#### Lecture 4

#### **Electrons and Holes in Semiconductors**

#### In this lecture you will learn:

- Generation-recombination in semiconductors in more detail
- The basic set of equations governing the behavior of electrons and holes in semiconductors
- Shockley Equations
- · Quasi-neutrality in conductive materials

## **Majority and Minority Carriers**

## In N-doped Semiconductors:

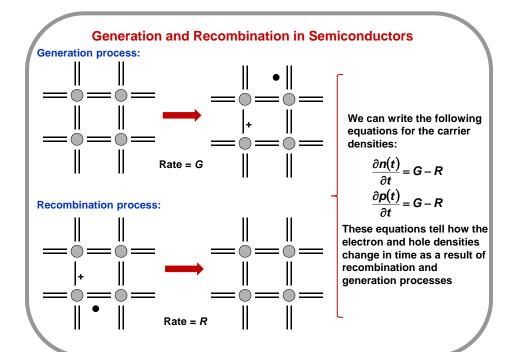
Electrons are the majority carriers Holes are the minority carriers

#### In P-doped Semiconductors:

Holes are the majority carriers Electrons are the minority carriers

#### Golden Rule of Thumb:

When trying to understand semiconductor devices, always first see what the minority carriers are doing



• From the first lecture, in thermal equilibrium:

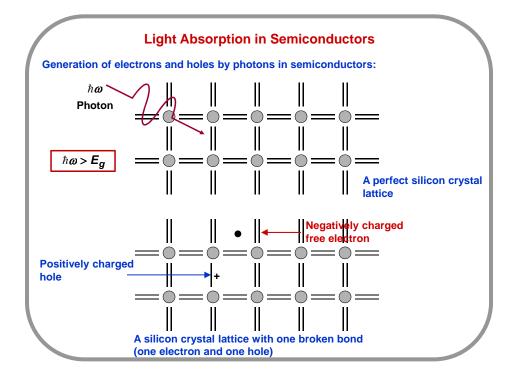
The recombination rate =  $R_o = k n_o p_o$ equals the generation rate =  $G_0$ 

i.e. 
$$G_o = R_o$$

• Then in thermal equilibrium:

$$\frac{\partial n_o(t)}{\partial t} = G_o - R_o = 0$$

$$\frac{\partial n_o(t)}{\partial t} = G_o - R_o = 0$$
$$\frac{\partial p_o(t)}{\partial t} = G_o - R_o = 0$$



1) Consider a P-doped slab of Silicon:

 $(n_o \ll p_o)$ 

Electron-hole recombination rate in thermal equilibrium=  $R_0 = k n_0 p_0$  equals the generation rate =  $G_0 = k n_i^2$ 

2) Now turn light on at time t = 0:



- Light breaks the Si-Si covalent bonds and generates excess electron-hole pairs
- The net generation rate now becomes:  $G = G_o + G_L$

extra part

3) Mathematical model of the above situation:

$$n = n_o + n'(t)$$
$$p = p_o + p'(t)$$

- n'(t) and p'(t) are the excess electron and hole densities
- It must be that: n'(t) = p'(t)
- We also assume that: n'(t),  $p'(t) << p_0$

• We can use the equations:

$$\frac{\partial n(t)}{\partial t} = G - R \qquad \qquad \frac{\partial p(t)}{\partial t} = G - R \qquad \qquad \begin{cases} n = n_o + n'(t) \\ p = p_o + p'(t) \end{cases}$$

$$n = n_0 + n'(t)$$
$$p = p_0 + p'(t)$$

Generation rate:

$$G = G_o + G_L$$

• Recombination rate:

Assumptions: 
$$n'$$
,  $p' \ll p_0$ 

$$= k (n_0 + n')(p_0 + p')$$

$$\approx k (n_0 + n') p_0$$

$$= k n_0 p_0 + k n' p_0$$

$$= R_0 + \frac{n'}{\tau_n}$$
Assumptions:  $n'$ ,  $p' \ll p_0$ 

$$\frac{1}{\tau_n} = k p_0$$

$$= k p_0$$
The excess recombination rate is proportional to the excess MINORITY carrier density

