
Lab 5 ECE 2200 Fall 2014

Lab 5: Shazam

ECE 2200 Fall 2014
Professor Lang Tong

November 17–20, 2014

1 Introduction

In this lab, you will combine what you learnt this semester. We will begin to code a Shazam-like
program to identify short clip of music using a database of music. As shown in Fig. 1, the basic
procedure is:

1. Construct a database of features for each full-length song;

2. When a clip (hopefully part of one of the songs in the database) is to be identified, calculated
the corresponding features of the clip;

3. Search the database for a match with the features of the clip.

Like Shazam, the features for each song (and clip) will be pairs of proximate peaks in the
spectrogram of the song or clip. We start by finding the peaks in the (log) spectrogram; plotting
the locations of these peaks gives a “constellation map”. Each peak has a time frequency location
(t, f) and a magnitude A. We then form pairs of peaks that are within a pre-specified time and
frequency distance of each other and record the details of these pairs in the database. For
example, if we obtained a pair (f1, t1) and (f2, t2), we might record (f1, f2, t1, t2 − t1, songid). We

matching

MP3 files

A/D Preprocess

Preprocess

Spectrogram

Spectrogram Feature

Feature

Feature

Feature

Extraction

Extraction

database

index

Figure 1: Shazam Diagram

1

Lab 5 ECE 2200 Fall 2014

will discard the amplitudes because the amplitude of a peak may not be robust. Detail can be
found in the attached paper.

Each song is summarized (“fingerprinted”) by a (big) table of its extracted features, e.g.

f1 f2 t1 t2 − t1 songid
...

...
...

...
...

fj fk tj tk − tj songid
...

...
...

...
...

fm fn tm tn − tm songid

When we are given a clip to identify, we do the same feature extraction for the clip. The
result is a small table of clip features:

f1 f2 t1 t2 − t1
...

...
...

...
fj fk tj tk − tj
...

...
...

...
fm fn tm tn − tm

We do not know the start time of the clip within its corresponding song. The times tj that
appear in the clip table are relative to the start of the clip. The clip itself starts at some offset
t0 from the beginning of the music. Finding a match to the clip in the data base is a matter of
matching the constellation map of the clip to the constellation maps of the songs by effectively
sliding the former over the latter until a position is found in which a significant number of points
match.

Using pairs of peaks as features gives us three quantities that we expect to independent of the
unknown offset time: (f1, f2, t2 − t1). The song with the most triples (f1, f2, t2 − t1) in common
with the clip table is likely to be the source of the clip.

As shown in Fig. 1, in the pre-lab, we will learn how to preprocess the mp3 files (sec. 2.1),
how to draw the spectrogram (sec. 2.2) and how to extract the features (sec. 2.3). In the in-lab,
we will learn to build the database (sec. 4.2) and how to find the matching (sec. 4.3).

2 Pre-lab.

In the pre-lab, we will learn how to preprocess the mp3 files (sec. 2.1), how to draw the spectro-
gram (sec. 2.2) and how to extract the features (sec. 2.3).

Download the zip file and unzip it. In the folder named “songs”, there are 52 .mat files of
songs you uploaded. And in the folder “sample” there is one unknown clip. For pre-lab, we will
use only one song in the folder “songs”, ajt222 music.

For the pre-lab we will write a function make table. A suggested function header could be

function table=make_table(songName,gs,deltaTU,deltaTL,deltaF)

2

Lab 5 ECE 2200 Fall 2014

where songName is the song name and others are parameters that will be specified. Given
the name of the song, ajt222 music for example, make table will take the name as input and
construct a table of features for that song. The function will do the following: (details will be
discussed in the following sub-section)

1. Load in the ajt222 music.mat file in the folder “database” and resample it if necessary.

2. Take the (log magnitude) spectrogram of the song using spectrogram.

3. Find the local peaks of the spectrogram.

4. Adaptively (not manually) threshold the the result of step 3 to end up with peak rate
peaks/sec, for example 30 peaks per second.

