Lecture 11

Single Stage FET Amplifiers: Common Source (CS) Amplifier

The Building Blocks of Analog Circuits - I
In this lecture you will learn:

- General amplifier concepts (in terms of the two-port models)
- Common source amplifier (CS)
- Small signal models of amplifiers

Two-Port Amplifier Models: A Voltage Amplifier

A Voltage Amplifier:
Large input resistance $R_{\text {in }}$

$$
\frac{v_{\text {out }}}{v_{\text {s }}}=A_{v} \underbrace{\left(\frac{R_{\text {in }}}{R_{\text {in }}+R_{S}}\right)}_{\begin{array}{l}
\text { Input } \\
\text { voltage } \\
\text { divider }
\end{array}} \underbrace{\left(\frac{R_{L}}{R_{\text {out }}+R_{L}}\right)}_{\begin{array}{l}
\text { Ouput } \\
\text { voltage } \\
\text { divider }
\end{array}}
$$

Small output resistance $\boldsymbol{R}_{\text {out }}$

Open circuit output voltage gain (i.e. when $R_{L}=\infty$):

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=A_{v}=\text { Voltage gain }
$$

Two-Port Amplifier Models: A Current Amplifier

A Current Amplifier:

Requirements:
Small input resistance $R_{\text {in }}$
Large output resistance $\boldsymbol{R}_{\text {out }}$

$$
\frac{i_{\text {out }}}{i_{\text {s }}}=A_{i} \underbrace{\left.R_{R_{\text {in }}+R_{\text {in }}}^{\left(R_{S}\right.}\right)}_{\begin{array}{l}
\text { Input } \\
\text { current } \\
\text { divider }
\end{array}} \underbrace{\left(R_{\text {out }}\right.}_{\begin{array}{l}
\text { Ouput } \\
\text { current } \\
\text { divider }
\end{array}} \begin{aligned}
& \left.\frac{R_{\text {out }}}{R_{\text {out }}+R_{L}}\right)
\end{aligned}
$$

Short circuit output current gain (i.e. when $R_{L}=0$):

$$
\frac{i_{\text {out }}}{i_{\text {in }}}=\boldsymbol{A}_{i}=\text { Current gain }
$$

Two-Port Amplifier Models: A Transconductance Amplifier

A Transconductance Amplifier (or a Voltage-to-Current Amplifier):

Requirements:
Large input resistance $R_{\text {in }}$
Large output resistance $\boldsymbol{R}_{\text {out }}$

$$
\frac{i_{\text {out }}}{v_{s}}=G_{m} \underbrace{\left.\frac{R_{\text {in }}}{R_{\text {inider }}+R_{\text {in }}}\right)}_{\begin{array}{l}
\text { Input } \\
\text { voltage } \\
R_{\text {in }}
\end{array}} \underbrace{\left(\frac{R_{\text {out }}}{R_{\text {out }}+R_{L}}\right)}_{\begin{array}{l}
\text { Ouput } \\
\text { current } \\
\text { divider }
\end{array}}
$$

Short circuit output current and transconductance gain (i.e. when $R_{L}=0$):

$$
\frac{\boldsymbol{i}_{\text {out }}}{v_{\text {in }}}=\boldsymbol{G}_{\boldsymbol{m}}=\text { Transconductance gain }
$$

Two-Port Amplifier Models: A Transimpedance Amplifier

A Transimpedance (or a Transresistance) Amplifier (or a Current-to-Voltage Amplifier):

$$
\begin{aligned}
& \frac{v_{\text {out }}}{i_{s}}=R_{m}(\underbrace{\left(\frac{R_{S}}{R_{\text {divider }}}\right.}_{\begin{array}{l}
\text { Input } \\
\text { current } \\
R_{S}+R_{\text {in }}
\end{array}}) \\
& \underbrace{\frac{R_{\text {out }}+R_{L}}{R_{\text {out }}}}_{\begin{array}{l}
\text { Ouput } \\
\text { voltage } \\
\text { divider }
\end{array}})
\end{aligned}
$$

Small input resistance $R_{\text {in }}$

Small output resistance $R_{\text {out }}$
Open circuit output voltage and transimpedance gain (i.e. when $R_{L}=\infty$):

$$
\frac{v_{\text {out }}}{i_{\text {in }}}=R_{m}=\text { Transimpedance gain }
$$

The two-port models are equivalent (inter-convertible)

The designation of an amplifier as a voltage, current, transconductance, or transimpedance amplifier depends on the values of the input and output resistances

Need to find the input resistance, output resistance, open circuit voltage gain, and short circuit current gain to characterize an amplifier

Unilateral Networks and Two-Port Amplifier Models

For many circuits and amplifiers, the kind of two-port models described here are not strictly valid

Reasons:
The input resistance $R_{\text {in }}$ can depend on the load resistance R_{L} The output resistance $R_{\text {out }}$ can depend on the source resistance R_{s}

Circuits in which the above does not happen, and for which the two-port models described here are strictly valid, are unilateral

In many cases, even for non-unilateral networks, two-port models described here tend to be good approximations for hand-calculations

Example: A Two-Port Model for a Non-Unilateral Network

Consider the two-port model shown below:

One can write:

$$
\left[\begin{array}{c}
i_{\text {in }} \\
i_{\text {out }}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{R_{a}} & -\frac{A_{a}}{R_{\text {in }}} \\
\frac{A_{b}}{R_{b}} & -\frac{1}{R_{b}}
\end{array}\right]\left[\begin{array}{c}
v_{\text {in }} \\
v_{\text {out }}
\end{array}\right]
$$

It is not difficult show that the input resistance, calculated as,

$$
R_{i n}=\frac{v_{i n}}{i_{i n}}
$$

will depend on what load is connected at the output terminals

The source terminal is "common" between the input and the output

Make sure the output load resistance R_{L} is included in the DC bias analysis
Start by assuming the FET is in saturation (and then later verify):

$$
\begin{array}{l|l}
V_{D D}-\left(I_{O U T}+I_{D}\right) R=V_{O U T} & I_{D}=\frac{k_{n}}{2}\left(V_{B I A S}-V_{T N}\right)^{2}\left(1+\lambda_{n} V_{O U T}\right) \\
\Rightarrow V_{D D}-\left(\frac{V_{O U T}}{R_{L}}+I_{D}\right) R=V_{O U T} & I_{D} \approx \frac{k_{n}}{2}\left(V_{B I A S}-V_{T N}\right)^{2}
\end{array}
$$

The Common Source Amplifier: Open Circuit Voltage Gain

i) Remove the load resistance R_{L} at the output that the circuit will drive
ii) Then apply a test voltage source at the input
iii) Then find the resulting open circuit output voltage
iv) Take the ratio of the output voltage and the input voltage to find the open circuit voltage gain:

$$
A_{v}=\frac{v_{\text {out }}}{v_{\text {in }}}=-\frac{i_{d} R}{v_{\text {in }}}=-g_{m}\left(r_{o} \| R\right)
$$

v) Or take the ratio of the output voltage and the input current to find the transimpedance gain:

$$
R_{m}=\frac{V_{\text {out }}}{\boldsymbol{I}_{\text {in }}}=-\infty \quad \begin{aligned}
& \text { This result is somewhat artificial since at non-zero frequencies } \\
& \text { there will be a finite input current due to capacitances }
\end{aligned}
$$

The Common Source Amplifier: Short Circuit Current Gain

i) Short the load resistance R_{L} at the output that the circuit will drive
ii) Then apply a test voltage source at the input
iii) Then find the resulting current at the shorted output
iv) Take the ratio of the output and the input currents to find the short circuit current gain:

$$
A_{i}=\frac{i_{\text {out }}}{i_{g}}=-\frac{\boldsymbol{g}_{\boldsymbol{m}} v_{g s}}{0}=\infty \longrightarrow \begin{aligned}
& \infty \text { for the CS amplifier } \\
& \text { (at DC) }
\end{aligned}
$$

This result is somewhat artificial since at non-zero frequencies
there will be a finite input current due to capacitances
v) Or take the ratio of the output current and the input voltage to find the transconductance gain:

$$
G_{m}=\frac{i_{\text {out }}}{v_{\text {in }}}=-\frac{g_{m} v_{\text {gs }}}{v_{\text {in }}}=-g_{m}
$$

i) Make sure the load resistance R_{L} that the circuit will drive is in place at the output
ii) Then apply a test voltage source at the input
iii) Then find the resulting current at the input
iv) Then take the ratio of the input voltage and the input current

$$
\boldsymbol{R}_{\text {in }}=\frac{\boldsymbol{v}_{\text {in }}}{\boldsymbol{i}_{\boldsymbol{g}}}=\infty \quad \longrightarrow \quad \begin{aligned}
& \infty \text { for the CS amplifier } \\
& \text { (at DC) }
\end{aligned}
$$

This result is somewhat artificial since at non-zero frequencies there will be a finite input current due to capacitances

i) Remove the load resistance R_{L} and put a test voltage source in its place
ii) Make sure the source resistance R_{S} is in place at the input
iii) Then find the resulting test current at the output
iv) Then take the ratio of the test voltage and the test current

$$
\boldsymbol{R}_{\text {out }}=\frac{v_{\text {test }}}{i_{\text {test }}}=r_{o} \| R \longrightarrow \begin{aligned}
& \text { Fairly large for the CS } \\
& \text { amplifier }
\end{aligned}
$$

Analysis shows that CS (like CE) is a good transconductance amplifier!
Resistance looking into the drain end of a FET:

$$
R_{D}=r_{o}
$$

Now we can use the standard expression:

$$
\frac{v_{\text {out }}}{v_{s}}=A_{v}\left(\frac{R_{\text {in }}}{R_{\text {in }}+R_{S}}\right)\left(\frac{R_{L}}{R_{\text {out }}+R_{L}}\right)=-g_{m}\left(r_{o} \| R\right)\left(\frac{R_{L}}{\left(r_{o} \| R\right)+R_{L}}\right)
$$

Relations to Remember

For any small signal amplifier model, the following always hold:
(Transconductance) X (Output resistance) = (Open circuit voltage gain)
(Transimpedance) / (Output resistance) $=$ (Short circuit current gain)

The above follows from the equivalent Thevenin and Norton models of the amplifier
${ }^{* * *}$ All quantities must be calculated assuming the same value of R_{s} (typically zero)

