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1 Introduction

In this lab, you will experiment with an infinite impulse response (IIR) filter. These filters
use both feedback and feedforward to compute the output to an arbitrary input. Because of
the feedback, the response in general to any input, even a single impulse, has infinite duration.
Additionally, in the z-domain, the system function of an IIR system has both poles and zeros.
By looking at the pole-zero map of an IIR system, we can gain intuition about the frequency
response of the system by looking at the pole and zero locations relative to the unit circle. In
particular, you will look at the second-order form of a notch filter which is used to selectively
filter out particular frequencies.

You will also experiment with a type of filter that is not time invariant; that is, its filter co-
efficients are changing in time. These types of filters are important for prediction, smoothing,
and estimation application. In particular, you will experiment with Kálmán filters (henceforth
called the Kalman filter), also known as linear quadratic estimation. This filter tries to estimate
and predict the values of a signal that is embedded in perturbations and noise.

2 Preparation for the lab

Read the lab description carefully. Consider downloading the necessary files in advance if using
your personal computer. Bring headphones since we will be processing audio again.
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3 Pre-lab

We are not going to collect and grade the pre-lab. However, if you do not do anything, the lab
will take a very long time. In particular, make sure that you bring the MATLAB code that you
write to the lab.

3.1 Second order notch filter.

A second order IIR system has a difference equation of the form

y[n] + a1y[n − 1] + a2y[n − 2] = b0x[n] + b1x[n − 1] + b2x[n − 2] (1)

where the ai are the feedback coefficients and the bi are the feedforward coefficients.
A notch filter is a type of second order IIR system that has the following system function:

H(z) =
1 − 2 cos(ω)z−1 + z−2

1 − 2r cos(ω)z−1 + r2z−2
=

(1 − ejωz−1)(1 − e−jωz−1)

(1 − rejωz−1)(1 − re−jωz−1)
(2)

From the factored form of the system function, it is easy to see that the system function has zeros
at z = e±jω (i.e.: on the unit circle) and poles at z = re±jω. (Typically, for stability purposes, we
limit |r| < 1.) The notch filter can be used to selectively filter out narrow ranges of frequency;
this can be seen from its frequency response.

Figure 1: Pole-zero map and frequency response of a particular notch filter.
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3.1.1 MATLAB implementation.

Write a function that returns the output signal y[n] of a notch filter given an input signal x[n]
and filter parameters r and ω as described in (2). This function should also return a, the feedback
coefficients and b, the feedforward coefficients. Hint: use the MATLAB function filter to filter
signals through IIR systems.

function [a, b, y] = my_notch(r, w, x)

% Returns the notch filter coefficients with poles located

% at r*exp(jw) and r*exp(-jw). Also returns the output signal y

% given an input signal x filtered by this notch filter.

%

% input:

% r - radius of poles

% w - angle of poles (in radians)

% x - input signal

%

% output:

% a - vector of feedback coefficients

% b - vector of feedforward coefficients

% y - filtered signal

3.1.2 Pole-zero map and frequency response.

Use the MATLAB function zplane to plot the zeros and the poles of the notch filter for all
combinations of r = 0.3, 0.6, 0.9 and ω = π, π/2, π/4. Additionally, plot the frequency response
for these values of r and ω for the range −π to π. How does the frequency response change with
r and ω?

Hint: use the MATLAB function freqz to plot frequency response. Plot the pole-zero map
and the frequency response for each r and ω combination as two subplots in the same figure.

Adapted from ECE 2200 Lab 5, Fall 2011/2012 (Prof. Bojanczyk)

3.1.3 SUMMARY: Do the following in the pre-lab for this part

1. Write your MATLAB function my notch.

2. Make the pole-zero maps and frequency responses for all of the requested combinations of
r and ω (nine total) which you will show to the TA!

3. Be prepared to tell the TA what happens to the frequency response as r is fixed and ω
varies. Likewise, what happens when ω is fixed and r varies?
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3.2 Scalar Kalman filter.

