The University has asked that every course-related document be marked as copyrighted:
Copyright 2016 Peter C. Doerschuk

ECE 2200 and ENGRD 2220
Signals and Systems
Spring 2016
Problem Set 5
Due Friday March 18, 2016 at 5:00PM.
Location to turn in: "ECE 2200" box on Phillips Hall 2nd floor

1. McClellan, Schafer, Yoder Problem P-5.5. Consider a system defined by

$$
\begin{equation*}
y[n]=\sum_{k=0}^{M} b_{k} x[n-k] . \tag{57}
\end{equation*}
$$

The support of a signal is the set of values of the independent variable (e.g., t or n) such that the signal is nonzero.
(a) Suppose that the input $x[n]$ is nonzero only for $0 \leq n \leq N-1$, i.e., it has a support of N samples. Show that $y[n]$ is nonzero at most over a finite interval of the form $0 \leq n \leq P-1$. Determine P and the support of $y[n]$ in terms of M and N.
(b) Suppose that the input $x[n]$ is nonzero only for $N_{1} \leq n \leq N_{2}$. What is the support of $x[n]$? Show that $y[n]$ is nonzero at most over a finite interval of the form $N_{3} \leq n \leq N_{4}$. Determine N_{3} and N_{4} and the support of $y[n]$ in terms of N_{1}, N_{2}, and M.
2. This problem concerns an alternative method of building a double side band suppressed carrier modulator. Consider the block diagram

where

$$
\begin{align*}
q(t) & =\sum_{n=-\infty}^{+\infty} q_{0}\left(t-n T_{c}\right) \tag{58}\\
q_{0}(t) & = \begin{cases}1, & |t|<\tau / 2 \\
0, & \text { otherwise }\end{cases} \tag{59}
\end{align*}
$$

and designing $H(\omega)$ is a part of the problem. It is important that $\tau<T_{c}$. Define $f_{c}=1 / T_{c}$. The continuous-time Fourier transform of $q_{0}(t)$ is denoted by $Q_{0}(\omega)$ and has the formula

$$
\begin{align*}
Q_{0}(\omega) & =\int_{t=-\infty}^{+\infty} q_{0}(t) \exp (-j \omega t) \mathrm{d} t \tag{60}\\
& =\frac{1}{\omega} 2 \sin (\omega \tau / 2) \tag{61}\\
& =\tau \operatorname{sinc}(\omega \tau /(2 \pi)) \tag{62}
\end{align*}
$$

which has zeros when

$$
\begin{equation*}
\omega=n 2 \pi / \tau \quad(n \in \mathcal{Z}, n \neq 0) \tag{63}
\end{equation*}
$$

(a) Sketch $q(t)$ for $0 \leq t \leq 3 T_{c}$.
(b) Compute the Fourier series coefficients, denoted by a_{k}, of the periodic signal $q(t)$. Please write your answer in terms of $Q_{0}(\omega)$.
(c) Let $Q(\omega)$ be the continuous-time Fourier transform of $q(t)$. From the Fourier series coefficients a_{k}, please compute the Fourier transform of the periodic signal $q(t)$. Please write your answer in terms of $Q_{0}(\omega)$.
(d) Let $m(t)$ have continuous-time Fourier transform $M(\omega)$ which is defined by

$$
M(\omega)= \begin{cases}M_{0}\left(1-|\omega| /\left(2 \pi f_{m}\right)\right), & |\omega| \leq 2 \pi f_{m} \tag{64}\\ 0, & \text { otherwise }\end{cases}
$$

where $f_{m} \ll f_{c}$. Let $a(t)$ amd $x(t)$ have continuous-time Fourier transforms $A(\omega)$ and $X(\omega)$, respectively. On the following graphs, please plot the following Fourier transforms:
i. $Q_{0}(\omega)$ for the case where $\tau=T_{c} / 4$.
ii. $Q(\omega)$.
iii. $A(\omega)$.
iv. $H(\omega)$ such that $X(\omega)$ is as shown in the plot provided below which shows that $x(t)$ is the double side band suppressed carrier signal corresponding to $m(t)$.

