1.

(a) Find the frequency response \widehat{H} of the LTI system that has output

$$
t \mapsto\left(e^{-t}-2 e^{-3 t}+e^{-5 t}\right) u(t)
$$

when its input is $t \mapsto 8 e^{-5 t} u(t)$.
(b) Find the impulse response h of the ideal low-pass filter with cutoff frequency Ω_{2}.
(c) Find the impulse response h of the ideal bandpass filter with lower cutoff frequency Ω_{1} and upper cutoff frequency Ω_{2}.
2. Let \widehat{H}_{1} and \widehat{H}_{2} be the frequency responses of ideal low-pass and band-pass filters. Specifically, let

$$
\widehat{H}_{1}(\Omega)= \begin{cases}1 & \text { if }|\Omega| \leq 3700 \pi \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\widehat{H}_{2}(\Omega)= \begin{cases}1 & \text { if } 1737 \pi \leq|\Omega| \leq 7140 \pi \\ 0 & \text { otherwise }\end{cases}
$$

(a) Show that the LTI system you obtain by cascading the two filters (i.e., input x enters the low-pass filter whose output goes through the band-pass filter, leading to system output y) has a frequency response \widehat{H}, and then find \widehat{H}.
(b) Write out as a linear combination of cosines and constants the responses of the low-pass filter and the band-pass filter to the A-440 with Fourier series

$$
\sum_{k=-\infty}^{\infty} \frac{1}{k^{2}+1} e^{j k 880 \pi t} \text { for all } t \in \mathbb{R}
$$

Also find the fundamental period of each output signal.
(c) Write out as a linear combination of cosines the response of the system in (a) to the signal in (b). Also find its fundamental period.
(d) Find as a time function the response of the low-pass filter to the signal x whose Fourier transform is

$$
\widehat{X}(\Omega)= \begin{cases}3 & \text { if }|\Omega| \leq 4100 \pi \\ 0 & \text { otherwise }\end{cases}
$$

(e) Find the Fourier transform \widehat{Y} of the response y of the low-pass filter to the signal x whose Fourier transform is

$$
\widehat{X}(\Omega)=\frac{7}{3+j \Omega} \text { for all } \Omega \in \mathbb{R}
$$

You don't have to find the signal y.
3. Someone tells you that the input signal x and output signal y of a certain continuoustime LTI system are related by the differential equation

$$
D^{2} y(t)+\alpha D y(t)+2 y(t)=x(t) \text { for all } t \in \mathbb{R}
$$

(a) Find the system's frequency response \widehat{H} as a function of Ω.
(b) Sketch the magnitude $|\hat{H}(\Omega)|$ and phase $\phi(\Omega)$ as a functions of Ω for $\Omega \geq 0$ when $\alpha=3$ and when $\alpha=1$. Recall that

$$
\phi(\Omega)=\tan ^{-1}\left(\frac{\operatorname{Im}\{\widehat{H}(\Omega)\}}{\operatorname{Re}\{\widehat{H}(\Omega)\}}\right) \text { for all } \Omega \in \mathbb{R}
$$

4. Find the frequency response of the continuous-time LTI system whose impulse response h has specification

$$
h(t)=\left(e^{-7 t}-e^{-11 t}\right) u(t) \text { for all } t \in \mathbb{R} .
$$

Also find the system's output signal $S(x)$ when the input x has specification

$$
x(t)=4 e^{j 13 t} \text { for all } t \in \mathbb{R}
$$

without doing any convolution.
5. Given a causal BIBO stable system with system mapping S, impulse response h, and frequency response \widehat{H}, consider driving the system with the x that has specification

$$
x(t)=e^{j \Omega_{o} t} u(t) \text { for all } t \in \mathbb{R}
$$

where Ω_{o} is some given frequency. Let y be the output signal that arises.
(a) You can express y as the sum of two terms as follows:

$$
y(t)=y_{\operatorname{tr}}(t)+\widehat{H}\left(\Omega_{o}\right) e^{j \Omega_{o} t} \text { for all } t \in \mathbb{R}
$$

Find a formula involving h for the signal $y_{\text {tr }}$.
(b) Show that $y_{\mathrm{tr}}(t) \rightarrow 0$ as $t \rightarrow \infty$. Explain why people call y_{tr} the transient response to x and the other term in y the steady-state response to x.
6. Let z be a real-valued continuous-time signal whose spectrum is narrowband around frequency Ω_{o} in the sense that $\widehat{Z}(\Omega)=0$ unless Ω is within Ω_{m} of $\pm \Omega_{o}$, where Ω_{o} is large and Ω_{m} is relatively small. The goal of this problem is to show that you can write

$$
z(t)=x(t) \cos \left(\Omega_{o} t\right)+y(t) \sin \left(\Omega_{o} t\right) \text { for all } t \in \mathbb{R}
$$

where x and y are two real-valued signals bandlimited to within Ω_{m}.
(a) Let q be the (possibly complex-valued) signal whose Fourier transform has specification

$$
\widehat{Q}(\Omega)=\left\{\begin{array}{cl}
2 \widehat{Z}\left(\Omega-\Omega_{o}\right) & \text { when }|\Omega| \leq \Omega_{m} \\
0 & \text { otherwise }
\end{array}\right.
$$

Show that

$$
z(t)=\operatorname{Re}\left\{q(t) e^{j \Omega_{o} t}\right\} \text { for all } t \in \mathbb{R}
$$

(Suggestion: because z is real-valued, $\widehat{Z}(-\Omega)=\overline{\widehat{Z}(\Omega)}$ for all $\Omega \in \mathbb{R}$ by 10.12 in the monograph. Next show that \bar{q} has Fourier transform with specification $\overline{\widehat{Q}(-\Omega)}$ for all $\Omega \in \mathbb{R}$. Now write the real part above as half of something plus its complex conjugate and apply the Frequency-shift rule 10.6 in the monograph.)
(b) Use the result of (a) to write z in two ways: $z(t)=r(t) \cos \left(\Omega_{o} t+\phi(t)\right)$ for all $t \in \mathbb{R}$ and $z(t)=x(t) \cos \left(\Omega_{o} t\right)+y(t) \sin \left(\Omega_{o} t\right)$ for all $t \in \mathbb{R}$, where r is nonnegative and x and y are bandlimited to within Ω_{m}. By this I mean express r, x, y, and $\phi(t)$ in terms of q. Make sure to explain why x and y, known as the quadrature components of z, are bandlimited to within Ω_{m}.
7. Find the frequency response of the discrete-time LTI system whose impulse response h has specification

$$
h(n)=\left(7^{-n}-13^{-n}\right) u(n) \text { for all } n \in \mathbb{Z} .
$$

Please simplify any infinite sums you encounter by using geometric series. Also find the system's output signal $S(x)$ when the input x has specification

$$
x(n)=11 e^{j 3 n} \text { for all } n \in \mathbb{Z}
$$

without doing any convolution.

