1. A certain discrete-time LTI system with system mapping S has impulse response \boldsymbol{h} with specification

$$h(n) = \frac{(-5)^{-n}}{7}u(n) \text{ for all } n \in \mathbb{Z} .$$

(a) Suppose that \overline{x} is a bounded signal, and that $S(\overline{x}) = \overline{y}$. Suppose d is another bounded signal that acts as a disturbance at the input. Suppose $\|d\|_{\infty} = \epsilon$. Find an upper bound on the effect of the disturbance at the output when we use $x = \overline{x} + d$ as input, i.e., find an upper bound on

$$||S(x) - \overline{y}||_{\infty}$$
.

(b) Can you find a disturbance d with $||d||_{\infty} = \epsilon$ that causes the inequality you found in (a) to hold with equality?

2. In each case, determine whether the convolution of x_1 and x_2 exists. In any instance where it does exist, just say why you know it exists — you don't have to compute it. In any instance where it doesn't exist, please show why by trying to compute it.

- (a) x_1 is the signal with specification $x_1(t) = u(t+7)$ for all $t \in \mathbb{R}$ and $x_2 = u$.
- (b) x_1 is the signal with specification $x_1(t) = 7$ for all $t \in \mathbb{R}$ and x_2 is the signal with specification $x_2(t) = e^{3t}u(t)$ for all $t \in \mathbb{R}$.
- (c) x_1 is the signal with specification $x_1(t) = \cos t$ for all t and x_2 is the signal with specification $x_2(t) = e^{-3|t|}$ for all $t \in \mathbb{R}$.
- (d) $x_1 = u \text{Shift}_7(u)$ and x_2 is the signal with specification $x_2(t) = e^{3t^2}$ for all $t \in \mathbb{R}$.
- (e) x_1 is the signal with specification $x_1(t) = e^{-3t}u(t)$ for all $t \in \mathbb{R}$ and x_2 is the signal with specification $x_2(t) = e^{7t^2}u(-t)$ for all $t \in \mathbb{R}$.

In the remaining six problems, find $x_1 * x_2$. Please try to express your answer to Problems 4, 5, and 7 in the form

$$x_1 * x_2(t) = \begin{cases} f(t) & \text{if } t \ge 0\\ g(t) & \text{if } t < 0 \end{cases}$$

which is the same as

$$x_1 * x_2(t) = f(t)u(t) + g(t)u(-t)$$
 for all $t \in \mathbb{R}$.

3. $x_1 = \text{Shift}_1(u)$ and x_2 is the signal with specification $x_2(t) = e^{-3t}u(t), t \in \mathbb{R}$.

4. x_1 and x_2 are signals with specification $x_1(t) = e^{3t}u(t)$ and $x_2(t) = e^{7t}u(t)$ for all $t \in \mathbb{R}$.

5. x_1 and x_2 are signals with specification $x_1(t) = x_2(t) = e^{-3t}u(t)$ for all $t \in \mathbb{R}$.

6. x_1 and x_2 are signals with specification $x_1(t) = e^{5t}$ and $x_2(t) = u(t)$ for all $t \in \mathbb{R}$.

7. $x_1 = u$ and x_2 is the signal with specification

$$x_2(t) = e^{-3|t|} = \begin{cases} e^{-3t} & \text{if } t \ge 0\\ e^{3t} & \text{if } t < 0 \\ 1 \end{cases}$$

8. x_1 and x_2 are signals with specification $x_1(t) = 7 + \cos(3t)$ for every $t \in \mathbb{R}$ and $x_2(t) = \begin{cases} \frac{3}{2\pi} & \text{if } 0 \le t \le 2\pi/3 \\ 0 & \text{otherwise.} \end{cases}$