj (wj)

H

 (
r∑

k=1

ckσkwk

)
=

r∑
k=1

ckvk = v ,

where the penultimate equality holds because the wk are orthonormal.
I noted earlier that since the choices of vj are not uniquely determined, the

SVD of A is itself not uniquely determined. Still, no matter how you choose the vj ,
which in turn determine the wj , you get the same matrix A when you plug the vj

and wj into the right-hand side of equation (23). Similarly A#, the Moore-Penrose
pseudo-inverse of A, is uniquely determined even though the vectors participating
in the formula for A# are not. That is, the formula for A# produces in the same
matrix for every legal choice of the vj .

To understand why, suppose that σo is one of the singular values of A and that
λo = σ2

o has multiplicity do as an eigenvalue of AHA, so dim (E(λo)) = do. The
formula for A# contains do terms featuring σo, and their sum has the neat matrix
representation

σ−1
o VoW

H
o ,

where the columns of Vo ∈ Cn×do form an orthonormal basis for E(λo) and Wo =
σ−1

o AVo. If V ′
o is another matrix whose columns form an orthonormal basis for

E(λo), then V ′
o = VoU for some U ∈ Cdo×do . Because the columns of Vo and V ′

o

are orthonormal,

Ido×do
= (V ′

o)H
V ′

o = UHV H
o VoU = UHU ,

so the matrix U is unitary. If we use V ′
o and W ′

o = σ−1
o AV ′

o instead of Vo and Wo

in the formula for A#, the sum of the σo-terms is

σ−1
o V ′

o (W ′
o)

H = σ−1
o VoUU

HWH
o = σ−1

o VoW
H
o .
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Thus different choices of orthonormal bases for the eigenspaces of AHA, although
they change the vj and corresponding wj , do not alter the sum on the right-hand
side of the formula for A#.

This last observation provides an appropriate lead-in to a final result concern-
ing pseudo-inverses of full-rank matrices. By Theorem 4.9, the rank of A ∈ Cm×n

cannot exceed m or n. We say that A has full rank if the rank of A is the minimum
of m and n. When A has full rank, we have a nice formula for A#.

15.7 Fact: If m ≤ n and A ∈ Cm×n has rank m, then AAH is invertible, and
A# = AH(AAH)−1. If m ≥ n and A ∈ Cm×n has rank n, then AHA is invertible,
and A# = (AHA)−1AH .

Proof: Suppose A has rank m. In equation (24), the matrix W is square,
and WHW = Im×m because W ’s columns form an orthonormal basis for Cm.
Furthermore, V is (n × m) and V HV = Im×m because the columns of V are
orthonormal. It follows that

AAH = WΣV HV ΣWH = WΣ2WH ,

so (
AAH

)−1
= WΣ−2WH =

m∑
k=1

σ−2
k wk (wk)H

.

Meanwhile,

AH =
m∑

j=1

σjvj (wj)
H
,

so

AH
(
AHA

)−1
=

m∑
j=1

σ−1
j vj (wj)

H = A#

because the wj are orthonormal.
Assuming instead that A has rank n, the matrix V in (24) is square, and

V HV = In×n because V ’s columns form an orthonormal basis for Cn. Furthermore,
W is (m× n) and WHW = Im×m because the columns of W are orthonormal. It
follows that

AHA = V ΣWHWΣV H = V Σ2V H ,

so (
AHA

)−1
= V Σ−2

n V H =
n∑

k=1

σ−2
k vk (vk)H

.

At the same time,

AH =
n∑

j=1

σjvj (wj)
H
,

so (
AAH

)−1
AH =

n∑
j=1

σ−1
j vj (wj)

H = A# ,

this time because the vj are orthonormal. Both of these formulas reduce to A# =
A−1 when A is square and invertible. �
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The matrix A# spawns a linear mapping TA# from Cm into Cn. Note that
TA#(wj) = A#wj = σ−1

j vj for all j in the notation we’ve been using. The mapping
TA# parses into two steps as follows:

Step 1 Project w ∈ Cm orthogonally onto range(A). Since (w1, w2, . . . , wr) is an
orthonormal basis for range(A), this step results in the vector

r∑
j=1

〈w,wj〉 wj .

