ECE 3250 HOMEWORK ASSIGNMENT II Fall 2015

1. If {cn} is a convergent sequence of real numbers, does there necessarily exist R > 0
such that |c,| < R for every n € N? Equivalently, is {c, : n € N} necessarily a bounded
set of real numbers? Explain why or why not.

2. Find the sup and inf of each of the following bounded sets of real numbers. If the set
has a max or a min or both, find it/them as well.

(a) The union of the two intervals [—-3, —1] and [1, 3).
(b) The set A of all rational numbers between —7 and .
(c) The set of the numbers in the sequence {c,}, where

en =17 (1 _ 7—<"+1)) forall neN.

(d) A={sinf: —7w/2 <0<}
(e) A= {sin?0: —7/2 <6< 7}

3. Throughout this problem, A and B are sets of real numbers.

(a) Show that if B C A and A is bounded, then B is also bounded.
(b) Show that if B C A and A is bounded, then sup(B) < sup(A) and inf(B) >
inf(A).

4. Suppose {bn} is a sequence of real or complex numbers and {a,} is a sequence of real
or complex numbers satisfying |a,| < |by| for all n € N. Show that if {b,} is absolutely
summable, then {a,} is summable, i.e. > an converges. (Suggestion: you can probably
use Facts 3.3 and 3.7 from the Monograph.)

5. In class I stated the following result: if 3> |cn| converges, then so does >~ cn. In
other words, if the sequence {c,} is absolutely summable, then it’s summable. Use that
fact plus the previous problem plus what you know about the geometric series to deduce
that »->7 7" sin (n2 + e”) converges. This is an example where you can tell that a series
converges without figuring out what it converges to.

6. Suppose {c,} is a summable sequence from R or C. Explain briefly why each of the
following statements is or isn’t always true. You can quote any results I've stated either
in class or in Chapter 3 of the monograph.

(a) The infinite series > 7 |cn| converges.

(b) If s, = |Zzl:0 Cm|, then there exists some R > 0 such that s, < R for every
n € N.

(c) If 5 =3 7 _, lem| and at least one ¢y, is nonzero, then there exists some N € N
such that inf({5, : n > N}) > 0.

(d) If every cy is a positive real number, then lim,— ¢, = 0.

7. We talked in class about sequences of rational numbers converging to irrational
numbers (and you can read about it in Chapter 1 of the monograph). This problem
addresses one famous example.



(a)

It happens to be true that /5 is irrational. Given that fact, show that (1++/5)/2
is also irrational. (Suggestion: sums and products of rational numbers are also
rational.)

Show that if {z,} is a sequence of real numbers converging to Z € R, then the
sequence {yn = Tn+1} also converges to Z.

You’ve doubtless heard of the Fibonacci sequence

1,1,2,3,5,8,13,21, ...

of natural numbers. If a, is the nth term in the sequence, we have anta =
an + an41 for all n € N. It turns out that the sequence

Gn = an+1
Qn
converges. Show that
1
dn+1 = 1 + — ,

Given that {g,} converges, use (b) to conclude that it converges to to p = (1 +
v/5)/2, which is the so-called Golden Ratio. (You may use the fact that if {g,}
converges to a positive limit p, , then 1/g, converges to 1/p.)

8. 1 asserted in class that [2, the set of all square-summable discrete-time signals, is a
subspace of FZ — i.e. that it’s closed under taking linear combinations. Here’s one way
to prove it — let’s just assume F = C, so we're dealing with complex-valued signals.

(a)

(b)

Show that for any complex numbers a and b, we have
la +b)* = |a* + |b]* + 2Re{abd} .
Conclude from the fact that |a — b|* > 0 that
2Re{ab} < |a)® + |b?
from which it follows that |a + b|> < 2|a|® + 2|b]>.
Let 1 and x2 be complex-valued l2—signals and let ¢; and c2 be complex numbers.

Show using the result of part (a) that ciz1 + coz2 € 2. (Suggestion: apply (a)
to ciz1(n) + cexa(n) for all n and then add.)



