1. A certain discrete-time LTI system with system mapping S has impulse response h with specification

$$
h(n)=\frac{(-5)^{-n}}{7} u(n) \text { for all } n \in \mathbb{Z}
$$

(a) Suppose that \bar{x} is a bounded signal, and that $S(\bar{x})=\bar{y}$. Suppose d is another bounded signal that acts as a disturbance at the input. Suppose $\|d\|_{\infty}=\epsilon$. Find an upper bound on the effect of the disturbance at the output when we use $x=\bar{x}+d$ as input, i.e., find an upper bound on

$$
\|S(x)-\bar{y}\|_{\infty}
$$

(b) Can you find a disturbance d with $\|d\|_{\infty}=\epsilon$ that causes the inequality you found in (a) to hold with equality?
2. In each case, determine whether the convolution of x_{1} and x_{2} exists. In any instance where it does exist, just say why you know it exists - you don't have to compute it. In any instance where it doesn't exist, please show why by trying to compute it.
(a) x_{1} is the signal with specification $x_{1}(t)=u(t+7)$ for all $t \in \mathbb{R}$ and and $x_{2}=u$.
(b) x_{1} is the signal with specification $x_{1}(t)=7$ for all $t \in \mathbb{R}$ and x_{2} is the signal with specification $x_{2}(t)=e^{3 t} u(t)$ for all $t \in \mathbb{R}$.
(c) x_{1} is the signal with specification $x_{1}(t)=\cos t$ for all t and x_{2} is the signal with specification $x_{2}(t)=e^{-3|t|}$ for all $t \in \mathbb{R}$.
(d) $x_{1}=u-\operatorname{Shift}_{7}(u)$ and x_{2} is the signal with specification $x_{2}(t)=e^{3 t^{2}}$ for all $t \in \mathbb{R}$.
(e) x_{1} is the signal with specification $x_{1}(t)=e^{-3 t} u(t)$ for all $t \in \mathbb{R}$ and x_{2} is the signal with specification $x_{2}(t)=e^{7 t^{2}} u(-t)$ for all $t \in \mathbb{R}$.

In the remaining six problems, find $x_{1} * x_{2}$. Please try to express your answer to Problems 4,5 , and 7 in the form

$$
x_{1} * x_{2}(t)= \begin{cases}f(t) & \text { if } t \geq 0 \\ g(t) & \text { if } t<0\end{cases}
$$

which is the same as

$$
x_{1} * x_{2}(t)=f(t) u(t)+g(t) u(-t) \text { for all } t \in \mathbb{R}
$$

3. $x_{1}=\operatorname{Shift}_{1}(u)$ and x_{2} is the signal with specification $x_{2}(t)=e^{-3 t} u(t), t \in \mathbb{R}$.
4. $\quad x_{1}$ and x_{2} are signals with specification $x_{1}(t)=e^{3 t} u(t)$ and $x_{2}(t)=e^{7 t} u(t)$ for all $t \in \mathbb{R}$.
5. $\quad x_{1}$ and x_{2} are signals with specification $x_{1}(t)=x_{2}(t)=e^{-3 t} u(t)$ for all $t \in \mathbb{R}$.
6. x_{1} and x_{2} are signals with specification $x_{1}(t)=e^{5 t}$ and $x_{2}(t)=u(t)$ for all $t \in \mathbb{R}$.
7. $x_{1}=u$ and x_{2} is the signal with specification

$$
x_{2}(t)=e^{-3|t|}=\left\{\begin{array}{cl}
e^{-3 t} & \text { if } t \geq 0 \\
e^{3 t} & \text { if } t<0
\end{array}\right.
$$

8. x_{1} and x_{2} are signals with specification $x_{1}(t)=7+\cos (3 t)$ for every $t \in \mathbb{R}$ and

$$
x_{2}(t)=\left\{\begin{array}{cl}
\frac{3}{2 \pi} & \text { if } 0 \leq t \leq 2 \pi / 3 \\
0 & \text { otherwise }
\end{array}\right.
$$