Step 2 Map the vector from Step 1 into Cn using A#wj = σ−1
j vj to get

r∑
j=1

σ−1
j 〈w,wj〉 vj =

 r∑
j=1

σ−1
j vj (wj)

H

w = A#w .

The SVD and linear least squares optimization

The singular-value decomposition supplies handy solutions to a variety of linear
least-squares optimization problems. Such problems pervade applications of linear
algebra to science and engineering, and they come in many forms. Here I’ll consider
just three examples.

15.8 Problem: Let A ∈ Cm×n have rank r. Find v ∈ Cn that minimizes ‖Av‖
subject to the constraint ‖v‖ ≥ 1. The vector v might represent, for example, our
allocation of work among n agents, the constraint ‖v‖ ≥ 1 might indicate that we
need to get at least a certain amount of work done, and ‖Av‖ might represent the
time it takes for the agents to complete the work when we allocate it according to v.

Solution: If r < n, then A has a nonzero nullspace by Theorem 4.9, and any
unit-norm vector vo in the nullspace of A solves the problem trivially since Avo = 0.
Accordingly we’ll assume that A has rank n and SVD

A =
n∑

j=1

σjwj (vj)
H
.

Let’s proceed as we did in the run-up to (27). Since (v1, v2, . . . , vn) is an orthonor-
mal basis for Cn,

v =
n∑

j=1

〈v, vj〉 vj for all v ∈ Cn

and

Av =
n∑

j=1

σj〈v, vj〉wj for all v ∈ Cn .
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Orthonormality of the vj implies that

‖v‖ =

 n∑
j=1

|〈v, vj〉|2
1/2

and, because the wj are orthonormal,

‖Av‖ =

 n∑
j=1

σ2
j |〈v, vj〉|2

1/2

≥ σn

 n∑
j=1

‖〈v, vj〉|2
1/2

= σn‖v‖ .

Observe that equality holds if v = 〈v, vn〉 vn. The constraint ‖v‖ ≥ 1 means
‖Av‖ ≥ σn for every v satisfying the constraint, and you can see that choosing
v = vn minimizes ‖Av‖ subject to the constraint. Note that vn is not the unique
solution to the problem since covn also works when |co| = 1. In fact, any unit-norm
eigenvector of AHA corresponding to eigenvalue λn = σ2

n will also do the job. �

15.9 Problem: Let A ∈ Cm×n have rank r. Find v ∈ Cn that maximizes
‖Av‖ subject to the constraint ‖v‖ ≤ 1. The vector v might represent, for exam-
ple, our allocation of money among n investments, the constraint ‖v‖ ≤ 1 might
indicate that our funds are limited, and ‖Av‖ might represent the total return on
our investments if we allocate them according to v.

Solution: Suppose A has rank r and SVD

A =
r∑

j=1

σjwj (vj)
H
.

Recall that v1, v2, . . . , vr are orthonormal eigenvectors of AHA correspond-
ing to nonzero eigenvalues and that they originate from an orthonormal basis
(v1, v2, . . . , vn) for Cn, where (vr+1, . . . , vn) is a basis for the nullspace of A. Again,
let’s proceed as we did when deriving (27). We have

v =
n∑

j=1

〈v, vj〉 vj for all v ∈ Cn

and

Av =
r∑

j=1

σj〈v, vj〉wj for all v ∈ Cn .

Orthonormality of the vj implies that

‖v‖ =

 n∑
j=1

|〈v, vj〉|2
1/2

and, because the wj are orthonormal,

‖Av‖ =

 r∑
j=1

σ2
j |〈v, vj〉|2

1/2

≤ σ1

 r∑
j=1

‖〈v, vj〉|2
1/2

≤ σ1‖v‖ .
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Observe that equality holds if v = 〈v, v1〉 v1. The constraint ‖v‖ ≤ 1 means
‖Av‖ ≤ σ1 for every v satisfying the constraint, and you can see that choosing
v = v1 maximizes ‖Av‖ subject to the constraint. Note that v1 is not the unique
solution to the problem since cov1 also works when |co| = 1. In fact, any unit-norm
eigenvector of AHA corresponding to eigenvalue λ1 = σ2

1 does the job. �

15.10 Problem: Let A ∈ Cm×n have rank r. Given w ∈ Cm, find a vector
v ∈ Cn of smallest norm that minimizes ‖Av − w‖. Note that when w ∈ range(A)
the problem reduces to finding a minimim-norm v such that Av = w.

