Problems 1 through 11 are worth 8 points each. Problem 12 is worth 12 points. Throughout, $*$ denotes convolution.

1. A is a set, B is a proper subset of A (i.e. $B \subset A$ and $B \neq A$), and $f: A \rightarrow B$ is a mapping. You can be certain that
(i) If B is finite, the f is surjective
(ii) For every $a \in A$ there's a unique $b \in B$ such that $b=f(a)$
(iii) If f is injective, then $\operatorname{card}(A)=\operatorname{card}(B)$
(iv) If $A=\mathbb{R}$ and $B=\mathbb{Z}$, then f is not injective
2. Which of the following sets are countably infinite?
(i) The set of all irrational numbers between -3 and 3
(ii) The set of all numbers of the form π^{k}, where $k \in \mathbb{Z}$
(iii) The set of all pairs (p, q), where p and q are prime numbers
(iv) The set of all numbers of the form $\sin (n \pi / 2)$ where $n \in \mathbb{Z}$
3. As usual, for a positive integer $a>1$, let $\mathbb{Z}_{a}=\{0,1,2, \ldots, a-1\}$ and let \mathbb{Z}_{a}^{*} be the set of all $k \in \mathbb{Z}_{a}$ such that k and a are coprime, i.e. have no factors other than 1 in common. You can be certain that
(i) If a is even, then \mathbb{Z}_{a}^{*} contains exactly $a / 2$ numbers
(ii) If $m \in \mathbb{Z}_{a}^{*}$, then there exist integers k and l such that $k m+l a=1$
(iii) If a is prime and $k \in \mathbb{Z}_{a}^{*}$ and $k^{3}<a$, then $\left\langle\left\langle k^{a+2}\right\rangle\right\rangle_{a}=k^{3}$
(iv) $\left\langle\left\langle m^{a-1}\right\rangle\right\rangle_{a}=1$ for all $m \in \mathbb{Z}_{a}^{*}$ if and only if a is prime
4. Suppose p is a prime number bigger than $2, e$ and d are in \mathbb{Z}_{p-1}^{*}, and $\langle\langle e d\rangle\rangle_{p-1}=1$. You can be certain that
(i) Whenever m is a positive integer greater than 1 and less than $p,\left\langle\left\langle m^{e d}\right\rangle\right\rangle_{p}=1$
(ii) There exist integers k and l such that $k e+l d=1$
(iii) p is a divisor of $\left(2^{e d}\right)^{p}$
(iv) p is not a divisor of $e d$
5. Let A be a bounded set of real numbers. You can be certain that
(i) If $\min (A)$ doesn't exist, then $\inf (A)<a$ for every $a \in A$
(ii) B is a bounded set, where $B=\left\{e^{-a t}: a \in A\right.$ and $\left.t \in \mathbb{R}\right\}$
(iii) $\inf (A)<\sup (A)$
(iv) If $C \subset A$ is finite, then $\max (C)$ exists
6. Let $\left\{q_{n}: n \in \mathbb{N}\right\}$ be a sequence of nonzero rational numbers. Let $s_{n}=\sum_{m=0}^{n}\left|q_{m}\right|$ for each $n \in \mathbb{N}$. Suppose $3 \leq s_{n} \leq 7$ for every $n \in \mathbb{N}$. You can be certain that
(i) The sequence $\left\{q_{n}\right\}$ is a Cauchy sequence
(ii) The sequence $\left\{q_{n}\right\}$ is summable
(iii) $\lim _{n \rightarrow \infty} s_{n}$ exists
(iv) The sequence $\left\{s_{n}\right\}$ is absolutely summable
7. Let $\left\{x_{n}: n \in \mathbb{N}\right\}$ be a sequence of rational numbers between $-\pi$ and π You can be certain that
(i) If the sequence $\left\{x_{n}\right\}$ is increasing, then $\lim _{n \rightarrow \infty} x_{n}=\pi$
(ii) If the sequence $\left\{x_{n}\right\}$ converges to a limit \bar{x}, then $\bar{x}>-\pi$