Assumptions: n',  $p' \ll p_o$ 

$$\frac{1}{\tau_n} = k p_0$$
  $r_n$  is the lifetime of the minority carriers (i.e. electrons)

• The equation for excess minority carriers (i.e. electrons) becomes:

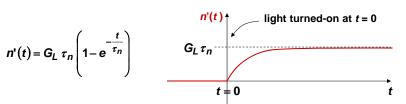
$$\frac{\partial n'(t)}{\partial t} = G_L - \frac{n'(t)}{\tau_n}$$

# **Generation and Recombination Out of Thermal Equilibrium**

$$\frac{\partial n'(t)}{\partial t} = G_L - \frac{n'(t)}{\tau_n}$$

• Solution with the boundary condition, n'(t=0)=0, is:

$$n'(t) = G_L \tau_n \left(1 - e^{-\frac{t}{\tau_n}}\right)$$



• Excess hole density is, of course :

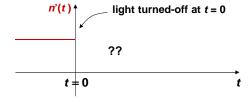
$$p'(t) = n'(t)$$

• As  $t \to \infty$  the excess electron and hole densities reach a steady state value

$$n'(t \to \infty) = G_L \tau_n$$
 and  $n(t \to \infty) = n_0 + G_L \tau_n$   $p'(t \to \infty) = G_L \tau_n$   $p(t \to \infty) = p_0 + G_L \tau_n$ 

Now suppose that light had been turned-on for a very very long time and it was turned-off at time t = 0

At time t = 0:  $n' = G_L \tau_n$  $n = n_0 + G_L \tau_n$ and  $p' = G_L \tau_n$  $p = p_o + G_L \tau_n$ 



• Since  $n\neq n_0$ , and  $p\neq p_0$ , the carrier densities are not equal to their thermal equilibrium values. Thermal equilibrium must get restored since the light has been

Question: How does thermal equilibrium gets restored??

## **Generation and Recombination Out of Thermal Equilibrium**

• We can use the equations:

$$\frac{\partial n(t)}{\partial t} = G - R \qquad \qquad \frac{\partial p(t)}{\partial t} = G - R \qquad \right\} \qquad \qquad n = n_o + n'(t) \\ p = p_o + p'(t)$$

Generation rate:

$$G = G_o$$

• Recombination rate:

ombination rate:

$$R = k n p$$
 $= k (n_0 + n')(p_0 + p')$ 
 $\approx k (n_0 + n') p_0$ 
 $= k n_0 p_0 + k n' p_0$ 
 $= R_0 + \frac{n'}{\tau_n}$ 

Assumptions:  $n', p' \ll p_0$ 

The excess recombination rate is proportional to the excess MINORITY carrier density

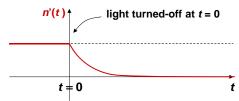
• The equation for excess minority carriers (i.e. electrons) becomes:

$$\frac{\partial n'(t)}{\partial t} = -\frac{n'(t)}{\tau_n}$$

$$\frac{\partial n'(t)}{\partial t} = -\frac{n'(t)}{\tau_n}$$

• Solution is:

$$n'(t) = n'(t = 0) e^{-\frac{t}{\tau_n}}$$
  $\Rightarrow$  Excess electron density decays exponentially to zero from its initial value



The excess carrier densities decay with time and thermal equilibrium values for carrier densities are restored

• The excess hole density will also decay in the same way:  $p'(t) = p'(t=0) e^{-\frac{t}{\tau_n}}$ 

• As  $t \to \infty$  the electron and hole densities reach their equilibrium values:

$$n'(t \to \infty) = 0$$
$$p'(t \to \infty) = 0$$

and

$$n(t \to \infty) = n_0$$

$$p(t \to \infty) = p_0$$

# **Generation and Recombination in Doped Semiconductors**

Whenever you have to find an expression for R use the following recipe:

• If it is a p-doped semiconductor:

$$R = R_0 + \frac{n'(x,t)}{\tau_n}$$

 $au_n$  is the minority carrier lifetime

• If it is a n-doped semiconductor:

$$R = R_o + \frac{p'(x,t)}{\tau_p}$$

 $au_{p}$  is the minority carrier lifetime

The excess recombination rate (i.e. R -  $R_{\rm o}$ ) is always proportional to the excess MINORITY carrier density

## **Electron and Hole Current Density Equations**

From last lecture.....

$$J_n(x) = q n(x) \mu_n E(x) + q D_n \frac{d n(x)}{dx}$$
 (1)

$$J_{p}(x) = q p(x) \mu_{p} E(x) - q D_{p} \frac{d p(x)}{dx}$$
 (2)

These are two of Shockley's equations!



**Shockley** 



Bardeen



**Brattain** 

Shockley, Bardeen, and Brattain from Bell Labs were awarded the Nobel Prize for inventing the semiconductor transistor

# **Electron and Hole Current Continuity Equations**

• You have already seen the equations:

$$\frac{\partial n(x,t)}{\partial t} = G - R$$
$$\frac{\partial p(x,t)}{\partial t} = G - R$$

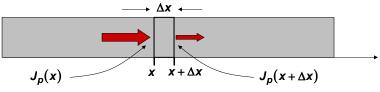
$$\frac{\partial p(x,t)}{\partial t} = G - R$$

These equations tell how the electron and hole densities change in time as a result of recombination and generation processes.

• Carrier densities can also change in time if the current densities change in space !!!

#### **Electron and Hole Current Continuity Equations**

Consider the infinitesimal strip between x and  $x+\Delta x$ 



The difference in hole fluxes at x and  $x+\Delta x$  must result in piling up of holes in the infinitesimal strip ......

$$J_{p}(x,t) - J_{p}(x + \Delta x, t) = q \frac{\partial p(x,t) \Delta x}{\partial t}$$

$$\Rightarrow -\frac{J_{p}(x + \Delta x, t) - J_{p}(x,t)}{\Delta x} = q \frac{\partial p(x,t)}{\partial t}$$

$$\Rightarrow -\frac{\partial J_{p}(x,t)}{\partial x} = q \frac{\partial p(x,t)}{\partial t}$$

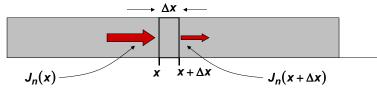
$$\Rightarrow \frac{\partial p(x,t)}{\partial t} = -\frac{1}{q} \frac{\partial J_{p}(x,t)}{\partial x}$$

Now add recombination and generation to the above equation:

$$\frac{\partial p(x,t)}{\partial t} = G - R - \frac{1}{q} \frac{\partial J_p(x,t)}{\partial x}$$

#### **Electron and Hole Current Continuity Equations - III**

One can do the same for electrons as well.....



$$\frac{\partial n(x,t)}{\partial t} = G - R + \frac{1}{q} \frac{\partial J_n(x,t)}{\partial x}$$

So now we have two new equations,

$$\frac{\partial p(x,t)}{\partial t} = G - R - \frac{1}{q} \frac{\partial J_p(x,t)}{\partial x}$$
 (3)

$$\frac{\partial n(x,t)}{\partial t} = G - R + \frac{1}{q} \frac{\partial J_n(x,t)}{\partial x}$$
 (4)

These are two more of Shockley's equations!

