
ECE 3250 HOMEWORK ASSIGNMENT IX Fall 2015

1. Suppose xc is a continuous-time signal and we find that
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I.e., we sample xc every T = π
7

seconds and get the indicated results.

(a) Find three different possibilities for xc). Try to find at least one that’s a pure
sinusoid with specification xc(t) = cos Ωot or xc(t) = sinΩot.

(b) Is every different possible xc (including ones you didn’t find in (a)) a pure sinu-
soid? Explain.

2. We sample the signal xc with specification xc(t) = cos(Ωot) every T1 = 10−3 seconds
and obtain the discrete-time signal x with specification

x(n) = xc(nT1) = cos(3n) for all n ∈ Z .

(a) Find three possible values for Ωo.
(b) We put x through a sinc-function T1-interpolator. What signal xR emerges?
(c) We put x through a sinc-function T2-interpolator, with T2 = 1/500 seconds. What

signal xR emerges?

3. A movie shot at the incredibly slow speed of four frames per second shows a tricycle
moving pretty much to the right. The tricycle’s wheels have diameter 2/π feet. One of
the wheels has a mark on its edge; the frame-by-frame position of the mark is a periodic
sequence that looks like the picture in Figure 1. To our parsimonious brains, the wheel
appears to be turning the “wrong” way.

(a) Without any further information, what can we say about the way the tricycle was
moving when filmed? We’re not concerned, e.g., with who’s riding the tricycle,
how old they are, whatever. Specifically, can we tell whether the tricycle was
moving at a uniform speed? Can we even tell whether it was moving always to
the right? Explain using the words “intersample behavior.”

(b) The documentation for the film insists that the tricycle was moving at a constant
speed to the right. We believe it. Can we tell from the given information how
fast it was moving? If so, explain why. If not, give two different uniform speeds
consistent with what the film shows us.

(c) The tricycle’s owner claims that its maximum riding speed is 5 miles per hour.
We believe her. Now can we figure out how fast it was moving when filmed? If
not, explain why not. If so, how fast (in miles per hour) was it moving?

4. We saw in class that infinitely many T -interpolations of a given discrete-time signal x
exist. Some T -interpolations looked a lot more systematic than others. One particularly
systematic way of T -interpolating a given x proceeds as follows. For the purposes of this
problem, a T -interpolation function is any continuous-time signal g that satisfies g(0) = 1
and g(nT ) = 0 for every nonzero integer n. The continuous-time signal yc given by

yc =

∞X
n=−∞

x(n)ShiftnT (g) ,
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which has specification

yc(t) =

∞X
n=−∞

x(n)g(t− nT ) for all t ∈ R ,

assuming the last sum converges for all t ∈ R, is called the T -interpolation of x arising
from the T -interpolation function g. Note that the sinc-function T -interpolation of x arises
in this fashion with T -interpolation function g specified by

g(t) =
sin

`
π
T

t
´

π
T

t
for all t ∈ R .

(a) Verify that yc given by the formulas above is indeed a T -interpolation of x for
any T -interpolation function g.

(b) Verify that the T -interpolation of the signal x = δ using T -interpolation function
g is g itself. (This is really easy.)

(c) In class we discussed the linear T -interpolation of a discrete-time signal x — that’s
the continuous-time signal yc you obtain by connecting the pairs of consecutive
“dots” in x with straight lines. It turns out that the linear T -interpolation uses
a T -interpolation function g as above. Given this piece of information and given
your answer to (b), find g.

(d) Verify that when you use the g you found in (c), the signal yc with specification

yc(t) =

∞X
n=−∞

x(n)g(t− nT ) for all t ∈ R ,

is indeed the linear T -interpolation of x. (Suggestion: when t ∈ (nT, (n + 1)T ),
all but at most two terms in the series defining yc(t) are zero.)

