







































Electron-Hole Density in Doped Semiconductors

Consider a N-doped semiconductor in thermal equilibrium:

Doping density = N_d

• Use condition of charge neutrality: $q(+N_d - n_o + p_o) = 0$

 $N = (N_{\rm e})^2$

• Together with the relation: $n_0 p_0 = n_i^2$

• To obtain:

$$n_{o} = \frac{N_{d}}{2} + \sqrt{\left(\frac{N_{d}}{2}\right)^{2} + n_{i}^{2}}$$
$$p_{o} = -\frac{N_{d}}{2} + \sqrt{\left(\frac{N_{d}}{2}\right)^{2} + n_{i}^{2}}$$

• If $N_d >> n_j$, which is usually the case for N-doping, then the above relations simplify:

n-doping lets one make the electron density much greater than the intrinsic value n_i

Electron-Hole Density in Doped Semiconductors

Now consider a P-doped semiconductor in thermal equilibrium:

Doping density = N_a

- Use condition of charge neutrality: $q(-N_a n_o + p_o) = 0$
- Together with the relation: $n_o p_o = n_i^2$

• To obtain:

$$n_{\rm o} = -\frac{N_a}{2} + \sqrt{\left(\frac{N_a}{2}\right)^2 + n_i^2}$$

 $p_{o} = \frac{N_{a}}{N_{a}} + \sqrt{\left(\frac{N_{a}}{N_{a}}\right)^{2} + n_{i}^{2}}$

 $n_o \approx \frac{n_i^2}{N_a}$

p-doping lets one make the hole density much greater than the intrinsic value n_i