Solution: Split the problem in two. First find the vector ŵ in the range of A
that’s closest to w, i.e. find ŵ so that

‖ŵ − w‖ ≤ ‖w′ − w‖ for every w′ ∈ range(A) .

From the discussion preceding Fact 9.11 we can infer that ŵ is the orthogonal
projection of w onto range of A. Since (w1, w2, . . . , wr) is an orthonormal basis for
the range of A,

ŵ =
r∑

j=1

〈w,wj〉wj .

Exactly those vectors v ∈ Cn that map to ŵ minimize ‖Av−w‖ over v ∈ Cn. Since
wj = σ−1

j Avj for all j, one vector mapping to ŵ is

v̂ =
r∑

j=1

σ−1
j 〈w,wj〉 vj

=
r∑

j=1

σ−1
j

(
(wj)

H
w
)
vj

=

 r∑
j=1

σ−1
j vj (wj)

H

w

= A#w .

I claim that v̂ is the unique solution to the problem. Any other solution v ∈ Cn

must also satisfy Av = ŵ, so we can write

v = v̂ + vo

where vo ∈ nullspace(A). Since v̂ is a linear combination of v1, v2, . . . , vr, v̂ is
orthogonal to every vector in the nullspace of A, so

‖v‖2 = ‖v̂‖2 + ‖vo‖2 ≥ ‖v̂‖2 ,
with equality if and only if vo = 0. Thus v̂ = A#w is the unique vector v of smallest
norm that minimizes ‖Av − w‖. �

The SVD and matrix norms
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You’ve probably noticed that Cm×n has a natural vector-space structure with vector
operations performed elementwise in the sense that

[c1A+ c2B]ij = c1 [A]ij + c2 [B]ij for 1 ≤ i ≤ m and 1 ≤ j ≤ n

when A and B are in Cm×n and c1 and c2 are in C. If you set up a correspondence
between (m× n) complex matrices and mn-dimensional complex vectors by listing
matrices’ elements in some fixed order as elements of vectors, you’ll see that the
elementwise vector-space structure on Cm×n reflects the customary vector-space
structure on Cmn. The standard inner product on Cmn also ports over to Cm×n

via the prescription

〈A,B〉 =
n∑

i=1

n∑
j=1

[B]ij [A]ij for all A, B ∈ Cm×n .

It proves convenient at times to express this inner product on Cm×n in another
way. The trace of a square matrix is the sum of its diagonal elements, so

〈A,B〉 =
n∑

i=1

 n∑
j=1

[B]ij [A]ij


=

n∑
j=1

(
n∑

i=1

[
BH
]
ji

[A]ij

)

=
n∑

j=1

[
BHA

]
jj

= Trace
(
BHA

)
for all A, B ∈ Cm×n .

Trace has some nice properties. In particular, if A1 and A2 are matrices whose
product makes sense and is square, then

Trace (A1A2) = Trace (A2A1) .

Note that A1A2 and A2A1 are both square but might have different sizes. The
norm arising from our inner product on Cm×n, called the Frobenius norm, is given
by

‖A‖F =
(
Trace

(
AHA

))1/2
=

 n∑
i=1

n∑
j=1

∣∣∣[A]ij
∣∣∣2
1/2

for all A ∈ Cm×n .

In other words, ‖A‖F is the square root of the sum of the squares of A’s elements.
It’s worth mentioning that the Frobenius norm has the following invariance prop-
erty: if U1 ∈ Cm×m and U2 ∈ Cn×n are unitary, then ‖U1AU2‖F = ‖A‖F. This is
because

‖U1AU2‖2F = Trace
(
UH

2 A
HUH

1 U1AU2

)
= Trace

(
UH

2 A
HAU2

)
= Trace

(
U2U

H
2 A

HA
)

= Trace
(
AHA

)
= ‖A‖2F ,

where I used commutativity of the trace in the third line along with the fact that
U1 and U2 are unitary.
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Suppose now that A ∈ Cm×n has rank r. Starting from the matrix form of the
singular-value decomposition of A as in (24), you discover that

‖A‖2F = Trace
(
AHA

)
= Trace

(
V ΣWHWΣV H

)
= Trace

(
V Σ2V H

)
= Trace

(
V HV Σ2

)
= Trace

(
Σ2
)

=
r∑

j=1

σ2
j

for every A ∈ Cn, where again I used commutativity of the trace in the fourth line
along with V HV = WHW = Ir×r. In other words, the Frobenius norm of A is the
square root of the sum of the squares of the singular values of A.

