
ECE 3250 HOMEWORK ASSIGNMENT II Fall 2015

1. If {cn} is a convergent sequence of real numbers, does there necessarily exist R > 0
such that |cn| ≤ R for every n ∈ N? Equivalently, is {cn : n ∈ N} necessarily a bounded
set of real numbers? Explain why or why not.

2. Find the sup and inf of each of the following bounded sets of real numbers. If the set
has a max or a min or both, find it/them as well.

(a) The union of the two intervals [−3,−1] and [1, 3).
(b) The set A of all rational numbers between −π and π.
(c) The set of the numbers in the sequence {cn}, where

cn = 7
“
1− 7−(n+1)

”
for all n ∈ N .

(d) A = {sin θ : −π/2 < θ ≤ π}.
(e) A = {sin2 θ : −π/2 < θ ≤ π}.

3. Throughout this problem, A and B are sets of real numbers.

(a) Show that if B ⊂ A and A is bounded, then B is also bounded.
(b) Show that if B ⊂ A and A is bounded, then sup(B) ≤ sup(A) and inf(B) ≥

inf(A).

4. Suppose {bn} is a sequence of real or complex numbers and {an} is a sequence of real
or complex numbers satisfying |an| ≤ |bn| for all n ∈ N. Show that if {bn} is absolutely
summable, then {an} is summable, i.e.

P∞
n=0 an converges. (Suggestion: you can probably

use Facts 3.3 and 3.7 from the Monograph.)

5. In class I stated the following result: if
P∞

n=0 |cn| converges, then so does
P∞

n=0 cn. In
other words, if the sequence {cn} is absolutely summable, then it’s summable. Use that
fact plus the previous problem plus what you know about the geometric series to deduce
that

P∞
n=0 7−n sin

`
n2 + en

´
converges. This is an example where you can tell that a series

converges without figuring out what it converges to.

6. Suppose {cn} is a summable sequence from R or C. Explain briefly why each of the
following statements is or isn’t always true. You can quote any results I’ve stated either
in class or in Chapter 3 of the monograph.

(a) The infinite series
P∞

n=0 |cn| converges.

(b) If sn =
˛̨Pn

m=0 cm

˛̨
, then there exists some R > 0 such that sn ≤ R for every

n ∈ N.
(c) If s̃n =

Pn
m=0 |cm| and at least one cm is nonzero, then there exists some N ∈ N

such that inf({s̃n : n ≥ N}) > 0.
(d) If every cn is a positive real number, then limn→∞ cn = 0.

7. We talked in class about sequences of rational numbers converging to irrational
numbers (and you can read about it in Chapter 1 of the monograph). This problem
addresses one famous example.
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(a) It happens to be true that
√

5 is irrational. Given that fact, show that (1+
√

5)/2
is also irrational. (Suggestion: sums and products of rational numbers are also
rational.)

(b) Show that if {xn} is a sequence of real numbers converging to x̄ ∈ R, then the
sequence {yn = xn+1} also converges to x̄.

(c) You’ve doubtless heard of the Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, . . .

of natural numbers. If an is the nth term in the sequence, we have an+2 =
an + an+1 for all n ∈ N. It turns out that the sequence

qn =
an+1

an

converges. Show that

qn+1 = 1 +
1

qn
,

Given that {qn} converges, use (b) to conclude that it converges to to ρ = (1 +√
5)/2, which is the so-called Golden Ratio. (You may use the fact that if {qn}

converges to a positive limit ρ, , then 1/qn converges to 1/ρ.)

8. I asserted in class that l2, the set of all square-summable discrete-time signals, is a
subspace of FZ — i.e. that it’s closed under taking linear combinations. Here’s one way
to prove it — let’s just assume F = C, so we’re dealing with complex-valued signals.

(a) Show that for any complex numbers a and b, we have

|a + b|2 = |a|2 + |b|2 + 2Re{ab} .

Conclude from the fact that |a− b|2 ≥ 0 that

2Re{ab} ≤ |a|2 + |b|2

from which it follows that |a + b|2 ≤ 2|a|2 + 2|b|2.
(b) Let x1 and x2 be complex-valued l2-signals and let c1 and c2 be complex numbers.

Show using the result of part (a) that c1x1 + c2x2 ∈ l2. (Suggestion: apply (a)
to c1x1(n) + c2x2(n) for all n and then add.)