3.2.1 A brief primer on random processes.

In many cases, the signals that we encounter are not deterministic; that is, we do not know ahead
of time what exact values a signal will take. Sometimes, what we do know is that the signal
will take on values randomly as described by a probability distribution. For example, maybe
the signal at some time n is equally likely to have a value of 0 or 1. When a signal takes on
values according to some probability distribution, we can call it a random process. A partic-
ular sequence of samples from this random process is called a realization of the random process.

A deeper understanding of this part of the lab requires knowing probability (ECE 3100) and
random processes (ECE 4110). However, we can explore some of the powerful tools used in
signal processing without having to know very much.

Gaussian random processes. We will be dealing with Gaussian random processes in this
lab. For our purposes, this means that each value of the signal at each time is drawn from a
Gaussian distribution. A Gaussian distribution is completely described its mean and variance.
The variance, the square of the standard deviation, intuitively describes the “spread” of the
distribution. Thinking about our favorite Gaussian distribution, the bell curve, the variance
describes the width of the bell: larger variance means a wider bell. It also means that samples
drawn from the distribution are more likely to take on values from a larger range. Typically,
random noise in systems are modeled as Gaussian random processes which is often justified using
the central limit theorem. (And motivated by mathematical simplicity.)

Figure 2: Illustrating a Gaussian distribution with mean 0 and variance 1. Notice that the curve
is centered at 0 and that the width of the bell at half the maximum height is twice the variance.
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3.2.2 A specific signal model.

Consider the class of discrete-time random processes that can be written as this recursion:

Zn = aZn−1 + Wn, n = 1, 2, . . . (3)

(where the subscripts are the time index.) To illustrate this signal model, consider an example
problem of tracking a moving object. Here Zn is the position of the object at time n. Its current
position is related to its previous position through some coefficient, a. Additionally, its current
position may be affected by some outside perturbing force such as wind, and this is reflected by
the addition of the process Wn.

Now suppose we cannot directly observe Zn but instead observe it through the process Xn:

Xn = Zn + Nn, n = 0, 1, 2, . . . (4)

A realization of Xn contains our observations at each time n and consists of the actual signal
that we want to know, Zn, plus some observation noise, Nn. In our example, it may be that we
are using radar to track the moving object but these measurements are corrupted by noise .

Our goal is to somehow process whatever observations we have in Xn and find the best esti-
mate of Zn. Preferably, we would like to do this in real time and do it efficiently. This implies
the implementation of some kind of causal filter:

Yn =
n∑

j=1

h
(n−1)
j Xn−j (5)

where Yn is our signal of estimates of Zn and h
(n−1)
j is a set of time-varying filter coefficients.

How do we choose these filter coefficients?

3.2.3 Enter the Kalman filter.

It turns out that some very clever people developed an efficient, recursive algorithm to com-
pute the “best” estimate of Zn given all of the current and previous observations Xn. It is the
best in the sense that the mean square error (MSE), or the average value of (Zn − Yn)2 is mini-
mized. A derivation of the results is well beyond the scope of this course but here is the basic idea:

We have the following models for a signal of interest and our noisy observations of it:{
Zn = aZn−1 + Wn, n = 1, 2, . . .

Xn = Zn + Nn, n = 0, 1, 2, . . .
(6)

where Zn is the hidden signal of interest, Xn is our noisy observations of Zn, a is a scalar that
describes the signal model, Wn is a Gaussian random process with zero mean and variance σ2

W ,
and Nn is a Gaussian random process with zero mean and variance σ2

N . The initial value of Z,
Z0, is drawn from a Gaussian distribution with mean µZ and variance σ2

Z .
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1. Start at time n = 0. First, set Y0, our guess of Z0, equal to µZ . In the absence of any
other information, this is the best guess we can make. Additionally, set the MSE of our
estimator, σ2

e0
, equal to σ2

Z .

2. Compute the Kalman gain, kn. This factor helps us compute our next prediction of Zn:

kn =
aσ2

en

σ2
en

+ σ2
N

(7)

3. Compute the next prediction, Yn+1 by making corrections to our previous prediction Yn:

Yn+1 = aYn + kn(Xn − Yn) (8)

Intuitively, we are updating our previous prediction by a weighted amount of the difference
between our observation and the prediction.