5. For each peak, find “fan-out” pairs in the “target window” and add then to the table.

6. Save the table into table.mat

where gs is the target window size and deltaTU, deltaTL and deltaF describe the location
of the window.

2.1 Preprocessing

Shazam read in the .mp3 file and convert it into .mat file. The signal contains two channels, but
for our purposes it suffices to take the mean of the corresponding samples of the two channels.
In the songs given in the folder named “songs”, these steps are already done for each song and
you can use those .mat files directly.

Since Fs is 44100Hz, we have a lot more data than we need. Resample the signal at 8000Hz
using the command y=resample(y,newFs,oldFs). This command performs an interpolation of
the signal at the new sampling points and returns the result. And we will work on the resampled
signal from now on.

What to do: Given a song name, ajt222 music for example, resample it at 8000 Hz and store
the signal into y.

Prob. 3.1: What is the length after you resample the file ajt222 music.mat in

the database?

2.2 Spectrogram.

Now we construct the spectrogram of the first song in the database, ajt222 music.mat. Call the
spectrogram command as follows:

[S,F,T]=spectrogram(y,window,noverlap,nfft,Fs);

where:
y is the resampled signals.
window is an integer that indicates the length of the chunks you want to take the fft of.
noverlap is the number of samples you would like to have as overlap between adjacent chunks.

3

Lab 5 ECE 2200 Fall 2014

nfft is the length of the fft, i.e. the resolution of frequencies, which in our case can be the same
as window.
Fs is the sampling rate of the signal, in our case 8000 Hz.
The function returns the spectrogram in the matrix S with just the positive frequencies. The
frequency vector for the vertical axis is returned in F and the time vector for the horizontal axis
is returned in T.

Compute the spectrogram with window length 64 ms and an overlap of 32 ms. Note that the
number of samples in a window is simply the window length multiplied by our sampling rate.
Be sure to specify both these parameters as an integral number of samples. Take the absolute
value of S and take the log 10. We shall use the log magnitude spectrogram.

What to do: Given the resampled signal y, get the log 10 spectrogram S with window size
64ms and overlap 32ms.

Prob. 3.2: Plot the magnitude of the spectrogram of the song with axes appro-

priately labeled. Also plot the log of the magnitude of the spectrogram with axes

appropriately labeled. Use command imagesc and we will get something similar to

lab 2.

2.3 Feature Extraction.

2.3.1 Spectrogram Local Peaks.

Next, we find the local peaks of the spectrogram. A local peak has log magnitude greater
than that of its neighbors. One way to find the local peaks is to iterate through each point
in the spectrogram and compare the magnitude to the magnitude of each of the points in the
surrounding gs × gs grid. This can be done for all points at the same tie by using the command
circshift. For example, if S denotes the log magnitude spectrogram, then the code

CS=circshift(S,[0,-1]);

P=((S-CS)>0);

returns a boolean matrix P with entries 1 for the positions in S that are greater than their
neighbor immediately to the right (see help circshift for details). If you put this structure in
a loop, you can select the points in S that are greater than all of their neighbors in the gs × gs

grid, i.e. the local peaks. The location of these peaks are stored in a boolean matrix P of the
same size as S. Next example may be helpful:

%%Code to find the peaks in matrix A with gs=5. Return the boolean matrix P.

clear all;

clc;

close all;

gs=5;%Consider the neighborhood of size 5x5

A=normrnd(0,1,5,5);%Create a random 5x5 matrix A

array=-floor(gs/2):floor(gs/2);

P=ones(size(A));

4

Lab 5 ECE 2200 Fall 2014

for i=1:gs

for j=1:gs

CA=circshift(A,[array(i),array(j)]);

P=(A-CA>=0).*P;

end

end

A

P

Try several values for gs. Note the effect of changing gs. In your code, set gs = 9, i.e. 4 points
in each direction.