You’re probably developing a sense that the singular-value decomposition of
A ∈ Cm×n appears to indicate what “directions” in Cn and Cm have more “influ-
ence” than others on the behavior of the linear mapping v 7→ Av. In our analysis of
numerical computational sensitivity, for example, we found that data-specification
errors cause the most damage when aligned with the vj or wj corresponding to large
singular values. When the singular values of A have a wide spread in magnitude,
it’s fair to say that most of the “action” in the linear mapping v 7→ Av occurs in
the restriction of the mapping to the subspaces spanned by the vj corresponding to
the larger singular values. The SVD enables us to make quantitative sense of that
intuition.

Suppose A ∈ Cm×n has rank r and SVD given by (23). If r′ ≤ r, set

Âr′ =
r′∑

j=1

σjwj (vj)
H
.

The sum defining Âr′ incorporates the terms in A’s SVD corresponding the largest
r′ singular values. Âr′ has rank r′ because its range is span ({w1, w2, . . . , wr′}), and
we might expect it to be a reasonable approximation of A if the singular values σj

for j > r′ are small relative to σj for j ≤ r′.

15.11 Theorem: Suppose A ∈ Cm×n has rank r. If r′ ≤ r, the matrix Âr′

defined above is the matrix closest to A in the sense of Frobenius norm among
all complex (m × n) matrices of rank at most r′. Furthermore, ‖A − Âr′‖F =(∑r

j=r′+1 σ
2
j

)1/2

.

Proof: Recall that the vj appearing in (23) come from an orthonormal basis
(v1, v2, . . . , vn) for Cn, where (vr+1, . . . , vn) is an orthonormal basis for the nullspace
of A. Define Vn×n ∈ Cn×n as the matrix whose jth column is vj for 1 ≤ j ≤ n.
Next, if r < m extend (w1, w2, . . . , wr), with notation as in (23), to an orthonor-
mal basis (w1, w2, . . . , wm) for Cm by letting (wr+1, . . . , wr+m) be a basis for the
nullspace of WH . Let Wm×m ∈ Cm×m be the matrix whose jth column is wj for
1 ≤ j ≤ m. Observe that if r = n, then V = Vn×n and if r = m then W = Wm×m,
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again with notation as in (24). Note that Vn×n and Wm×m are both unitary since
each has orthonormal columns.

It follows easily that

A = Wm×mΣm×n (Vn×n)H
,

where Σm×n ∈ Cm×n has zero entries everywhere except at position (j, j) for 1 ≤
j ≤ r, where [Σm×n]jj = σj . If B ∈ Cm×n, then

‖A−B‖F =
∥∥∥Wm×mΣm×n (Vn×n)H −B

∥∥∥
F

= ‖Σm×n − (Wm×m)H
BVn×n‖F ,

where I used the invariance of Frobenius norm under pre- and post-multiplication
by unitary matrices. Since the Frobenius norm of a matrix is the sum of the
magnitudes squared of the matrix’s entries, it’s clear that we want to choose B
so that the entries of (Wm×m)H

BVn×n are as close as possible to those of Σm×n.
Simultaneously we need to make sure that B has rank at most r.

By setting [
(Wm×m)H

BVn×n

]
ij

= 0 when i 6= j

and [
(Wm×m)H

BVn×n

]
ij

=
{
σj when i = j ≤ r′
0 when i = j > r′

we match all the zeroes in Σm×n and also match the r′ largest nonzero entries.
Matching more nonzero entries would result in a matrix B with rank larger than
r′, and matching any other subset of at most r′ nonzero entries, while producing
a B of rank at most r′, would do a less effective job of minimizing the Frobenius
norm of A−B. Observe that Σ̂r′ = (Wm×m)H

BVn×n is the same as Σm×n except
that

[
Σ̂r′

]
jj

= 0 when j > r′. Note also that

‖A−B‖F = ‖Σm×n − Σ̂r′‖F =

 r∑
j=r′+1

σ2
j

1/2

.