4. Predict the next MSE of our estimator:

σ2
en+1

= a(a − kn)σ2
en

+ σ2
W (9)

5. Increment n by 1 and repeat from step 2 for each successive observation.

The gist of the algorithm is to make successive corrections to previous predictions by using new
data as it becomes available. Here is the pseudo-code version of the algorithm:

Algorithm: Kalman filter
Initialize: Y0 = µZ , σ2

e0
= σ2

Z (These initializations can be based on fact or belief.)

For each time n = 0, 1, 2, . . . :

1. Compute the Kalman gain:

kn =
aσ2

en

σ2
en

+ σ2
N

(10)

2. Correction: Refine the previous prediction for the next estimate, Yn+1:

Yn+1 = aYn + kn(Xn − Yn) (11)

3. Prediction: Predict the next value of the MSE, σ2
en+1

:

σ2
en+1

= a(a − kn)σ2
en

+ σ2
W (12)
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3.2.4 MATLAB implementation.

Write a function that computes Yn, given all of the signal model parameters and a set of obser-
vations Xn.

function [y, var_err, k] = my_kalman(x, z0, var_z0, var_W, var_N, a)

% Returns the output of the Kalman filter based on the following signal

% and observation model:

%

% Signal model:

% Z[n] = a*Z[n-1] + W[n]

% Observation model:

% X[n] = Z[n] + N[n]

%

% y : Kalman filter output

% var_err : computed MSE at each iteration

% k : computed Kalman gain at each iteration

Download the test kalman.m script and kalman maybe.m function from Blackboard.
The kalman maybe.m function generates observations and the test kalman.m script is
used to graphically visualize filter performance. You can test your filter’s perfor-
mance by generating observations and running them through the Kalman filter.

Figure 3: Example of Kalman filter output.
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3.2.5 Steady state performance.

Here is a way to test if your Kalman filter is implemented properly.

Consider a signal defined by

Zn = aZn−1 + Wn, n = 1, 2, . . . , µZ = 0, σ2
Z = 0 (13)

where σ2
W = 0.36 and a = 0.8. The observations are given by

Xn = Zn + Nn, n = 0, 1, 2, . . . (14)

where σ2
N = 1. The Kalman gain at step n is given by

kn =
aσ2

en

σ2
en

+ σ2
N

(15)

The MSE at step n is given by

σ2
e0

= σ2
Z = 0 (16)

σ2
en+1

= a(a − kn)σ2
en

+ σ2
W (17)

= a

(
a

σ2
N + σ2

en

)
σ2

en
+ σ2

W (18)

In steady state, σ2
en

= σ2
en+1

= e∞ for all n. This produces the following equation:

e∞ =
a2

σ2
N + e∞

e∞ + σ2
W (19)

This is a quadratic equation in e∞. Solving it for the positive root and substituting the result
into:

k∞ =
ae∞

e∞ + σ2
N

(20)

gives the steady state Kalman gain and MSE. This means that in steady state, the predictor
update is given by

Yn+1 = aYn + k∞(Xn − Yn) (21)

and that the MSE remains constant.

Show (verify) that k∞ = 0.3 and e∞ = 0.6 for this example.

One of the output plots of the test script plots the MSE and Kalman gain at each
time step. If your Kalman filter is implemented correctly, these two curves should
converge to e∞ and k∞, respectively.
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3.2.6 Some comments.

Here we considered a very specific implementation of the Kalman filter where we had all scalar
quantities. The theory can be expanded to more complex dynamic systems described by matrix-
vector equations; control theory and economics are some of the fields that utilize Kalman filters.
Furthermore, the theory can handle all types of random processes, not just Gaussian processes.

The fact that this filter can be implemented recursively is crucial for real-time applications.
In general, the filter coefficients would have to be determined by solving linear systems that
grow with the number of observations, requiring significantly more memory and computation.