What to do: Given the log spectrogram S, get the boolean matrix P in the same size, where if
the entry in S is a local peak, the corresponding entry in P is 1, otherwise 0. Hint: there should
be 4802 peaks.

Prob. 3.3: Calculate how many peaks there are and record your answer. How

many peaks are there per second on average? Show the 1st column of P of the song

ajt222 music.mat

2.4 Thresholding.

We want to use only the larger peaks. To select the larger peaks and also to control the average
rate of peak section (peaks per second), we have to do some sort of selection operation on the
peaks. The simplest thing to do would be to apply a fixed threshold to the detected peaks and
keep only those above the threshold. The threshold could be selected to yield (approximately)
the desired number of peaks.

Assume that we want approximately 30 peaks per second. Find a threshold which yields that
rate of peaks. Record the threshold value below along with the number of peaks kept. Write a
routine which will find some optimal threshold automatically instead of manually doing it.

What to do: Find a threshold on the magnitude of the log spectrogram S such that on average
there are 30 peaks per second. Apply the threshold to get a new P. Hint: After thresholding, the
P matrix for ajt222 music should have 1800. You want to make this procedure automatic such
that it will work for all songs in the database.

Prob. 3.3: What is the threshold of the log magnitude of S should we use if we

want on average there are 30 peaks per second. How many nonzero items are there

in the last column of P if we use this threshold.

2.4.1 Constructing the Table.

As outlined in the beginning of Sec. 3, we want to select pairs of peaks and record the frequency
of each peak, the time of the first peak and the time difference between the two peaks.

A peak-pair must satisfy certain constraints: the second peak must fall within a given distance
from the frequency of the first peak and the second peak must occur within a certain time interval
after the first peak. We will also limit the number of pairs allowed to form from a given peak,
say to 3 (this is called the fan-out). You can use the first three magnitude the find function
returns to you.

5

Lab 5 ECE 2200 Fall 2014

∆u
t

time

F
re

q
u
en

cy
(f1, t1)

∆l
t

2∆f

Figure 2: Peak pairs

So a peak located at (t1, f1), can only be paired with peaks which have t1 +∆l
t ≤ t2 ≤ t1 +∆u

t

and f1 − ∆f ≤ f2 ≤ f1 + ∆f for some ∆l
t, ∆

u
t and ∆f . See Figure 2.

The commands find and ind2sub might come in handy.
Our objective is to select appropriate parameter values for ∆l

t, ∆u
t , ∆f and fan-out, and then

record the 4−tuples (f1, f2, t1, t2 − t1) in a matrix.
What to do: For the new P, find the 4-tuples (f1, f2, t1, t2 − t1) with ∆l

t = 3, ∆u
t = 6 and

∆f = 9. These parameters should be able to be set through deltaTL, deltaTU and deltaF

outside the function make table.

2.5 Final Function

Now, combine everything into a function make table which puts all of these steps together. It
will take as input the song signal and it will return an npairs ×4 matrix which contains in each
row the 4−tuple corresponding to a peak pair:

f1 f2 t1 t2 − t1
...

...
...

...
fj fk tj tk − tj
...

...
...

...
fm fn tm tn − tm

6

Lab 5 ECE 2200 Fall 2014

When you are constructing this table, use the indices of the spectrogram as the values for f
and t instead of using the corresponding Hz and seconds values.

What to do: Store all 4-tuples (f1, f2, t1, t2 − t1) in a matrix called table. You may want to
iterate it in P column by column. You do not need to rotate when you are at the edge of the
matrix P. And there should be 545 rows in the table.

Prob. 3.6: What are the first 10 rows of the table?

3 In-Lab instruction

In the in-lab, we will learn to build the database (sec. 4.2) and how to find the matching (sec. 4.3).
Now you have the function make table that takes as input a clip and returns a table of peak

pairs.

f1 f2 tc1 tc2 − tc1
...

...
...

...
fj fk tcj tck − tcj
...

...
...

...
fm fn tcm tcn − tcm

And you can run make table on each song in the database and you can produce a large
table.

f1 f2 ts1 ts2 − ts1 songid
...