5. Let xc be the continuous-time signal whose Fourier transform bXc has specification

bXc(Ω) =

8<:
1− .25Ω 0 ≤ Ω ≤ 4
1 + .25Ω −4 ≤ Ω < 0

0 otherwise.

Let x be the discrete-time signal with specification x(n) = xc

`
nπ

3

´
for all n ∈ Z.

(a) Graph bXc(Ω) as a function of Ω and bX(ω) as a function of ω.

(b) Let xR be the sinc-function T -interpolation of x (with T = π/3). Graph bXR(Ω)
as a function of Ω.

6. Let xc(t) = ej22πt for all t ∈ R.

(a) What is the Nyquist rate for xc?
(b) Let T = 1

4
and let x(n) = xc(nT ) for all n ∈ Z. Observe that x is a T -sampled

version of xc but T is such that the sampling is slower than the Nyquist rate for
xc. Find xR, the output of an ideal sinc-function T -interpolator (T = 1

4
still)

driven by x, i.e. xR comes from equation (R1).

7. Reese and Malcolm would like to sample and reconstruct a continuous-time signal
xc, which is bandlimited to within Ωm. Unfortunately, they have access only to samplers
that sample every T = 4π/3Ωm, which is longer than the Nyquist interval for xc. Each
of them samples xc every T seconds; Malcolm obtains a discrete-time signal y1 and Reese

gets y2. Obviously, the DTFTs Ŷ1 and Ŷ2 will suffer from aliasing because of the too-slow
sampling.
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Reese is frustrated, but Malcolm notices that Reese started sampling a little later
than did Malcolm — in fact, exactly T/2 seconds later. So in the notation of the previous
paragraph, y1(n) = xc(nT ) and y2(n) = xc(nT +T/2) for all n ∈ Z. Accordingly, Malcolm
reasons, they could interleave their results and assemble a sampled version of xc —- call
it x — sampled every T/2 seconds, which is sufficient to recover xc by the usual means
(since T/2 = 2π/3Ωm < π/Ωm).

Reese is suspicious. “How,” he asks, “could we take two badly aliased DTFTs and
recover an un-aliased one? Two wrongs can’t make a right.”

(a) Derive a formula for bX in terms of bY1 and bY2. (Suggestion: first define w1 and
w2 as follows:

w1(n) =


y1(n/2) if n is even

0 if n is odd

and

w2(n) =


y2(n/2) if n is even

0 if n is odd.

Note that x = w1 + Shift1(w2). Show that cW1(ω) = bY1(2ω) and cW2(ω) = bY2(2ω)
for all ω ∈ R. Now apply the time-shift rule for DTFTs.)

(b) Use (R1) to write an explicit formula for xc in terms of Ŷ1 and Ŷ2.

8. This is a much cooler version of the multipath problem. Undergraduates at MIT who
don’t have cable TV endure ghost-infested TV pictures because signals emanating from
the top of the Prudential Center in Boston get reflected off the neighboring John Hancock
building en route to the MIT dorms. Suppose xc is the signal leaving the Prudential tower;
it arrives at a student’s TV along with its time-delayed (reflected) signal αShiftτ (xc), where
|α| < 1 and τ > 0, so that the student’s TV processes the signal

xTV = xc + αShiftτ (xc) .

The processing system inside the TV looks consists of a T -sampler followed by a filter with

frequency response bH followed by a sinc-function interpolator with interpolation interval
T that takes the discrete-time filter output y and processes it through equation (R1) or

(R2) to yield output yR. Is it possible to specify T and Ĥ so that yR = xc, i.e., so as to
remove the ghost-inducing echo αShiftτ (xc) from the signal xTV? You may assume that

xc is bandlimited, so X̂c(Ω) = 0 when |Ω| ≥ Ωm for some Ωm > 0. (Notation-wise, it

helps to set x1(n) = xc(nT ) and x2(n) = xTV(nT ) for all n ∈ Z. Keep in mind that bH,
being a DTFT, must be a periodic function of ω with 2π as a period.)


