1. Find the $z$-transform (formula for $X(z)$ along with $(\mathrm{ROC})_{X}$ ), if the transform exists, for each signal $x$ specified below. If the transform fails to exist, explain why.
(a) $x(n)=2^{-n} u(n+1)$ for all $n \in \mathbb{Z}$.
(b) $x(n)=n 3^{-(n+1)} u(n)-7^{n} u(-n-1)$ for all $n \in \mathbb{Z}$.
(c) $x(n)=\delta(n+3)-\delta(n+5)$ for all $n \in \mathbb{Z}$.
(d) $x(n)=z_{o}^{|n|}$ for all $n \in \mathbb{Z}$, where $z_{o}$ is a nonzero complex number satisfying $\left|z_{o}\right|<1$.
(e) $x(n)=3^{n} u(n)-7^{-n} u(-n-1)$ for all $n \in \mathbb{Z}$.
2. Without evaluating the convolution directly, find the $z$-transform of the signal $x=$ $x_{1} * x_{2}$, where $x_{1}$ and $x_{2}$ are the signals with specifications

$$
x_{1}(n)=-13^{n} u(n) \text { for all } n \in \mathbb{Z}
$$

and

$$
x_{2}(n)=n 5^{n-1} u(n)+3(-7)^{n} u(n) \text { for all } n \in \mathbb{Z}
$$

3. Find in each case the signal $x$ with the given $z$-transform.
(a) $X(z)=\frac{z^{2}}{(z+7)(z-5)} \quad 7<|z|<\infty$.
(b) $X(z)=\frac{z+1}{(z-1)^{2}(z+3)} \quad 1<|z|<3$.
(c) $X(z)=\sum_{k=0}^{5} 2^{-k} z^{-k} \quad 0<|z|<\infty$.
4. A causal LTI system has impulse response $h$ with specification

$$
h(n)=2^{-n} u(n)-3^{-n} u(n) \text { for all } n \in \mathbb{Z}
$$

(a) Find the system's transfer function (formula for $H(z)$ along with $\left.(\mathrm{ROC})_{H}\right)$. Is the system BIBO stable? Explain both in terms of $h$ and in terms of the transfer function.
(b) Find the system's output signal when the input signal is $x=u$.
(c) Find the system's output signal when the input is the constant signal $x$ with specification $x(n)=1$ for all $n \in \mathbb{Z}$.
(d) Find the system's output signal when the input is the signal $x$ with specification $x(n)=3^{n}$ for all $n \in \mathbb{Z}$.
5. A certain causal LTI system has transfer function

$$
H(z)=\frac{z^{2}}{z^{2}-.3 z+.02} \quad .2<|z|<\infty .
$$

(a) Why couldn't $(\mathrm{ROC})_{H}$ have been $.1<|z|<.2$ ?
(b) Is the system BIBO stable? Explain in terms of the poles of the transfer function.
(c) Find the system's output $y$ when the input $x$ has specification $x(n)=5\left(7^{n}\right)$ for all $n \in \mathbb{Z}$.
(d) Find the system's impulse response $h$.
6. Find the Direct Form II and Transposed Direct Form II signal flow graphs for the causal LTI system with transfer function

$$
\left.H(z)=\frac{z^{2}+2 z+1}{z^{2}-\frac{3}{4} z+\frac{1}{8}} \quad \frac{1}{2}<z \right\rvert\,<\infty .
$$

Also, find a difference equation of the form

$$
y(n)+q_{1} y(n-1)+q_{2} y(n-2)=p_{o} x(n)+p_{1} x(n-1)+p_{2} x(n-2)
$$

relating the system's input $x$ and output $y$.
7. Find the Laplace transform (formula for $X(s)$ along with $\left.(\mathrm{ROC})_{X}\right)$, if the transform exists, for each signal $x$ specified below. If the transform fails to exist, explain why.
(a) $x(t)=e^{3 t} u(t-1)$ for all $t \in \mathbb{R}$.
(b) $x(t)=e^{3 t} u(t)-e^{-t} u(-t)$ for all $t \in \mathbb{R}$.
(c) $x(t)=e^{-3|t|}$ for all $t \in \mathbb{R}$.
8. A certain LTI system has impulse response $h$ with specification $h(t)=e^{-t} u(t)-$ $e^{3 t} u(-t)$.
(a) Find the system's transfer function (formula for $H(s)$ along with $\left.(\mathrm{ROC})_{H}\right)$.
(b) Find the output $y$ of the system that arises when the input signal $x$ has specification $x(t)=e^{t}$ for all $t \in \mathbb{R}$.
(c) Suppose we use $u$ as the input to the system. Find the Laplace transform of the output $y$ that arises (formula for $Y(s)$ along with $\left.(\mathrm{ROC})_{Y}\right)$. You need not find the signal $y$ itself.
9. Let

$$
A=\left[\begin{array}{cc}
1 & \sqrt{\frac{2}{3}} \\
1 & \sqrt{\frac{2}{3}} \\
1 & \sqrt{\frac{2}{3}}
\end{array}\right] .
$$

(a) What is the rank of $A$ ?
(b) Find the SVD of $A$.
(c) Find the Moore-Penrose pseudo-inverse of $A$.