...
...

...
...

fj fk tsj tsk − tsj songid
...

...
...

...
...

fm fn tsm tsn − tsm songid

If the clip comes from a particular song, we expect each entry in the clip table to have a
corresponding entry in the song table. In particular, if (f1, f2, t

c
1, t

c
2 − tc1) is an entry in the clip

table and (g1, g2, t
s
1, t

s
2 − ts1) is its corresponding entry in the song table, then we should have

f1 = g1, f2 = g2, and tc2 − tc1 = ts2 − ts1 because these features are time shift invariant. So using
the triple (f1, f2, t

c
2 − tc1) from a clip table entry is a good way to search for a match from the set

of song tables.
To make this process efficient, the song tables need to be combined to form our database of

song “fingerprints”.

3.1 Finding a Clip Match.

To identify a clip, we run the function make table on the clip to generate a clip table of peak
pairs. Then we search the database for matches to each entry in the clip table. We want to use
the triples (f1, f2, t

c
2 − tc1) to search the database. What we need is a fast way to determine if

(f1, f2, t
c
2 − tc1) matches something in the database and if so, extract what we know about that

match.

7

Lab 5 ECE 2200 Fall 2014

Hash table will help to ensure fast database lookup. But for simplicity we will just combine
entries of the table (f1, f2, t

s
2− ts1) into a more compact one using a hash function h(f1, f2, t

s
2− ts1)

which will will be detailed described later. For each entry in the compact song table,we place
the songid, the ts1, and the h(f1, f2, t

s
2 − ts1).

Then given a peak pair entry in the clip table, say (f1, f2, t
c
2−tc1), we look up the database entry

for h(f1, f2, t
c
2− tc1). There will be either hit, or there is one hit with (songid,ts1,h(f1, f2, t

s
2− ts1) =

h(f1, f2, t
c
2 − tc1)) or multiple hits.

All the matches from the clip table to the correct song should occur with the same difference
to = ts1 − tc1, where ts1 is the time of the pair in the song, and tc1 is the time of the pair in the
clip. The time to = ts1 − tc1 is the offset in time we would need for the clip constellation to line
ip with the song constellation. This suggests that we find the songid that has the most matches
occurring with the same offset to and assert that our clip comes from that song, or rank the
matches by this criterion.

4 In-Lab Procedure.

Complete the following tasks. You must have all of the TA checks completed by a

TA in order to receive full credit for the lab. Label all figures.

You will need to write a few different scripts and functions. The following is the structure of
scrips and functions. Some of them are provided, and some are partially completed.

Script make database.m:

1. Apply make table to each song in the folder “songs” so we have a large table as described
in sec. 2.3.

2. Apply the hash function (described later) to the table to convert it from 4 columns to 2
and save it into the table named as hashTable. One example could be [h(f1, f2, t2 − t1) t1
songID;...]. The songID is the order of the song in the database. Use save command to
save the hash table into hashTable.mat.

3. Initialize musicTable and store the name of the music into it in order. For example:
[ajt222 music;am859 music;.....]. Save the musicTable into musicTable.mat.

Function match: Take the file name of the clip and try to match it to one of the songs in the
database and return the matching name. You need to write your own codes.

1. Load hashTable and musicTable that constructed in the previous

2. Run make table and hash on the input clip to produce a hash table for it. Use the given
clip “sample.mat”.

3. For each h(f c
1 , f

c
2 , t

c
2−tc1), look for it in the hashTable. When one match is found, record the

time offset to = ts1 − tc1 and songID in a matrix matchMatrix like [t0 songID; t0 songID;...]

4. After going through the entire clip table, there will be a collection of ts1 − tc1 values for each
song in the database. The song that the clip matches will have a large mode, or a spike in
the histogram of ts1 − tc1 values. Determine a match by using hist or mode.