3.2.7 SUMMARY: Do the following as part of the pre-lab for this part.

1. Write your MATLAB function my kalman.

2. Be prepared to show the TA that k∞ = 0.3 and e∞ = 0.6 for the given example.

3.3 Summary of the summaries: What you need to do before you
come to lab.

1. Write your MATLAB function my notch.

2. Make the pole-zero maps and frequency responses for all of the requested combinations of
r and ω (nine total).

3. Be prepared to describe what happens to the frequency response of the notch filter as r is
fixed and ω varies. Likewise, what happens when ω is fixed and r varies?

4. Write your MATLAB function my kalman.

5. Be prepared to show that k∞ = 0.3 and e∞ = 0.6 for the given example.
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Figure 4: Tracking Brownian motion. Predicting the prices of financial assets perhaps?

4 In-Lab

Complete the following tasks. You must have all of the TA checks completed by a
TA in order to receive full credit for the lab. Label all figures.

4.1 Removing that annoying whistle...

Imagine that you’re at a show and the DJ starts playing this amazing new track. 1 Like anyone
else with a cell phone, you decide to take a video of the occasion so that you can share a
low quality recording of the moment with everyone you know on social media. Unfortunately,
someone with a whistle decides to ruin your recording by blowing their whistle without abandon
while the track is playing. You decide to attempt to remove this contaminating noise from the
audio using your signal processing knowledge.

Figure 5: It ruins everything.

• Fortunately, you were able to confiscate the whistle from that person before you went home.
A recording of it is stored in the whistle.mat file. Download it from Blackboard.

1Gareth Emery, Bo Bruce - U (Bryan Kearney Remix) vs. Gareth Emery, Christina Novelli - Concrete Angel
(John O’Callaghan Remix) (Armin van Buuren mashup) to be exact.
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• The song recording is stored in the recording.mat file. Download it from Blackboard.
Note that the signal has two channels so you will have to process each channel separately.

Your task is to make use of the notch filter that you created and reduce the presence
of the whistle as much as possible while minimizing changes to the actual song.

Some hints:

• What are the main frequency components of the whistle? You should make use of frequency
analysis tools from previous labs.

• From the pre-lab: how do we selectively reject specific frequencies without affecting other
frequencies that much?

TA CHECK: Describe your approach to solving this problem, using figures such as
signal spectra, filter frequency responses, etc. How did you use the notch filter?
How many times did you filter the signal? How good were your results? What if
the whistle had a higher frequency sound, say 10 kHz – could we do better?

4.2 Finding the DC voltage level embedded in noise.

Suppose you’re trying to power a circuit board with a DC power supply but the display that
shows its voltage level is broken. The control knob for the voltage level is digital so there is no
way of finding out what the voltage level of the power supply is; it could be anywhere between
0 and 8 V. You’re also told that the power supply happens to be stuck at whatever unknown
voltage level it is but that it is definitely DC. You’re apprehensive about powering your circuit
board with it because the board can only handle up to 3.3 V and you would rather not fry it.

You decide to power a circuit board that can handle up to 12 V with the power supply. You
connect an oscilloscope probe to a component on the board that is at the power supply’s voltage
to measure the voltage. Lo and behold, the display of the oscilloscope shows an extremely noisy
voltage signal; the oscilloscope probe must be damaged because you’re certain that the actual
voltage level is constant. How are you going to figure out the voltage level?

Your task is to estimate the actual voltage level using your Kalman filter. Trans-
late the problem posed here to the signal and observation model that we based our
Kalman filter on and determine the appropriate parameters for models and filter.

1. Set the measurement noise variance to equal 1.96.

2. Download voltage.mat from Blackboard. This is a vector of 50 noisy voltage samples
from the oscilloscope that you will use to estimate the actual voltage level.

3. Feed it into your Kalman filter. For z0, your initial guess, guess anywhere in the stated
range. For var z0, the variance of your initial guess, set it equal to any positive number.

11



Lab 4 ECE 2200 Fall 2014

4. Try different values of z0 and var z0 and try to determine the actual voltage level within
0.1 V. How do your choices of z0 and var z0 affect the behavior of the filter output?

TA CHECK: Describe your approach to solving this problem, giving the signal model
for this problem and its parameters. What is your guess of the voltage level? Is it
safe to power your board with the power supply? Justify with your filter output.
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