Since Wm×m and Vn×n are unitary,

B = Wm×mΣ̂r′ (Vn×n)H
,

and therefore the B that minimizes ‖A−B‖F is

B =
r′∑

j=1

σjwj (vj)
H = Âr′ ,

which is what we set out to prove. �

The Frobenius norm sizes up an (m×n) matrix A as an array of numbers, but
other matrix norms — the so-called induced norms — assess more effectively the
norm-like properties of the linear mapping v 7→ Av. While discussing these, I’ll
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revert to the customary notation for the 1-norm, 2-norm, and infinity-norm with
respect to the standard basis for Cn. To refresh your memory of Chapter 4,

‖v‖1 =
n∑

i=1

|[v]i| for all v ∈ Cn ,

‖v‖2 =

(
n∑

i=1

|[v]i|2
)1/2

for all v ∈ Cn ,

and

‖v‖∞ = max ({|[v]i| : 1 ≤ i ≤ n}) for all v ∈ Cn .

Analyzing Problem 15.9 led to the discovery that

σ1 = max ({‖Av‖2 : ‖v‖2 = 1})

when A ∈ Cm×n and σ1 is the largest singular value of A. Thus σ1 is the largest
factor by which A can multiply the 2-norm of a n-dimensional vector v of unit
2-norm when producing Av. We call σ1 the induced 2-norm of A and denote it by
‖A‖2. For any nonzero v ∈ Cn,∥∥∥∥A( v

‖v‖2

)∥∥∥∥
2

≤ σ1 ,

so

‖Av‖2 ≤ σ1‖v‖2 = ‖A‖2‖v‖2 for all v ∈ Cn .

Furthermore, if A ∈ Cm×n and B ∈ Cn×q, then

‖ABv‖2 ≤ ‖A‖2‖Bv‖2 ≤ ‖A‖2‖B‖2‖v‖2 for all v ∈ Cq .

Since this chain of inequalities holds for all v satisfying ‖v‖ = 1,

‖AB‖2 ≤ ‖A‖2‖B‖2 .

The induced 2-norm is indeed a norm on Cm×n. Let’s just verify that it satisfies
the triangle inequality. Suppose A and B are in Cm×n and v ∈ Cn. Then

‖(A+B)v‖2 ≤ ‖Av‖2 + ‖Bv‖2
≤ ‖A‖2‖v‖2 + ‖B‖2‖v‖2 ,

and maximizing the left-hand side over v with ‖v‖2 = 1 results in

‖A+B‖2 ≤ ‖A‖2 + ‖B‖2 .

The 1-norm and infinity-norm also induce norms on (m×n) matrices. Following
the definition of the induced 2-norm, set

‖A‖1 = max ({‖Av‖1 : ‖v‖1 = 1})

and

‖A‖∞ = max ({‖Av‖∞ : ‖v‖∞ = 1}) .
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Let’s make sure these maxima exist. Note first that

‖Av‖1 =
m∑

i=1

|[Av]i|

=
m∑

i=1

∣∣∣∣∣∣
n∑

j=1

[A]ij [v]j

∣∣∣∣∣∣
≤

n∑
j=1

(
m∑

i=1

|[A]ij |

)
|[v]j |

≤ max

({
m∑

i=1

|[A]ij | : 1 ≤ j ≤ n

})
‖v‖1 .

Thus when ‖v‖1 = 1,

‖Av‖1 ≤ max

({
m∑

i=1

|[A]ij | : 1 ≤ j ≤ n

})
,

so ‖Av‖1 is bounded from above by the maximum of the 1-norms of the columns
of A viewed as m-vectors. That upper bound is attained when we choose v = ejo ,
the standard basis vector with a 1 in position jo and zeroes elsewhere, where jo
indexes the column of A with maximum 1-norm. Accordingly,

‖A‖1 = max

({
m∑

i=1

|[A]ij | : 1 ≤ j ≤ n

})
.

