The University has asked that every course-related document be marked as copyrighted: Copyright 2016 Peter C. Doerschuk

ECE 2200 and ENGRD 2220 Signals and Systems Spring 2016 Problem Set 5 Due Friday March 18, 2016 at 5:00PM. Location to turn in: "ECE 2200" box on Phillips Hall 2nd floor

1. McClellan, Schafer, Yoder Problem P-5.5. Consider a system defined by

$$y[n] = \sum_{k=0}^{M} b_k x[n-k].$$
(57)

The support of a signal is the set of values of the independent variable (e.g., t or n) such that the signal is nonzero.

- (a) Suppose that the input x[n] is nonzero only for $0 \le n \le N-1$, i.e., it has a support of N samples. Show that y[n] is nonzero at most over a finite interval of the form $0 \le n \le P-1$. Determine P and the support of y[n] in terms of M and N.
- (b) Suppose that the input x[n] is nonzero only for $N_1 \leq n \leq N_2$. What is the support of x[n]? Show that y[n] is nonzero at most over a finite interval of the form $N_3 \leq n \leq N_4$. Determine N_3 and N_4 and the support of y[n] in terms of N_1 , N_2 , and M.
- 2. This problem concerns an alternative method of building a double side band suppressed carrier modulator. Consider the block diagram

$$\begin{array}{c|c} m(t) & a(t) \\ \hline & & \\$$

where

$$q(t) = \sum_{n=-\infty}^{+\infty} q_0(t - nT_c)$$
(58)

$$q_0(t) = \begin{cases} 1, & |t| < \tau/2 \\ 0, & \text{otherwise} \end{cases}$$
(59)

and designing $H(\omega)$ is a part of the problem. It is important that $\tau < T_c$. Define $f_c = 1/T_c$. The continuous-time Fourier transform of $q_0(t)$ is denoted by $Q_0(\omega)$ and has the formula

$$Q_0(\omega) = \int_{t=-\infty}^{+\infty} q_0(t) \exp(-j\omega t) dt$$
(60)

$$= \frac{1}{\omega} 2\sin(\omega\tau/2) \tag{61}$$

$$= \tau \operatorname{sinc}(\omega \tau / (2\pi)) \tag{62}$$

which has zeros when

$$\omega = n2\pi/\tau \quad (n \in \mathcal{Z}, n \neq 0). \tag{63}$$

(a) Sketch q(t) for $0 \le t \le 3T_c$.

- (b) Compute the Fourier series coefficients, denoted by a_k , of the periodic signal q(t). Please write your answer in terms of $Q_0(\omega)$.
- (c) Let $Q(\omega)$ be the continuous-time Fourier transform of q(t). From the Fourier series coefficients a_k , please compute the Fourier transform of the periodic signal q(t). Please write your answer in terms of $Q_0(\omega)$.
- (d) Let m(t) have continuous-time Fourier transform $M(\omega)$ which is defined by

$$M(\omega) = \begin{cases} M_0(1 - |\omega|/(2\pi f_m)), & |\omega| \le 2\pi f_m \\ 0, & \text{otherwise} \end{cases}$$
(64)

where $f_m \ll f_c$. Let a(t) and x(t) have continuous-time Fourier transforms $A(\omega)$ and $X(\omega)$, respectively. On the following graphs, please plot the following Fourier transforms:

- i. $Q_0(\omega)$ for the case where $\tau = T_c/4$.
- ii. $Q(\omega)$.
- iii. $A(\omega)$.
- iv. $H(\omega)$ such that $X(\omega)$ is as shown in the plot provided below which shows that x(t) is the double side band suppressed carrier signal corresponding to m(t).

(e) Now consider replacing q(t) by $q^{\text{new}}(t) = q(t) - q_*$ where q_* is a constant. What is the continuoustime Fourier transform of $q^{\text{new}}(t)$? Can you choose a value of q_* such that you can replace the filter $H(\omega)$ of Part 2d by the filter $H_2(\omega)$ shown below without altering $X(\omega)$? What is the value of H_0 ?

3. Consider the block diagram

where

$$p(t) = \sum_{n = -\infty}^{+\infty} \delta(t - nT_s)$$
(65)

and $H(\omega)$ is one of the following three possibilities:

(a) The ideal reconstruction filter with frequency response

$$H_1(\omega) = \begin{cases} T_s, & |\omega| \le \pi/T_s \\ 0, & \text{otherwise} \end{cases}$$
(66)

(b) The sample-and-hold reconstruction filter with impulse response

$$h_2(t) = \begin{cases} 1, & 0 \le t < T_s \\ 0, & \text{otherwise} \end{cases}$$
(67)

and frequency response $H_2(\omega)$.

(c) The linear-interpolation reconstruction filter with impulse response

$$h_3(t) = \begin{cases} 1 - |t|/T_s & |t| \le T_s \\ 0, & \text{otherwise} \end{cases}$$
(68)

and frequency response $H_3(\omega)$.

Let $x(t) = \sin\left(\frac{2\pi}{T_0}t\right)$. Questions:

- (a) With $T_s = (1/4)T_0$ make a careful plot of y(t) when $H(\omega) = H_1(\omega)$ for at least the range $0 \le t \le T_0$.
- (b) With $T_s = (1/4)T_0$ make a careful plot of y(t) when $H(\omega) = H_2(\omega)$ for at least the range $0 \le t \le T_0$.
- (c) With $T_s = (1/4)T_0$ make a careful plot of y(t) when $H(\omega) = H_3(\omega)$ for at least the range $0 \le t \le T_0$.
- (d) With $T_s = (3/4)T_0$ make a careful plot of y(t) when $H(\omega) = H_1(\omega)$ for at least the range $0 \le t \le 3T_0$.

- (e) With $T_s = (3/4)T_0$ make a careful plot of y(t) when $H(\omega) = H_2(\omega)$ for at least the range $0 \le t \le 3T_0$.
- (f) With $T_s = (3/4)T_0$ make a careful plot of y(t) when $H(\omega) = H_3(\omega)$ for at least the range $0 \le t \le 3T_0$.
- 4. Let a system with input x[n] and output y[n] be defined by

$$y[n] = \frac{1}{3} \left(x[n-1] + x[n] + x[n+1] \right).$$
(69)

What is the impulse response of this system? In other words, if $x[n] = \delta[n]$, what is y[n]? Traditionally, the impulse response would be named h[n].