1. If $\left\{c_{n}\right\}$ is a convergent sequence of real numbers, does there necessarily exist $R>0$ such that $\left|c_{n}\right| \leq R$ for every $n \in \mathbb{N}$ ? Equivalently, is $\left\{c_{n}: n \in \mathbb{N}\right\}$ necessarily a bounded set of real numbers? Explain why or why not.
2. Find the sup and inf of each of the following bounded sets of real numbers. If the set has a max or a min or both, find it/them as well.
(a) The union of the two intervals $[-3,-1]$ and $[1,3)$.
(b) The set $A$ of all rational numbers between $-\pi$ and $\pi$.
(c) The set of the numbers in the sequence $\left\{c_{n}\right\}$, where

$$
c_{n}=7\left(1-7^{-(n+1)}\right) \text { for all } n \in \mathbb{N}
$$

(d) $A=\{\sin \theta:-\pi / 2<\theta \leq \pi\}$.
(e) $A=\left\{\sin ^{2} \theta:-\pi / 2<\theta \leq \pi\right\}$.
3. Throughout this problem, $A$ and $B$ are sets of real numbers.
(a) Show that if $B \subset A$ and $A$ is bounded, then $B$ is also bounded.
(b) Show that if $B \subset A$ and $A$ is bounded, then $\sup (B) \leq \sup (A)$ and $\inf (B) \geq$ $\inf (A)$.
4. Suppose $\left\{b_{n}\right\}$ is a sequence of real or complex numbers and $\left\{a_{n}\right\}$ is a sequence of real or complex numbers satisfying $\left|a_{n}\right| \leq\left|b_{n}\right|$ for all $n \in \mathbb{N}$. Show that if $\left\{b_{n}\right\}$ is absolutely summable, then $\left\{a_{n}\right\}$ is summable, i.e. $\sum_{n=0}^{\infty} a_{n}$ converges. (Suggestion: you can probably use Facts 3.3 and 3.7 from the Monograph.)
5. In class I stated the following result: if $\sum_{n=0}^{\infty}\left|c_{n}\right|$ converges, then so does $\sum_{n=0}^{\infty} c_{n}$. In other words, if the sequence $\left\{c_{n}\right\}$ is absolutely summable, then it's summable. Use that fact plus the previous problem plus what you know about the geometric series to deduce that $\sum_{n=0}^{\infty} 7^{-n} \sin \left(n^{2}+e^{n}\right)$ converges. This is an example where you can tell that a series converges without figuring out what it converges to.
6. Suppose $\left\{c_{n}\right\}$ is a summable sequence from $\mathbb{R}$ or $\mathbb{C}$. Explain briefly why each of the following statements is or isn't always true. You can quote any results I've stated either in class or in Chapter 3 of the monograph.
(a) The infinite series $\sum_{n=0}^{\infty}\left|c_{n}\right|$ converges.
(b) If $s_{n}=\left|\sum_{m=0}^{n} c_{m}\right|$, then there exists some $R>0$ such that $s_{n} \leq R$ for every $n \in \mathbb{N}$.
(c) If $\tilde{s}_{n}=\sum_{m=0}^{n}\left|c_{m}\right|$ and at least one $c_{m}$ is nonzero, then there exists some $N \in \mathbb{N}$ such that $\inf \left(\left\{\tilde{s}_{n}: n \geq N\right\}\right)>0$.
(d) If every $c_{n}$ is a positive real number, then $\lim _{n \rightarrow \infty} c_{n}=0$.
7. We talked in class about sequences of rational numbers converging to irrational numbers (and you can read about it in Chapter 1 of the monograph). This problem addresses one famous example.
(a) It happens to be true that $\sqrt{5}$ is irrational. Given that fact, show that $(1+\sqrt{5}) / 2$ is also irrational. (Suggestion: sums and products of rational numbers are also rational.)
(b) Show that if $\left\{x_{n}\right\}$ is a sequence of real numbers converging to $\bar{x} \in \mathbb{R}$, then the sequence $\left\{y_{n}=x_{n+1}\right\}$ also converges to $\bar{x}$.
(c) You've doubtless heard of the Fibonacci sequence

$$
1,1,2,3,5,8,13,21, \ldots
$$

of natural numbers. If $a_{n}$ is the $n$th term in the sequence, we have $a_{n+2}=$ $a_{n}+a_{n+1}$ for all $n \in \mathbb{N}$. It turns out that the sequence

$$
q_{n}=\frac{a_{n+1}}{a_{n}}
$$

converges. Show that

$$
q_{n+1}=1+\frac{1}{q_{n}},
$$

Given that $\left\{q_{n}\right\}$ converges, use (b) to conclude that it converges to to $\rho=(1+$ $\sqrt{5}) / 2$, which is the so-called Golden Ratio. (You may use the fact that if $\left\{q_{n}\right\}$ converges to a positive limit $\rho$, , then $1 / q_{n}$ converges to $1 / \rho$.)
8. I asserted in class that $l^{2}$, the set of all square-summable discrete-time signals, is a subspace of $\mathbb{F}^{\mathbb{Z}}$ - i.e. that it's closed under taking linear combinations. Here's one way to prove it - let's just assume $\mathbb{F}=\mathbb{C}$, so we're dealing with complex-valued signals.
(a) Show that for any complex numbers $a$ and $b$, we have

$$
|a+b|^{2}=|a|^{2}+|b|^{2}+2 \operatorname{Re}\{a \bar{b}\} .
$$

Conclude from the fact that $|a-b|^{2} \geq 0$ that

$$
2 \operatorname{Re}\{a \bar{b}\} \leq|a|^{2}+|b|^{2}
$$

from which it follows that $|a+b|^{2} \leq 2|a|^{2}+2|b|^{2}$.
(b) Let $x_{1}$ and $x_{2}$ be complex-valued $l^{2}$-signals and let $c_{1}$ and $c_{2}$ be complex numbers. Show using the result of part (a) that $c_{1} x_{1}+c_{2} x_{2} \in l^{2}$. (Suggestion: apply (a) to $c_{1} x_{1}(n)+c_{2} x_{2}(n)$ for all $n$ and then add.)