Similarly, for every v ∈ Cn and every i we have

|[Av]i| =

∣∣∣∣∣∣
n∑

j=1

[A]ij [v]j

∣∣∣∣∣∣
≤

n∑
j=1

|[A]ij | |[v]j |

≤

 n∑
j=1

|[A]ij |

 ‖v‖∞ ,

so

‖Av‖∞ ≤ max


n∑

j=1

|[A]ij | : 1 ≤ i ≤ m


 ‖v‖∞ .

Thus when ‖v‖∞ = 1, ‖Av‖∞ is bounded from above by the maximum of the 1-
norms of the rows of A viewed as n-vectors. We can attain that upper bound as
follows. Let io index the row of A with maximum 1-norm. Define v ∈ Cn by

[v]j =
{

[A]ioj/ |[A]ioj | if [A]ioj 6= 0
0 if [A]ioj = 0 .

Note that ‖v‖∞ = 1 and

‖Av‖∞ =
n∑

j=1

|[A]ioj | ,



266 15. SINGULAR-VALUE DECOMPOSITION

from which to follows that

‖A‖∞ = max


n∑

j=1

|[A]ij | : 1 ≤ i ≤ m


 .

You can verify easily that

‖Av‖1 ≤ ‖A‖1‖v‖1 and ‖Av‖∞ ≤ ‖A‖∞‖v‖∞
for every v ∈ Cn and A ∈ Cm×n and that

‖AB‖1 ≤ ‖A‖1 ‖B‖1 and ‖AB‖∞ ≤ ‖A‖∞ ‖B‖∞
whenever the product AB makes sense.

As it happens, any norms ‖ ‖Cn and ‖ ‖Cm on Cn and Cm induce a norm on
Cm×n via

‖A‖ = max ({‖Av‖Cm : ‖v‖Cn = 1}) .
Proving this assertion requires an argument akin to the one I didn’t supply for
Theorem 4.12. On a more abstract level, any norms ‖ ‖V and ‖ ‖W on finite-
dimensional vector spaces V and W induce a norm on Hom(V,W ) via

‖T‖ = max ({‖T (v)‖W : ‖v‖V = 1}) .
Squaring away the details of these and other related constructions would take us
too far afield.

In Chapter 14 we encountered the spectral radius ρ(T ) of a linear mapping
T ∈ End(V ), where V is a finite-dimensional complex vector space, and explored
its implications for the asymptotic behavior of T k(v) as k → ∞. By analogy, if A
is a square complex matrix, we define the spectral radius of A as the magnitude of
A’s largest eigenvalue and denote it by ρ(A). The matrix version of Theorem 14.13
states that if ‖ ‖ is any norm on Cn and ζ > ρ(A) there exists M > 0 such that

‖Akv‖ ≤Mζk‖v‖ for all v ∈ Cn .

In particular, Akv → 0 as k →∞ for every v if ρ(A) < 1. Matrices can have small
spectral radii but large induced norms. For example,

A =
[

0 1023

0 0

]
has zero spectral radius but ‖A‖1 = ‖A‖∞ = ‖A‖2 = 1023. Thus induced norms,
despite the inequality ‖Av‖ ≤ ‖A‖ ‖v‖, tend not to illuminate the asymptotics of
Akv. One noteworthy relationship holds in general between induced norms of a
matrix and its spectral radius.

15.12 Fact: If ‖ ‖ is any norm on Cn and A ∈ Cn×n, then

‖A‖ ≥ ρ(A) ,

where ‖A‖ is the norm of A induced by ‖ ‖ and ρ(A) is the spectral radius of A.

Proof: Let λo be an eigenvector of A with |λo| = ρ(A) and vo a corre-
sponding eigenvector with ‖vo‖ = 1. Then ‖Avo‖ = |λo| ‖vo‖ = ρ(A), and thus
‖A‖ = max({Av : ‖v‖ = 1}) ≥ ρ(A). �
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Fact 15.12 enables us to establish crude upper bounds on the magnitudes of a ma-
trix’s eigenvalues just by inspecting the matrix. For example, if A has nonnegative
entries and the entries in any row of A sum to 1, then no eigenvalue of A has mag-
nitude greater than 1 because ‖A‖∞ = 1 must be at least as large as the spectral
radius of A by Fact 15.12.