(iii) If the sequence $\left\{x_{n}\right\}$ converges to a limit \bar{x}, you can find $N>0$ so that $\left|x_{n}-\bar{x}\right|$ is less than 10^{-137} for all $n>N$
(iv) If the sequence $\left\{x_{n}\right\}$ converges, then so does the sequence $\left\{y_{n}\right\}$ defined by $y_{n}=$ $x_{n}+x_{n+1}$ for all $n \in \mathbb{N}$
8. Let \mathbb{F} be \mathbb{R} or \mathbb{C} and let x_{1} and x_{2} be discrete-time signals with values in \mathbb{F} (i.e. x_{1} and x_{2} are in $\mathbb{F}^{\mathbb{Z}}$.) You can be certain that
(i) If x_{1} is right-sided and x_{2} is left-sided, then $x_{1} * x_{2}$ exists
(ii) If $x_{1} * x_{2}$ exists and x_{1} is absolutely summable, then x_{2} is bounded
(ii) If $x_{1} * x_{2}$ exists, then so does $\operatorname{Shift}_{-3}\left(x_{1}\right) * \operatorname{Shift}_{7}\left(x_{2}\right)$
(iv) If $x_{1}(n)=x_{2}(n)=0$ for $n>0$, then $x_{1} * x_{2}$ exists and $x_{1} * x_{2}(n)=0$ for $n<0$
9. Which of the following statements apply to every discrete-time FIR LTI system over
\mathbb{F} ? (S denotes the system mapping and h denotes the system's impulse response.)
(i) If $x \in \mathbb{F}^{\mathbb{Z}}$ is right-sided, then so is $S(x)$
(ii) $h * x$ exists for every left-sided signal $x \in \mathbb{F}^{\mathbb{Z}}$
(iii) If $S(x)$ has finite duration, then x has finite duration
(iv) $S(h)$ has finite duration
10. In each case, S is the system mapping of a discrete-time LTI system with input space X. Indicate which systems are causal.
(i) $S(x)(n)=\sum_{k=-\infty}^{n+3} \sin (n-k) x(k)$ for every $x \in X$ and $n \in \mathbb{Z}$
(ii) $S(x)=\operatorname{Shift}_{7}(x)$ for every $x \in X$
(iii) $S(x)=h * x$ for every $x \in X$, where h is the signal with specification $h(n)=$ $3^{n+7} u(n+7)$ for every $n \in \mathbb{Z}$.
(iv) $S(x)=h * x$ for every $x \in X$, where h is a nonzero signal satisfying $h(n) u(n)=0$ for all $n \in \mathbb{Z}$
11. S is the system mapping and h is the impulse response of a discrete-time LTI system over \mathbb{F}. You can be certain that
(i) If $S(\delta)$ is a square-summable signal, then the system is BIBO stable
(ii) If the system is BIBO stable, then $S(\delta)(n) \rightarrow 0$ as $n \rightarrow \infty$
(iii) If the system is BIBO stable and $|x(n)| \leq R$ for every $n \in \mathbb{Z}$, then $\{|S(x)(n)|: n \in \mathbb{Z}\}$ is a bounded set
(iv) If $h(n)=0$ for $|n|>7$, then the system is BIBO stable
12. The system mappings S_{1} and S_{2} for two discrete-time LTI systems with respective input spaces X_{1} and X_{2} are

$$
S_{1}(x)(n)=\frac{1}{4} \sum_{k=1}^{4} x(n-k) \text { for all } x \in X_{1} \text { and } k \in \mathbb{Z}
$$

where $X_{1}=\mathbb{F}^{\mathbb{Z}}$, and

$$
S_{2}(x)=h_{2} * x \text { for all } x \in X_{2}
$$

where $h_{2}(n)=7^{-n} u(n)$ for every $n \in \mathbb{Z}$ and $X_{2}=\mathcal{D}_{h_{2}}$ is the set of all signals $x \in \mathbb{F}^{\mathbb{Z}}$ for which $h_{2} * x$ exists.
(a) Find h_{1}, the impulse response of the first system.
(b) Find $S_{2}(x)(n)$ for all $n \in \mathbb{Z}$ when $x=u$.
(c) Find $S_{2}\left(S_{1}(x)\right)(n)$ for all $n \in \mathbb{Z}$ when $x(n)=(-1)^{n}$ for all $n \in \mathbb{Z}$.

