The University has asked that every course-related document be marked as copyrighted:
Copyright 2016 Peter C. Doerschuk

## ECE 2200 and ENGRD 2220

Signals and Systems
Spring 2016
Problem Set 2
Due Friday February 19, 2016 at 5:00PM.
Location to turn in: "ECE 2200" box on Phillips Hall 2nd floor

1. Signal Processing First P-3.1. DSP First (2nd edition) P-3.2. A signal is composed of sinusoids is given by the equation

$$
\begin{equation*}
x(t)=10 \cos (800 \pi t+\pi / 4)+7 \cos (1200 \pi t-\pi / 3)-3 \cos (1600 \pi t) . \tag{1}
\end{equation*}
$$

(a) Sketch the spectrum of this signal, indicating the complex amplitude of each frequency component. Make separate plots for real/imaginary or magnitude/phase of the complex amplitudes at each frequency.
(b) Is $x(t)$ periodic? If so, what is the period?
(c) Now consider a new signal defined as $y(t)=x(t)+5 \cos (1000 \pi t+\pi / 2)$. How is the spectrum changed? Is $y(t)$ periodic? If so, what is the period?
2. Signal Processing First P-3.2. DSP First (2nd edition) P-3.1. A signal $x(t)$ has the two-sided spectrum representation shown in Fig. P-3.1.

(a) Write an equation for $x(t)$ as a sum of cosines.
(b) Is $x(t)$ a periodic signal? If so, determine its fundamental period and its fundamental frequency.
(c) Explain why negative frequencies are needed in the spectrum.
3. Signal Processing First P-3.17. DSP First (2nd edition) P-3.21. Small changes by Doerschuk. A chirp signal is one that sweeps in frequency from $\omega_{1}=2 \pi f_{1}$ to $\omega_{2}=2 \pi f_{2}$ as time goes from $t=0$ to $t=T_{2}$. The general formula for a chirp is

$$
\begin{equation*}
x(t)=A \cos \left(\alpha t^{2}+\beta t+\phi\right)=A \cos (\psi(t)) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(t)=\alpha t^{2}+\beta t+\phi \tag{3}
\end{equation*}
$$

and the units of $\beta$ are inverse seconds and the units of $\alpha$ are inverse seconds squared. The derivative of $\psi(t)$ with respect to $t$ is the instantaneous frequency (in $\mathrm{rad} / \mathrm{s}$ ), which is also the frequency heard if the frequencies are in the audible range.
(a) For the chirp in Eq. 2, determine formulas for the beginning $(t=0)$ instantaneous frequency $\left(\omega_{1}^{\text {inst }}\right)$ and the ending $\left(t=T_{2}\right)$ instantaneous frequency $\left(\omega_{2}^{\text {inst }}\right)$ in terms of $\alpha, \beta$, and $T_{2}$.
(b) For the chirp signal

$$
\begin{equation*}
x(t)=\Re\left\{e^{j\left(40 t^{2}+27 t+13\right.}\right\} \tag{4}
\end{equation*}
$$

derive a formula for the instantaneous frequency versus time.
(c) Make a plot of the instantaneous frequency (in Hz ) versus time over $0 \leq t \leq 1$ s for the signal defined in Eq. 4.
4. Signal Processing First P-3.19. DSP First (2nd edition) P-3.26 but with different numbers. The plots in Fig. P-3.19 show waveforms on the left and spectra on the right. Match the waveform letter with its corresponding spectrum number. In each case, write the formula for the signal as a sum of sinusoids.


Figure P-3.19
5. Complex exponentials have many advantages over sines and cosines. The complex exponential form of the Fourier series is

$$
\begin{align*}
x(t) & =\sum_{n=-\infty}^{+\infty} c_{n} \exp \left(j \frac{2 \pi}{T} n t\right)  \tag{5}\\
c_{n} & =\frac{1}{T} \int_{T} x(t) \exp \left(-j \frac{2 \pi}{T} n t\right) \mathrm{d} t \tag{6}
\end{align*}
$$