#### **Gauss's Law and Electrostatics**

The net charge density in a semiconductor is,

$$\rho(x,t) = q[+N_d(x)-N_a(x)+p(x,t)-n(x,t)]$$

Gauss's Law in differential form:

$$\frac{\partial E(x,t)}{\partial x} = \frac{\rho(x,t)}{\varepsilon_s}$$

$$\frac{\partial E(x,t)}{\partial x} = \frac{q[+N_d(x)-N_a(x)+p(x,t)-n(x,t)]}{\varepsilon_s}$$
 (5)

This is the fifth and the last of the Shockley's equations!

$$\varepsilon_o = 8.85 \times 10^{-12} \,\text{Farads/m}$$
  
=  $8.85 \times 10^{-14} \,\text{Farads/cm}$ 

For Silicon:  $\varepsilon_s = 11.7\varepsilon_o$ 

## **The Five Shockley Equations**

$$J_n(x,t) = q n(x,t) \mu_n E(x,t) + q D_n \frac{d n(x,t)}{dx}$$
 (1)

$$J_{p}(x,t) = q \, p(x,t) \, \mu_{p} \, E(x,t) - q \, D_{p} \, \frac{d \, p(x,t)}{dx} \qquad (2)$$

$$\frac{\partial p(x,t)}{\partial t} = G - R - \frac{1}{q} \frac{\partial J_p(x,t)}{\partial x}$$
 (3)

$$\frac{\partial n(x,t)}{\partial t} = G - R + \frac{1}{q} \frac{\partial J_n(x,t)}{\partial x}$$
 (4)

$$\frac{\partial E(x,t)}{\partial x} = \frac{q[+N_d(x)-N_a(x)+p(x,t)-n(x,t)]}{\varepsilon_s}$$
 (5)

Using these equations one can understand the behavior of semiconductor microelectronic devices !!

## **Quasi-Neutrality**

Materials with large conductivities are "quasi-neutral"

"Quasi-neutrality" implies that there cannot be large charge densities or electric fields inside a conductive material

Lets see why this is true.....and how deviations from quasi-neutrality disappear......

Consider an infinite and conductive N-doped semiconductor with a net charge density at time *t*=0:

N-doped σ

 $\varepsilon_{\mathsf{s}}$ 

Charge density

The charge density will generate electric fields (by Gauss' law):

N-doped  $\sigma$ 

 $\epsilon_{s}$ 

Nø /

## **Quasi-Neutrality**

The electric field will generate electrical currents:

$$J_n(x,t) = q n(x,t) \mu_n E(x,t) = \sigma E(x,t)$$

N-doped σ

ૢૺ૽

The electrical currents will pile electrons on top of the charge density and neutralize it and then there is no charge density left in the medium...........

N-doped a

 $oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{oldsymbol{arepsilon}}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{oldsymbol{arepsilon}_{olds$ 

This whole process takes a time of the order of the dielectric relaxation time  $\, au_d$ :

$$\tau_d = \frac{\varepsilon_s}{\sigma} \sim 10^{-15} - 10^{-13}$$
 Seconds

# **Appendix: Restoration of Quasi-Neutrality**

N-doped  $\sigma$ 

From Gauss' law:

$$\nabla . \vec{E}(\vec{r}, t) = \frac{\rho(\vec{r}, t)}{\varepsilon_s}$$

**Current equation:** 

$$\vec{J}(\vec{r},t) = \sigma \vec{E}(\vec{r},t)$$

Use the continuity equation for charge:

$$\frac{\partial \rho(\vec{r},t)}{\partial t} = -\nabla \cdot \vec{J}(\vec{r},t) = -\sigma \nabla \cdot \vec{E}(\vec{r},t) = -\frac{\sigma}{\varepsilon_{s}} \rho(\vec{r},t)$$

$$\Rightarrow \frac{\partial \rho(\vec{r},t)}{\partial t} + \frac{\rho(\vec{r},t)}{\tau_{d}} = 0 \qquad \left\{ \tau_{d} = \frac{\varepsilon_{s}}{\sigma} \right\}$$

Solution:

$$\rho(\vec{r},t) = \rho(\vec{r},t=0)e^{-\frac{t}{\tau_d}}$$

Charge density in a conductive medium disappears on a time scale of  $\tau_d$