1. In Chapter 9 of the monograph I asserted in passing that l^2 is an inner-product space. Here's how to prove that

$$\langle x, y \rangle = \sum_{k=-\infty}^{\infty} x(k) \overline{y(k)}$$

defines an inner product on l^2 . First show that show that for any complex numbers a and b we have

$$|a||b| \le \frac{|a|^2 + |b|^2}{2}$$
.

(Suggestion: $(|a|-|b|)^2 \ge 0$.) Conclude that for any x and y in l^2 , the sequence $\{x(k)y(k): k \in \mathbb{Z}\}$ is absolutely summable, so the series

$$\sum_{k=-\infty}^{\infty} x(k) \overline{y(k)}$$

converges, and l^2 is an inner-product space with inner product $\langle x, y \rangle$ defined by that sum.

2. Verify the identity

$$\langle v, w \rangle = \frac{\|v+w\|^2 - \|v\|^2 - \|w\|^2}{2} + j\frac{\|v+jw\|^2 - \|v\|^2 - \|w\|^2}{2}$$

which holds for all v and w in any complex inner-product space V. Conclude that if $T: V \to V'$ is a linear mapping between inner-product spaces that preserves norms, i.e. ||T(v)|| = ||v|| for all $v \in V$, then T preserves inner products, i.e. $\langle T(v), T(w) \rangle = \langle v, w \rangle$ for all v and w in V.

3. Recall that \mathbb{C}^4 , the set of all complex 4-vectors, is an inner-product space with inner product

$$\langle v, w \rangle = w^H v$$
 for all $v, w \in \mathbb{C}^4$

where w^H is the conjugate transpose of w. Find the orthogonal projection of the vector

$$v = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$

on the subspace of \mathbb{C}^4 spanned by u_1, u_2 , and u_3 , where

$$u_{1} = \begin{bmatrix} 1\\ 1\\ 0\\ 0 \end{bmatrix}; u_{2} = \begin{bmatrix} 1\\ -1\\ 0\\ 0 \end{bmatrix}; u_{3} = \begin{bmatrix} 0\\ 0\\ 0\\ 3 \end{bmatrix}.$$

4. Let \mathcal{P}_3 be the set of all polynomials of degree less than or equal to 3 in a real variable t with complex coefficients. Each v in \mathcal{P}_3 has specification

$$v(t) = c_3 t^3 + c_2 t^2 + c_1 t + c_0$$

for some complex constants c_0, \ldots, c_3 .

(a) Show that \mathcal{P}_3 is a subspace of $\mathbb{C}^{\mathbb{R}}$ — i.e., it's closed under taking linear combinations.

(b) Verify that

$$\langle v, w \rangle = \int_0^1 v(t) \overline{w}(t) dt \text{ for all } v, w \in \mathcal{P}_3$$

defines an inner product on \mathcal{P}_3 .

(c) As it happens, the set $\{v_0, v_1, v_2, v_3\}$ of polynomials in \mathcal{P}_3 with respective specifications

$$v_0(t) = 1 \text{ for all } t \in \mathbb{R}$$

$$v_1(t) = t \text{ for all } t \in \mathbb{R}$$

$$v_2(t) = t^2 \text{ for all } t \in \mathbb{R}$$

$$v_3(t) = t^3 \text{ for all } t \in \mathbb{R}$$

is a linearly independent subset of (in fact a basis for) \mathcal{P}_3 . Apply to this set the Gram-Schmidt procedure described in the proof of Fact 9.9 in the monograph to generate an orthonormal basis $\{w_0, w_1, w_2, w_3\}$ for \mathcal{P}_3 . Write out each w_k 's specification as a polynomial in t. (Note: the computation gets a little hairy. If you don't want to do the normalization to get the final formula for w_3 , no big deal.)

5. Show that every continuous-time system with input space X consisting of all decent signals and and system mapping of the form

$$S(x) = h_0 * x + \sum_{k=1}^N d_k \text{Shift}_{t_k}(x) ,$$

where h_0 is decent and has finite duration, has a frequency response.

6. Show that every (causal) BIBO stable continuous-time system has a frequency response. Also, find the impulse response h of some causal continuous-time system that doesn't have a frequency response.

7. A certain LTI system has frequency response \widehat{H} with specification

$$\widehat{H}(\Omega) = \frac{1}{5+j\Omega}$$
 for all $\Omega \in \mathbb{R}$.

Let x be the signal with Fourier series

$$x(t) = \sum_{k=-\infty}^{\infty} \frac{1}{k^2 + 1} e^{jk13t}$$

Find a Fourier series for the system's output S(x) in response to input x. Why might one say that the system acts as a crude low-pass filter?

8. Consider the averager system whose input space X is the set of all decent \mathbb{F} -valued signals and whose system mapping is

$$S(x)(t) = \frac{1}{T_o} \int_{t-T_o}^t x(\tau) d\tau \text{ for all } x \in X \text{ and } t \in \mathbb{R} \text{ ,}$$

where $T_o > 0$ is given.

- (a) Show that if x is a zero-mean decent signal that has T_o a period, then S(x) = 0.
- (b) Find the frequency response \hat{H} of the system. Then give a frequency-domain explanation of why the assertion in part (a) holds. (Suggestion: expand x from (a) in a Fourier series.)

2

9. Let $T_o > 0$ be given. Find a finite-duration signal h such that the system with impulse response h takes any periodic input signal x that has T_o as a period and produces an output S(x) whose Fourier series

$$S(x)(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\Omega_o t}$$

satisfies $c_k = 0$ for every nonzero even integer k. I.e., the system filters out all the even harmonics from T_o -periodic inputs. Find the frequency response of the system you've constructed. Is the system causal? Can you come up with a causal system that works in this problem? Suggestion: think carefully about the solution to the previous problem.

10. In class, I told you that a Gaussian signal had a Gaussian Fourier transform. This problem steps you through a derivation of

$$t \mapsto e^{-t^2/2} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad \Omega \mapsto \sqrt{2\pi}e^{-\Omega^2/2}$$

(a) Begin with equation \mathcal{F} and take the derivative with respect to Ω of both sides. Conclude from this that

$$D\widehat{X}(\Omega) = -\Omega\widehat{X}(\Omega)$$

where D denotes derivative with respect to Ω . (You'll need to differentiate under the integral sign and then use integration by parts. You'll be dealing with

$$\int_{-\infty}^{\infty} \left(-t e^{-t^2/2} \right) \left(j e^{-j\Omega t} \right) dt \, .$$

My suggestion is to let $v = je^{-j\Omega t}$ and $dw = -te^{-t^2/2}dt$ when you do integration by parts.)

(b) Conclude from (a) that

$$\widehat{X}(\Omega) = \widehat{X}(0)e^{-\Omega^2/2}$$
 for all $\Omega \in \mathbb{R}$.

Find $\widehat{X}(0)$ by using

$$\int_{-\infty}^{\infty} e^{-\tau^2} d\tau = \sqrt{\pi} \; .$$