Department of Electrical and Computer Engineering, Cornell University

ECE 3150: Microelectronics

Spring 2016

.

Exam 1

March 24, 2016

INSTRUCTIONS:

- Every problem must be done in the separate booklet
- Only work done on the exam booklets will be graded do not attach your own sheets to the exam booklets under any circumstances
- To get partial credit you must show all the relevant work
- Correct answers with wrong reasoning will not get points
- All questions do not carry equal points
- All questions do not have the same level of difficulty
- <u>Assume room temperature if the temperature is not specified</u>
- TOTAL POINTS: 100

DO NOT WRITE IN THIS SPACE

Problem 1 (FET Warm Up) – 10 points

The transconductance g_m of a NFET is measured as a function of V_{GS} for $V_{DS} = 1 V$, $V_{BS} = 0 V$, and is plotted below. $W = 10 \ \mu m$. $L = 1 \ \mu m$. $\lambda_n \approx 0$. $\varepsilon_{ox} = 3.9 \varepsilon_o$.

In addition, the gate-to-source capacitance C_{gs} is measured with $V_{DS} \approx 0 V$, $V_{GS} = 3 V$, and $V_{BS} = 0 V$ and is found to be 172.5 femto-Farads.

a) Plot carefully the transconductance g_m of the NFET as a function of V_{GS} for $V_{DS} = 2 V$, $V_{BS} = 0 V$ and indicate various regions of NFET operation, and V_{GS} values corresponding to breakpoints on the plot, and also indicate the g_m values. (5 points)

- b) What is the oxide thickness t_{ox} ? Need a numerical value. (2.5 points)
- c) What is the electron mobility μ_n ? Need a numerical value. (2.5 points)

Problem 2 (Light and Current) – 35 points

Consider a P-doped semiconductor, with two metal contacts, that is illuminated with light resulting in the generation of electron-hole pairs at the uniform rate G_L (units: 1/(cm³-s)).

The P-doping in the semiconductor is N_a . The minority carrier lifetime is <u>infinite</u>. The electron and hole mobilities are μ_n and μ_p , respectively, and the diffusivities are D_n and D_p , respectively. The intrinsic carrier concentration is n_i . For the following questions, assume steady state. Note that half the points will be for the sketches wherever asked. So don't forget the sketches.

a) What is the excess electron concentration n'(x) at x = 0? (2.5 points)

b) What is the excess hole concentration p'(x) at x = L? (2.5 points)

c) Set up an equation whose solution will give you the excess electron concentration n'(x) in steady state everywhere in the device (i.e. for $0 \le x \le L$). (5 points)

d) Solve the equation obtained in part (c) above and find an expression for the excess electron concentration n'(x) in steady state in the entire device (i.e. for $0 \le x \le L$) and <u>sketch it</u>. (5 points)

e) Find an expression for the excess hole concentration p'(x) in steady state in the entire device (i.e. for $0 \le x \le L$) and <u>sketch it</u>. (2.5 pints)

f) Find and <u>sketch</u> the electron diffusion current everywhere in the device (i.e. for $0 \le x \le L$). (5 points)

g) <u>Sketch</u> the hole diffusion current everywhere in the device (i.e. for $0 \le x \le L$). (2.5 points)

h) If $D_n = 2D_p$, find an expression for the electric field $E_x(x)$ everywhere in the device (i.e. for $0 \le x \le L$) and <u>sketch it</u>. (5 points)

i) Find an expression (with proper sign) for the current I_L that flows in the external circuit. (5 points)

Problem 3 (NMOS Structure) – 15 points

Consider the following MOS structure:

Right at the interface between the semiconductor and the oxide (i.e. at x = 0) there is fixed interface charge (due to trapped positively charged ions) represented by a sheet charge density Q_{INT} (units: Coulombs/m²). You will need to figure out the characteristics of the MOS structure in the presence of this sheet charge density.

a) Assuming a depletion region thickness of x_{do} , <u>find</u> and <u>sketch</u> the E-field in the range $-t_{ox} \le x \le x_{do}$ (5 points)

b) Assuming a depletion region thickness of x_{do} , <u>find</u> and <u>sketch</u> the potential in the range $-t_{ox} \le x \le x_{do}$ (5 points)

c) Find an expression for the flatband voltage V_{FB} . (5 points)

Problem 4 (FET Circuits and Amplifiers) - 40 points

Consider the following FET amplifier:

Assume that for the NFET:

$$W = 10 \ \mu m$$

$$L = 1 \ \mu m$$

$$\mu_n C_{ox} = 200 \ \mu A / V^2$$

$$\lambda_n = 0.1 1 / V$$

$$V_{TN} = 0.5 \ V$$

$$N_a = 10^{17} \ cm^{-3}$$
And assume that for the PFET:

$$W = 20 \ \mu m$$

$$L = 1 \ \mu m$$

$$\mu_p C_{ox} = 100 \ \mu A / V^2$$

$$\lambda_p = 0.1 1 / V$$

$$V_{TP} = -0.5 \ V$$

$$N_d = 10^{17} \ cm^{-3}$$
And:

$$V_{DD} = 2.5 \ V$$

A

a) If $V_{OUT} = 1.5$ V, what is V_{BIAS} ? (5 points)

b) What is the highest voltage V_{OUT} can take if both the FETs are to remain in the saturation region? (5 points)

c) What is the lowest voltage V_{OUT} can take if both the FETs are to remain in the saturation region? (10 points)

d) Draw a small signal circuit for the amplifier and find an expression for the open circuit voltage gain, $A_v = v_{out} / v_s$. Do you think the gain of this amplifier is going to be relatively large or small? (5 points)

e) Find an expression for the output resistance R_{out} . (5 points)

For the following parts, suppose the circuit is now modified as follows:

f) Draw a small signal circuit for the amplifier and find an expression for the open circuit voltage gain, $A_v = v_{out} / v_s$. Do you think the gain of this amplifier is going to be relatively large or small? (5 points)

g) Find an expression for the output resistance R_{out} . (5 points)