
Lab 3: Low-Pass Filtering and High-Pass

Filtering in Time Domain and Frequency Domain

Professor Lang Tong

October 27–30, 2014

1 Introduction

• In this lab you will see two filters, one is the 2 -point running average
filter, and the other one is the difference filter.

• The 2-point running average filter is a low-pass filter, since the low fre-
quency components of the input signal are preserved, while the high fre-
quency components are attenuated. To see this effect, you will work in
the time domain (remember convolution?) to observe the output of sev-
eral different input signals with different frequencies. You will see that
the higher the frequency of the input signal, the larger the attenuation in
the output, hence called a “low-pass filter”. Then you will work under
frequency domain, generate the frequency response plot, and you will be
able to tell from the plot directly that the 2-point running average filter is
a low-pass filter, without having to try all different kinds of input signals.

• You will apply the filters you learned to some images. Images can also
be considered as signals. You will see (instead of the hear) the results of
filtering this time.

2 Pre-lab

1. Given a complex sinusoidal signal x[n] = A exp(jΩ0n) = A(cos(Ω0n) +
j sin(Ω0n)) as input, verify that the output of the system y[n] = 1

2
x[n] +

1

2
x[n − 1] is given by y[n] = H(Ω0)x[n], where H(Ω) = 1

2
(1 + exp(−jΩ))

is called the frequency response of the system y[n] = 1

2
x[n] + 1

2
x[n − 1].

Note that H(Ω) is complex.

2. Following the previous problem, calculate the output signal for the follow-
ing input signals:

(a) A exp(j0n)

(b) A exp
(

j π

3
n
)

, and

1

(c) A exp(jπn).

What is the maximum amplitude of each of the output signals? What is
the frequency of each of the input signals?

3. A low-pass filter is a filter that blocks high frequencies from an input
signal (it passes only low frequencies, with some designed cut-off frequency
between the blocked and allowed frequencies), and a high-pass filter blocks
low frequencies from an input signal (it passes only higher frequencies,
also at some designed cut-off frequency). Now, does the system y[n] =
1

2
x[n] + 1

2
x[n − 1] behave like a low-pass filter or a high-pass filter?

4. This problem is to teach you some basics of manipulating images in MAT-
LAB. An image can be represented as a function I(m,n) of two variables
vertical (m) and horizontal (n) coordinates (notice the order). A common
convention is to set the upper left corner as origin (0,0). For color R-
G-B images, the function I(m,n) is a vector function: I(m,n) = [R(m,n),
G(m,n), B(m,n)], where the three components specify the intensity of the
Red, Green, and Blue color component. In this lab, we will only deal with
monochromatic images. You can think of the intensities of this single com-
ponent as the average of the three color components, although this does
not have to be strictly the case. Let’s open a monochromatic image and
display it:

>> I = imread(’cameraman.tif’);

>> imshow(I)

You should see a cameraman in a new window. This image file comes with
MATLAB, so you don’t have to download it from the Blackboard. There
are also other images that come pre-loaded with MATLAB: moon.tif,
tire.tif, trees.tif, among others. You can try your code later in the lab
with these images as well.

(a) What is the size of the image?

(b) What are the maximum and minimum values of this image? What
are the coordinates of these extremes? You might need the commands
max, min, find. Finding the coordinates of the extremes might re-
quire more trial and error, and is an optional problem.

(c) Use MATLAB commands to modify and display the array I so that
a black vertical line is shown at the 15th column from the right.

(d) How many gray levels are displayed by the function imshow? Read
the help documentation. You can verify your answer to the previous
question by typing

>> m=colormap

2

and examining the contents of m. Read help colormap and briefly
(no more than 30 words) explain what the values in matrix m repre-
sent.

Monochrome images are also called grayscale images, as they are of-
ten (but do not necessarily have to be) displayed in black and white
and shades of gray, as you now see with the cameraman. We empha-
size the word “displayed”, since you have the freedom to decide in
what color to display the intensities. In other words, you can define
the mapping from intensity to color by yourself.

(e) Modify the how cameraman (or moon, tire, trees) is displayed by
using colormap (without modifying the values in image I) so that
the lowest intensity is displayed in red, and the highest in blue, and
no other colors.

Now you should understand that a grayscale image does not neces-
sarily have to be in white and black and gray. MATLAB has lots
of predefined colormaps, but the one we will be using from now on
is colormap(gray(256)), which is the one the cameraman was dis-
played at default when using a 24-bit monitor display. MATLAB
uses colormap(gray(64)) if it detects your computer has a lower
display setting.

3 In-lab

1. The 2-point running average filter is defined as y[n] = 1

2
x[n] + 1

2
x[n − 1].