8

Lab 5 ECE 2200 Fall 2014

One possible function header could be

function songName=matching(clipName,hash,gs,deltaTU,deltaTL,deltaF)

Some steps are now discussed in detail:

4.1 Reading all files in a folder

We need to apply make table for all the songs in the folder “songs”. You may find these code
useful:

files= what(’/songs’);

matFiles= files.mat;

fileName=matFiles{1};

toRead=[’songs/’ fileName];

All the names of files in the folder “songs” are stored in the cell matFiles. And the directory of
the first song is now stored in toRead.

What to do: Apply make table to all 52 songs in the folder “songs” and store the feature in
a large 5 columns table, like [f1,f2,t1,t2 − t1,songID;...].

4.2 Constructing the Hash Table

Since each frequency can be represented by a number from 0 to 255 (assuming for convenience
that we drop the last (highest) frequency bin) we can represent each frequency with 8 bits.
Depending on how large a time window we allow for our target box, we can also represent the
time t2 − t1 by a n bit number, for some small n. Usually a hash function maps large data sets
to smaller data sets, thus different inputs might be mapped to the same hash value. For this lab,
to make things easy, we use a simple hash function of the form:

h(f1, f2, t2 − t1) = (t2 − t1)2
16 + f12

8 + f2

(make sure that f1 and f2 range from 0 to 255, not 1 to 256. You should subtract f1 and f2 by
1.)

You can first run make table to one song, apply hash function to it, add it to the hashTable
then run make table to the next. Or you can run make table to each song to form a large table
and then apply hash function to the large table.

What to do: Given a big table of songs peaks, convert it into the form of [h(f1, f2, t2 − t1) t1
songID;...] and save it as hashTable.

Prob. 6.1: What is the first 10 rows of the hash table of the whole database.

9

Lab 5 ECE 2200 Fall 2014

4.3 Finding a Match: matching

Next, write a function matching which takes in a clip and returns the song ID of the match, if
there is a match. To find a match, the function will have to construct the peak pair table for the
clip and then look up each entry in the hash table. The function should then find the song ID
which has the most pairs with matching to = ts1 − tc1, where ts1 is t1 for the pair in the song and
tc1 is t1 for the pair in the clip.

You may find the next script useful:

%%Example of matching

%%A is our hash table of all the songs in the database. In this small

%%example, we have 3 songs. b is the hash table of the clip

%%[h t1 songid]

A=[1 2 1;

2 3 1;

1 2 2;

2 4 2;

3 5 2;

1 4 3;

2 3 3];

b=[1 1;

2 2];

%% matching terms of b in A

matchingMatrix=[];

for i=1:size(b,1)

index=find(A(:,1)==b(i,1));

matchingMatrix=[matchingMatrix; A(index,2)-b(i,2) A(index,3)];

%%record all the t_o and songid with matching hash function

end

%Build a table, column num = num of songs, row num = num of t_o=t_1^s-t_1^c.

%Each hit of t_o in a particular song, we add 1 to that entry corresponding

%to the song and t_o

recordMatrix=zeros(max(matchingMatrix(:,1))-min(matchingMatrix(:,1))+1,max(A(:,3)));

for i=1:size(matchingMatrix,1)

recordMatrix(matchingMatrix(i,1)-min(matchingMatrix(:,1))+1,matchingMatrix(i,2))=...

recordMatrix(matchingMatrix(i,1)-...

min(matchingMatrix(:,1))+1,matchingMatrix(i,2))+1;

end

%%find which song has the most number of same t_o

[~,songID]=max(max(recordMatrix));

What to do: Given a clip, apply the make table function and apply the hash function to the
clip table. Look the clip table up in the database (hashTable) and return the song name.

10

Lab 5 ECE 2200 Fall 2014

4.4 Main Function

Write a main function so that you can test your program out using the “sample.mat” provided
in the folder “sample”.

Prob. 6.2: What is the name of this clips?

5 Summary of submission

1. Script of the main script, make database, matching and all other code (on paper).

2. Answers to all the problems asked in bold face.

11

