Lecture 27

New Materials and New Physics at the Nano-Scale

In this lecture you will learn:

* New physics at the nano-scale
¢ Quantum physics and the FETs
« New materials for electronics and optoelectronics

Quantum picture

What is Nano-Technology?

Two ways to look at Nanotechnology:
1) Take what is large and make it very small in order to:
- increase number of components/transistors/functionality in a chip

- reduce cost
- increase revenues
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2) New science and new physics emerges at the very small scales.
This new science can be used to design novel devices and components with
functionalities not available in larger scale models




Quantum Physics and Matter

Electron confined in Large box:
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Quantum Physics:
Electron behaves like a wave
And the wavelength is related to its momentum P as:

P=n?*

Plank’s constant:
A

h=1.05458x10"3* Joule - Sec

Electron confined in small box:
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Electron wavelength
must fit in the box

Quantum Physics and Matter

Electron confined in small box: Electron wavelength must fit
in the box:
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The momentum and the energy of the electron confined in a small box are “quantized”
—they can only have discrete values




Mass and Dynamics of Electrons in Solids
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Outside the crystal, in free-space, electron has a mass m,
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Inside the crystal, electrons can have different masses in different directions that

are very different from the electron mass in free-space:
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K.E= E(mxvx +myvy, +mzvz)
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Electrons can “appear” heavier when moving in some directions and “lighter” when
oving in other directions as a result of the interaction of the electron wave with the

Mass of Electrons in Silicon
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A silicon crystal

There are 6 different kinds of electrons in silicon: —

. _ 1( 2 2 2) better for highe
1,2 KE= > myVy +myvy, +myv, mobility:
m,=0.92m
34: K.E= }(m,v,z( +myv; +mtv§) ! ° =30
2 m; =0.19 m, m,

1
56: K.E= E(m,v,z( +m,vf, +m,_7v§) -

@ 30 @ silicon atom

Small mass is




Mass of Holes in Silicon

A silicon crystal

@ silicon atom

Inside the silicon crystal, holes can also have different masses

There are two different kinds of holes in silicon:
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Electrons in FET Inversion Layers: Classical Picture
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The classical picture of electrons
in an inversion layer
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Electrons in FET Inversion Layers: Total Potential Energy
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Electrons in FET Inversion Layers: Quantum Picture

Classical picture
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ectrons in FET Inversion Layers: Quantum Picture
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Electrons in FET Inversion Layers: Quantum Picture
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Quantum picture

What if one could only have
electrons of kinds 1,2 and 5,6
and eliminate electrons of kind
347

Then the mass of the electrons in
the direction of current transport
(y-direction) would be only the
lighter mass and the electron
mobility would be very high!!
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1,2: K.E=E(mgv§+mtv§ +mtv§)
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5,6:

1 2 2 2
K.E= E(m,vx +mgyvy, +m[vz)

elimination automatically happens because of quantization!!




: Quantum picture
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Electrons in FET Inversion Layers: Quantum Picture
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The lowest quantized energy levels
correspond to the heaviest mass m,
in the x-direction (quantization
direction):
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The higher energy levels are much
less occupied by electrons at room
temperature

Channel under uniaxial
tensile strain

Strain completely eliminates the unwanted electrons

Strain also reduces the electron and hole masses
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Mobility Engineering via Strain in FETs
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Strain changes the distance
between the atoms and,
thereby, modifies the
electronic energy levels in
the crystal




Quantum Ballistic Transport in El
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The electron drift current density is:
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/ Future of Electronics and Optoelectronics

Flexible, stretchable, Solid state lighting Energy harvesting
transparent electronics

Solar cells

ecurity and healthcare
imaging

Energy St_ora_gg )

s

New materials and devices are needed!

|
19

New Materials Looking for Applications

Graphene, carbon allotropes 2D material
p ’ P heterostructures :;r"
- Quantum

Dots

Multiferroics
Spintronics

Perovskite solar
absorbers




Graphene: A 2D Semiconductor
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Graphene is a two dimensional
single atomic layer of Carbon
atoms arranged in a
honeycomb lattice

Graphene Atomic Membranes

A graphene membrane

A flexible transparent electronic
chip made from graphene

A flexible transparent
touch-screen for
displays made of
graphene (Samsung)
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Massive and Massless Particles

Energy of a massive particle (e.g. electron):

1, P? Velocity =v
Energy=§mv =§

Energy of a massless particle (e.g. photon):

Energy = Pc ¢ = speed of light = 3x108 m/s

/ Massive and Massless Particles

Electrons in graphene behave like light (or photons):

/ Velocity =v

Energy = Pv v = speed of electrons = 106 m/s,

Electrons move faster in graphene than in any other known semiconductor at
room temperature (~100 times faster than in Silicon)!!

(2010 Nobel Prize in Physics for Graphene)
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Folded Graphene: Carbon Nanotubes
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Nanotube: A carbon nanotube is a folded sheet of graphene:

n,0) / ZIG ZAG

long carbon nanotube is a one-dimensional (1D) conductor (or semi-conductor)

Carbon Nanotubes: A 1D Material

PHOTONICS
KL Pubiication —— m——

Nanophotonics
Can Photonics Satisfy
Moore's Law?

Lasers in Automation

(mon Nanotube LEDs (IBM)

Nanotube

Electrode

p— Silicon Oxide

Gate Elecirode

Carbon Nanotube FET (IBM)

Fringe
o fields
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Semiconductor Plasmon Lasers: The Nanopatch Laser

Circular Nanopatch Laser  circular Nanopatch Laser: Radiation Pattern
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| Lasers on chip are

| becoming much

| smaller than the size
of a photon!!

Substrate

(Cornell, UCB)
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Tailoring and Designing Complex 3D Materials and Devices
with 2D Materials

Stacks of 2D materials can be
used to tailor 3D materials with

Light desired properties....!!
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A “hydrogen atom” of an
electron and a hole

ph

A solar cell made using 2D material stacks

Polariton
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AMOLED Displays (Samsung Galaxy)
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A “hydrogen atom” of an electron and a hole,

Visions of the Future (From Samsung)

https:/lyoutu.be/RTp8kEuZleY

14



The Last Slide

ECE Courses after 3150 to Match your Interests

Sem Devices, Nanostructures, Analog Circuits,
Nano-Scale Phys, Nano Materials Analog VLSI

ECE: 4060 or
PHYS: 3316

Quantum
Phys

Analog VLSI

Sem and Micro
Nano Str Fabrication
Phys

Digital Circuits,
Digital VLSI

3150

4740
Digital VLSI
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