For many of the problems, you might find the following geometric-series identities useful. In the equations, γ is a real or complex number.

$$\sum_{m=0}^M \gamma^m = \left\{ \begin{array}{cc} M+1 & \text{if } \gamma=1 \\ \frac{1-\gamma^{M+1}}{1-\gamma} & \text{if } \gamma\neq 1 \; . \end{array} \right.$$

Furthermore,

$$\sum_{m=0}^{\infty} \gamma^m = \frac{1}{1-\gamma}$$

when $|\gamma| < 1$.

In first six problems, find $x_1 * x_2$. Please try to express your answers to all but Problems 4 and 6 in the form

$$x_1 * x_2(n) = \begin{cases} f(n) & \text{if } n \ge 0\\ g(n) & \text{if } n < 0 \end{cases}$$

which is the same as

$$x_1 * x_2(n) = f(n)u(n) + g(n)u(-n-1)$$
 for all $n \in \mathbb{Z}$.

1. $x_1 = u$ and x_2 is the signal with specification $x_2(n) = 7^n u(n), n \in \mathbb{Z}$.

2. x_1 and x_2 are signals with specification $x_1(n) = 7^{-n}u(n)$ and $x_2(n) = 3^nu(n)$ for all $n \in \mathbb{Z}$.

3. x_1 and x_2 are signals with specification $x_1(n) = x_2(n) = 3^n u(n)$ for all $n \in \mathbb{Z}$.

4. x_1 and x_2 are signals with specification $x_1(n) = u(-n-1)$ and $x_2(n) = 3^{-n}$ for all $n \in \mathbb{Z}$.

5. $x_1 = u$ and x_2 is the signal with specification

$$x_2(n) = 3^{-|n|} = \begin{cases} 3^{-n} & \text{if } n \ge 0\\ 3^n & \text{if } n < 0 \end{cases},$$

6. x_1 and x_2 are signals with specification

$$x_1(n) = (-1)^n = \begin{cases} 1 & \text{if } n \text{ is even} \\ -1 & \text{if } n \text{ is odd} \end{cases}.$$

and

$$x_2(n) = \begin{cases} \frac{1}{6} & \text{if } 0 \le n \le 5\\ 0 & \text{otherwise.} \end{cases}$$

- 7. In each case, verify that the convolution of x_1 and x_2 fails to exist.
 - (a) $x_1 = u$ and x_2 is the signal with specification $x_2(n) = 3^{-n}$ for every $n \in \mathbb{Z}$.
 - (b) $x_1 = u$ and x_2 is the signal with specification

$$x_2(n) = 5^{-n}u(-n-1) = \begin{cases} 5^{-n} & \text{when } n < 0\\ 0 & \text{when } n \ge 0 \end{cases}.$$

- 8. In each case, without trying to calculate $x_1 * x_2$, explain why you know $x_1 * x_2$ exists.
 - (a) x_1 is the signal with specification $x_1(n) = e^{n^2}$ for every $n \in \mathbb{Z}$ and $x_2 = u$ Shift₃(u).
 - (b) $x_1 = u$ and x_2 is the signal with specification

$$x_2(n) = \begin{cases} \cos^2(n) & \text{when } n \ge -17\\ 0 & \text{when } n < -17 \end{cases}$$

- (c) $x_1 = 3u$ and x_2 is the signal with specification $x_2(n) = 1/(|n|!)$ for every $n \in \mathbb{Z}$.
- **9.** Let $h \in \mathbb{R}^{\mathbb{Z}}$ be the signal with specification:

$$h(n) = \begin{cases} (1+r)^n & \text{if } n \ge 0\\ 0 & \text{if } n < 0 \end{cases},$$

where $r \in (0, 1)$. Let $x \in \mathbb{R}^{\mathbb{Z}}$ be the signal with specification

$$x(n) = \begin{cases} P & \text{if } N_o \le n \le N_o + 359 \\ 0 & \text{otherwise,} \end{cases}$$

where P > 0 and N_o is a nonnegative integer.

- (a) Find $\operatorname{Conv}_h(x)$, i.e. find an explicit formula for $\operatorname{Conv}_h(x)(n)$ for every $n \in \mathbb{Z}$.
- (b) Suppose you work at a mundane job for thirty years starting in month N_o of your life. You get paid 273 dollars at the beginning of each month and never get a raise or salary reduction. You never spend any of the money you make because you're independently wealthy, but you put all your earnings in a special bank account that earns interest compounded monthly at a monthly rate of .07/12. The interest you earn in month n goes into your account at the beginning of month n + 1. Find the balance in your bank account on the second day of month n as a function of n, where n ranges over all of Z.