For many of the problems, you might find the following geometric-series identities useful. In the equations, γ is a real or complex number.

$$
\sum_{m=0}^{M} \gamma^{m}=\left\{\begin{array}{cl}
M+1 & \text { if } \gamma=1 \\
\frac{1-\gamma^{M+1}}{1-\gamma} & \text { if } \gamma \neq 1
\end{array}\right.
$$

Furthermore,

$$
\sum_{m=0}^{\infty} \gamma^{m}=\frac{1}{1-\gamma}
$$

when $|\gamma|<1$.
In first six problems, find $x_{1} * x_{2}$. Please try to express your answers to all but Problems 4 and 6 in the form

$$
x_{1} * x_{2}(n)= \begin{cases}f(n) & \text { if } n \geq 0 \\ g(n) & \text { if } n<0\end{cases}
$$

which is the same as

$$
x_{1} * x_{2}(n)=f(n) u(n)+g(n) u(-n-1) \text { for all } n \in \mathbb{Z}
$$

1. $x_{1}=u$ and x_{2} is the signal with specification $x_{2}(n)=7^{n} u(n), n \in \mathbb{Z}$.
2. x_{1} and x_{2} are signals with specification $x_{1}(n)=7^{-n} u(n)$ and $x_{2}(n)=3^{n} u(n)$ for all $n \in \mathbb{Z}$.
3. x_{1} and x_{2} are signals with specification $x_{1}(n)=x_{2}(n)=3^{n} u(n)$ for all $n \in \mathbb{Z}$.
4. x_{1} and x_{2} are signals with specification $x_{1}(n)=u(-n-1)$ and $x_{2}(n)=3^{-n}$ for all $n \in \mathbb{Z}$.
5. $x_{1}=u$ and x_{2} is the signal with specification

$$
x_{2}(n)=3^{-|n|}=\left\{\begin{array}{cl}
3^{-n} & \text { if } n \geq 0 \\
3^{n} & \text { if } n<0,
\end{array}\right.
$$

6. x_{1} and x_{2} are signals with specification

$$
x_{1}(n)=(-1)^{n}=\left\{\begin{array}{cl}
1 & \text { if } n \text { is even } \\
-1 & \text { if } n \text { is odd }
\end{array}\right.
$$

and

$$
x_{2}(n)= \begin{cases}\frac{1}{6} & \text { if } 0 \leq n \leq 5 \\ 0 & \text { otherwise }\end{cases}
$$

7. In each case, verify that the convolution of x_{1} and x_{2} fails to exist.
(a) $x_{1}=u$ and x_{2} is the signal with specification $x_{2}(n)=3^{-n}$ for every $n \in \mathbb{Z}$.
(b) $x_{1}=u$ and x_{2} is the signal with specification

$$
x_{2}(n)=5^{-n} u(-n-1)=\left\{\begin{array}{cl}
5^{-n} & \text { when } n<0 \\
0 & \text { when } n \geq 0
\end{array}\right.
$$

8. In each case, without trying to calculate $x_{1} * x_{2}$, explain why you know $x_{1} * x_{2}$ exists.
(a) x_{1} is the signal with specification $x_{1}(n)=e^{n^{2}}$ for every $n \in \mathbb{Z}$ and $x_{2}=u-$ $\operatorname{Shift}_{3}(u)$.
(b) $x_{1}=u$ and x_{2} is the signal with specification

$$
x_{2}(n)=\left\{\begin{array}{cl}
\cos ^{2}(n) & \text { when } n \geq-17 \\
0 & \text { when } n<-17
\end{array}\right.
$$

(c) $x_{1}=3 u$ and x_{2} is the signal with specification $x_{2}(n)=1 /(|n|!)$ for every $n \in \mathbb{Z}$.
9. Let $h \in \mathbb{R}^{\mathbb{Z}}$ be the signal with specification:

$$
h(n)=\left\{\begin{array}{cl}
(1+r)^{n} & \text { if } n \geq 0 \\
0 & \text { if } n<0
\end{array}\right.
$$

where $r \in(0,1)$. Let $x \in \mathbb{R}^{\mathbb{Z}}$ be the signal with specification

$$
x(n)= \begin{cases}P & \text { if } N_{o} \leq n \leq N_{o}+359 \\ 0 & \text { otherwise },\end{cases}
$$

where $P>0$ and N_{o} is a nonnegative integer.
(a) Find $\operatorname{Conv}_{h}(x)$, i.e. find an explicit formula for $\operatorname{Conv}_{h}(x)(n)$ for every $n \in \mathbb{Z}$.
(b) Suppose you work at a mundane job for thirty years starting in month N_{o} of your life. You get paid 273 dollars at the beginning of each month and never get a raise or salary reduction. You never spend any of the money you make because you're independently wealthy, but you put all your earnings in a special bank account that earns interest compounded monthly at a monthly rate of $.07 / 12$. The interest you earn in month n goes into your account at the beginning of month $n+1$. Find the balance in your bank account on the second day of month n as a function of n, where n ranges over all of \mathbb{Z}.