It takes 2 consecutive points of signal x and stores the average value in y.
In the Pre-lab you learned that H(Ω) = 1

2
(1+exp(−jΩ)) is the frequency

response of the 2-point running average filter y[n] = 1

2
x[n]+ 1

2
x[n−1]. Go

back to the Pre-lab and review it before you proceed. Plot the magnitude
for H(Ω) = 1

2
(1 + exp(−jΩ)). Use the following MATLAB code:

b=[0.5, 0.5];

w=-pi:(0.01*pi):pi;

H=freqz(b, 1, w);

plot(w, abs(H));

The “b” in the command freqz corresponds to the two “0.5” coefficients
in y[n] = 1

2
x[n] + 1

2
x[n − 1]. This filter can be called a low-pass filter for

the following reason: From the plot that you just generated, you can see
that this filter fully keeps the DC components of an input signal. The
frequency components of the input signal are attenuated more and more
as the frequency gets closer to ±π.

TA CHECK: Show your plot. In this problem you saw from the
frequency response that the filter behaves like a low-pass filter,
while in the pre-lab, you were asked to guess its behavior from

3

three input signals with different frequencies. Which way do you
think is easier or better to determine the frequency response of
a filter?

2. Now consider the difference filter y[n] = x[n] − x[n − 1].

(a) Use MATLAB to plot the magnitude of the frequency response of
the difference filter.

(b) Is this filter a lowpass or highpass filter? Is there a frequency that
this filter completely cuts off?

(c) If you input the signal x[n] = 2.3 for n = 1 to 100 to the difference
filter, what do you get as output? What happens to the DC compo-
nents of the input signal? Ignore the end effects (first and last sample
from output).

(d) Use MATLAB to generate a signal of the form x[n] = cos(0.01πn).
Use MATLAB convolution (conv) to generate the output (see sample
code below). Plot the input and output signals on the same figure
(use the command hold on), and label the axes clearly.

n=0:1000;

x=cos(0.01*pi*n);

plot(x)

h=[1 -1];

y=conv(x,h);

hold on

plot(y,’r’)

(e) From the plot, estimate the amplitude and frequency of the output
signal.

(f) Is the frequency of the output signal the same as the input signal?

(g) Use the frequency response plot you got in (a) to estimate the am-
plitude of the output signal. Does it match with the result in (e)?

TA CHECK: Show your plot and be prepared to answer all the
questions from the above parts.

3. The 7-point running average filter is defined as y[n] = 1

7
x[n] + 1

7
x[n− 1]+

. . . + 1

7
x[n − 6]. It takes 7 consecutive points of signal x, and stores the

average value in y.

(a) Consider each row of an image as a one-dimensional signal. Apply the
7-point running average filter to each row of the cameraman image
(see sample code in Part b below). Save the resulting image as newI.
If MATLAB complains something about uint8, here is a hint: use
the whos command to see the type of the variables currently in mem-
ory. Some functions require specific datatypes, for example, double,
uint8. If z has type uint8, you can simply type z=double(z) to
convert it to double precision.

4

(b) Display the resulting image. Although MATLAB says imshow sup-
ports uint8 and double (read help imshow), you should do some
type conversions until you see the cameraman. Is the image more
blurred or sharpened? Also, after the convolution, the image is no
longer the same size. Why is this? Here is some code:

nn=0:100;

xx=square(0.05 * pi * nn);

bb=[1/7 1/7 1/7 1/7 1/7 1/7 1/7];

yy=conv(bb,xx);

plot(nn,xx)

hold

plot(0:length(yy)-1,yy,’r’)

I = imread(’cameraman.tif’);

imshow(I)

bb=[1/7 1/7 1/7 1/7 1/7 1/7 1/7];

for i=1:256

yy2(i,:) = conv(bb,double(I(i,:)));

end

imshow(uint8(yy2))

(c) Above, we have filtered each row, but filtering can also be done on
the columns. Modify your code to filter each column and plot the
result. What is different?

(d) The MATLAB command imfilter is very useful for filtering images
(read help imfilter). Modify your code above using the function
imfilter and comment on what happens.

(e) Repeat the above with a 31-point running average filter. Compare it
with the 7-point filter and describe the difference.

(f) Plot the magnitude of the frequency response of the 7-point and 31-
point filters on one plot using different colors. Use this plot to help
explain your result from (a) and (e).

(g) Let y[n] = −x[n]+3x[n−1]−x[n−2]. Apply this filter to cameraman.
Compare it with the 7-point running average filter and describe the
difference.

TA CHECK: Show your plots and be prepared to answer all the
questions from the above parts.

5

