1. In Chapter 9 of the monograph I asserted in passing that l^{2} is an inner-product space. Here's how to prove that

$$
\langle x, y\rangle=\sum_{k=-\infty}^{\infty} x(k) \overline{y(k)}
$$

defines an inner product on l^{2}. First show that show that for any complex numbers a and b we have

$$
|a||b| \leq \frac{|a|^{2}+|b|^{2}}{2}
$$

(Suggestion: $(|a|-|b|)^{2} \geq 0$.) Conclude that for any x and y in l^{2}, the sequence $\{x(k) y(k)$: $k \in \mathbb{Z}\}$ is absolutely summable, so the series

$$
\sum_{k=-\infty}^{\infty} x(k) \overline{y(k)}
$$

converges, and l^{2} is an inner-product space with inner product $\langle x, y\rangle$ defined by that sum.
2. Verify the identity

$$
\langle v, w\rangle=\frac{\|v+w\|^{2}-\|v\|^{2}-\|w\|^{2}}{2}+j \frac{\|v+j w\|^{2}-\|v\|^{2}-\|w\|^{2}}{2}
$$

which holds for all v and w in any complex inner-product space V. Conclude that if $T: V \rightarrow V^{\prime}$ is a linear mapping between inner-product spaces that preserves norms, i.e. $\|T(v)\|=\|v\|$ for all $v \in V$, then T preserves inner products, i.e. $\langle T(v), T(w)\rangle=\langle v, w\rangle$ for all v and w in V.
3. Recall that \mathbb{C}^{4}, the set of all complex 4 -vectors, is an inner-product space with inner product

$$
\langle v, w\rangle=w^{H} v \text { for all } v, w \in \mathbb{C}^{4}
$$

where w^{H} is the conjugate transpose of w. Find the orthogonal projection of the vector

$$
v=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

on the subspace of \mathbb{C}^{4} spanned by u_{1}, u_{2}, and u_{3}, where

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] ; u_{2}=\left[\begin{array}{r}
1 \\
-1 \\
0 \\
0
\end{array}\right] ; u_{3}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
3
\end{array}\right]
$$

4. Let \mathcal{P}_{3} be the set of all polynomials of degree less than or equal to 3 in a real variable t with complex coefficients. Each v in \mathcal{P}_{3} has specification

$$
v(t)=c_{3} t^{3}+c_{2} t^{2}+c_{1} t+c_{0}
$$

for some complex constants c_{0}, \ldots, c_{3}.
(a) Show that \mathcal{P}_{3} is a subspace of $\mathbb{C}^{\mathbb{R}}$ - i.e., it's closed under taking linear combinations.
(b) Verify that

$$
\langle v, w\rangle=\int_{0}^{1} v(t) \bar{w}(t) d t \text { for all } v, w \in \mathcal{P}_{3}
$$

defines an inner product on \mathcal{P}_{3}.
(c) As it happens, the set $\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}$ of polynomials in \mathcal{P}_{3} with respective specifications

$$
\begin{aligned}
& v_{0}(t)=1 \text { for all } t \in \mathbb{R} \\
& v_{1}(t)=t \text { for all } t \in \mathbb{R} \\
& v_{2}(t)=t^{2} \text { for all } t \in \mathbb{R} \\
& v_{3}(t)=t^{3} \text { for all } t \in \mathbb{R}
\end{aligned}
$$

is a linearly independent subset of (in fact a basis for) \mathcal{P}_{3}. Apply to this set the Gram-Schmidt procedure described in the proof of Fact 9.9 in the monograph to generate an orthonormal basis $\left\{w_{0}, w_{1}, w_{2}, w_{3}\right\}$ for \mathcal{P}_{3}. Write out each w_{k} 's specification as a polynomial in t. (Note: the computation gets a little hairy. If you don't want to do the normalization to get the final formula for w_{3}, no big deal.)
5. Show that every continuous-time system with input space X consisting of all decent signals and and system mapping of the form

$$
S(x)=h_{0} * x+\sum_{k=1}^{N} d_{k} \operatorname{Shift}_{t_{k}}(x),
$$

where h_{0} is decent and has finite duration, has a frequency response.
6. Show that every (causal) BIBO stable continuous-time system has a frequency response. Also, find the impulse response h of some causal continuous-time system that doesn't have a frequency response.
7. A certain LTI system has frequency response \widehat{H} with specification

$$
\widehat{H}(\Omega)=\frac{1}{5+j \Omega} \text { for all } \Omega \in \mathbb{R} .
$$

Let x be the signal with Fourier series

$$
x(t)=\sum_{k=-\infty}^{\infty} \frac{1}{k^{2}+1} e^{j k 13 t} .
$$

Find a Fourier series for the system's output $S(x)$ in response to input x. Why might one say that the system acts as a crude low-pass filter?
8. Consider the averager system whose input space X is the set of all decent \mathbb{F}-valued signals and whose system mapping is

$$
S(x)(t)=\frac{1}{T_{o}} \int_{t-T_{o}}^{t} x(\tau) d \tau \text { for all } x \in X \text { and } t \in \mathbb{R}
$$

where $T_{o}>0$ is given.
(a) Show that if x is a zero-mean decent signal that has T_{o} a period, then $S(x)=0$.
(b) Find the frequency response \widehat{H} of the system. Then give a frequency-domain explanation of why the assertion in part (a) holds. (Suggestion: expand x from (a) in a Fourier series.)
9. Let $T_{o}>0$ be given. Find a finite-duration signal h such that the system with impulse response h takes any periodic input signal x that has T_{o} as a period and produces an output $S(x)$ whose Fourier series

$$
S(x)(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \Omega_{o} t}
$$

satisfies $c_{k}=0$ for every nonzero even integer k. I.e., the system filters out all the even harmonics from T_{o}-periodic inputs. Find the frequency response of the system you've constructed. Is the system causal? Can you come up with a causal system that works in this problem? Suggestion: think carefully about the solution to the previous problem.
10. In class, I told you that a Gaussian signal had a Gaussian Fourier transform. This problem steps you through a derivation of

$$
t \mapsto e^{-t^{2} / 2} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad \Omega \mapsto \sqrt{2 \pi} e^{-\Omega^{2} / 2} .
$$

(a) Begin with equation \mathcal{F} and take the derivative with respect to Ω of both sides. Conclude from this that

$$
D \widehat{X}(\Omega)=-\Omega \widehat{X}(\Omega),
$$

where D denotes derivative with respect to Ω. (You'll need to differentiate under the integral sign and then use integration by parts. You'll be dealing with

$$
\int_{-\infty}^{\infty}\left(-t e^{-t^{2} / 2}\right)\left(j e^{-j \Omega t}\right) d t
$$

My suggestion is to let $v=j e^{-j \Omega t}$ and $d w=-t e^{-t^{2} / 2} d t$ when you do integration by parts.)
(b) Conclude from (a) that

$$
\widehat{X}(\Omega)=\widehat{X}(0) e^{-\Omega^{2} / 2} \text { for all } \Omega \in \mathbb{R}
$$

Find $\widehat{X}(0)$ by using

$$
\int_{-\infty}^{\infty} e^{-\tau^{2}} d \tau=\sqrt{\pi}
$$