	$Q_{0}(\omega)$ for $\tau=T_{c} / 4$. Please note axis markings!		
$-2 \pi 8 f_{c}$	$-2 \pi 4 f_{c}$	$Q(\omega)$	$2 \pi 8 f_{c} \omega \rightarrow$
1	-1	$2 \pi f_{c}$	
$-2 \pi 2 f_{c}$	$-2 \pi f_{c}$		

	1	$A(\omega)$	1	1
1				
$-2 \pi 2 f_{c}$	$-2 \pi f_{c}$		$2 \pi f_{c}$	$2 \pi 2 f_{c} \omega \rightarrow$
		$H(\omega)$		
1	1		,	1
$-2 \pi 2 f_{c}$	$-2 \pi f_{c}$		$2 \pi f_{c}$	$2 \pi 2 f_{c} \omega \rightarrow$

(e) Now consider replacing $q(t)$ by $q^{\text {new }}(t)=q(t)-q_{*}$ where q_{*} is a constant. What is the continuoustime Fourier transform of $q^{\text {new }}(t)$? Can you choose a value of q_{*} such that you can replace the filter $H(\omega)$ of Part 2d by the filter $H_{2}(\omega)$ shown below without altering $X(\omega)$? What is the value of H_{0} ?

3. Consider the block diagram

where

$$
\begin{equation*}
p(t)=\sum_{n=-\infty}^{+\infty} \delta\left(t-n T_{s}\right) \tag{65}
\end{equation*}
$$

and $H(\omega)$ is one of the following three possibilities:
(a) The ideal reconstruction filter with frequency response

$$
H_{1}(\omega)= \begin{cases}T_{s}, & |\omega| \leq \pi / T_{s} \tag{66}\\ 0, & \text { otherwise }\end{cases}
$$

(b) The sample-and-hold reconstruction filter with impulse response

$$
h_{2}(t)= \begin{cases}1, & 0 \leq t<T_{s} \tag{67}\\ 0, & \text { otherwise }\end{cases}
$$

and frequency response $H_{2}(\omega)$.
(c) The linear-interpolation reconstruction filter with impulse response

$$
h_{3}(t)= \begin{cases}1-|t| / T_{s} & |t| \leq T_{s} \tag{68}\\ 0, & \text { otherwise }\end{cases}
$$

and frequency response $H_{3}(\omega)$.
Let $x(t)=\sin \left(\frac{2 \pi}{T_{0}} t\right)$. Questions:
(a) With $T_{s}=(1 / 4) T_{0}$ make a careful plot of $y(t)$ when $H(\omega)=H_{1}(\omega)$ for at least the range $0 \leq t \leq T_{0}$.
(b) With $T_{s}=(1 / 4) T_{0}$ make a careful plot of $y(t)$ when $H(\omega)=H_{2}(\omega)$ for at least the range $0 \leq t \leq T_{0}$.
(c) With $T_{s}=(1 / 4) T_{0}$ make a careful plot of $y(t)$ when $H(\omega)=H_{3}(\omega)$ for at least the range $0 \leq t \leq T_{0}$.
(d) With $T_{s}=(3 / 4) T_{0}$ make a careful plot of $y(t)$ when $H(\omega)=H_{1}(\omega)$ for at least the range $0 \leq t \leq 3 T_{0}$.
(e) With $T_{s}=(3 / 4) T_{0}$ make a careful plot of $y(t)$ when $H(\omega)=H_{2}(\omega)$ for at least the range $0 \leq t \leq 3 T_{0}$.
(f) With $T_{s}=(3 / 4) T_{0}$ make a careful plot of $y(t)$ when $H(\omega)=H_{3}(\omega)$ for at least the range $0 \leq t \leq 3 T_{0}$.
4. Let a system with input $x[n]$ and output $y[n]$ be defined by

$$
\begin{equation*}
y[n]=\frac{1}{3}(x[n-1]+x[n]+x[n+1]) . \tag{69}
\end{equation*}
$$

What is the impulse response of this system? In other words, if $x[n]=\delta[n]$, what is $y[n]$? Traditionally, the impulse response would be named $h[n]$.