If $x(\cdot)$ takes only real values, then Eq. 5 is an unusual equation since it describes a real number $[x(t)$ for a particular value of $t]$ by a sum of complex numbers $\left[c_{n} \exp \left(j \frac{2 \pi}{T} n t\right)\right.$ for the same particular value of $t$ ]. This requires that the $c_{n}$ have a particular property, which is the subject of this problem.
(a) One way to derive this property is to do the following calculation:
i. Take the complex conjugate of Eq. 5 to get

$$
\begin{equation*}
x^{*}(t)=\left[\sum_{n=-\infty}^{+\infty} c_{n} \exp \left(j \frac{2 \pi}{T} n t\right)\right]^{*} \tag{7}
\end{equation*}
$$

ii. Use the fact that $x(\cdot)$ is real to get

$$
\begin{equation*}
x(t)=\left[\sum_{n=-\infty}^{+\infty} c_{n} \exp \left(j \frac{2 \pi}{T} n t\right)\right]^{*} \tag{8}
\end{equation*}
$$

iii. Use $\left(z_{1}+z_{2}\right)^{*}=z_{1}^{*}+z_{2}^{*}$ to get

$$
\begin{equation*}
x(t)=\sum_{n=-\infty}^{+\infty}\left[c_{n} \exp \left(j \frac{2 \pi}{T} n t\right)\right]^{*} . \tag{9}
\end{equation*}
$$

iv. Use $\left(z_{1} z_{2}\right)^{*}=z_{1}^{*} z_{2}^{*}$ to get

$$
\begin{equation*}
x(t)=\sum_{n=-\infty}^{+\infty} c_{n}^{*}\left[\exp \left(j \frac{2 \pi}{T} n t\right)\right]^{*} . \tag{10}
\end{equation*}
$$

v. Use $[\exp (j \theta)]^{*}=\exp (-j \theta)$ to get

$$
\begin{equation*}
x(t)=\sum_{n=-\infty}^{+\infty} c_{n}^{*} \exp \left(-j \frac{2 \pi}{T} n t\right) \tag{11}
\end{equation*}
$$

vi. Change dummy summation index from $n$ to $m$ where $m=-n$ to get

$$
\begin{equation*}
x(t)=\sum_{m=-\infty}^{+\infty} c_{-m}^{*} \exp \left(j \frac{2 \pi}{T} m t\right) \tag{12}
\end{equation*}
$$

By comparing Eqs. 5 and 12, describe the constraint that the Fourier series coefficients $c_{n}$ must satisfy if $x(\cdot)$ is to be real valued.
(b) Does $c_{n}=\rho^{|n|}$ where $\rho \in \mathbb{R}$ and $|\rho|<1$ satisfy the constraint?
(c) For each of the sets of $c_{n}$ described in Table 1, does the $c_{n}$ represent a real valued signal?
6. A signal $x(\cdot)$ is defined to be "even" if $x(t)-x(-t)$ for all values of $t$. This is the only so-called "space group symmetry" when the independent variable, here denoted by $t$, is a real number. When the independent variable is a vector of 2 or of 3 real numbers then there are many space groups ( 230 for the case of vectors with three components) and these symmetries are very important in the atomic

| $n$ | $c_{n}$ | $n$ | $c_{n}$ | $n$ | $c_{n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2 | 0 | $2+7 \mathrm{j}$ | 0 | 2 |
| 1 | $3+6 \mathrm{j}$ | 1 | $3+6 \mathrm{j}$ | 1 | $3+6 \mathrm{j}$ |
| 2 | $1.5+2.5 \mathrm{j}$ | 2 | $1.5+2.5 \mathrm{j}$ | 2 | $1.5+2.5 \mathrm{j}$ |
| -1 | 3-6j | -1 | 3-6j | -1 | $3+6 \mathrm{j}$ |
| -2 | $1.5-2.5 \mathrm{j}$ <br> (a) | -2 | $1.5-2.5 \mathrm{j}$ <br> (b) | -2 | $1.5+2.5 \mathrm{j}$ <br> (c) |
| $n$ | $c_{n}$ |  | $n \quad c_{n}$ |  |  |
| 0 | $2+7 \mathrm{j}$ |  | 02 |  |  |
| 1 | $3+6 \mathrm{j}$ |  | 13 |  |  |
| 2 | $1.5+2.5 \mathrm{j}$ |  | 21.5 |  |  |
| -1 | $3+6 \mathrm{j}$ |  | -1 3 |  |  |
| -2 | $1.5+2.5 \mathrm{j}$ |  | -2 1.5 |  |  |
|  | (d) |  | (e) |  |  |

Table 1: Sets of Fourier series coefficients. Coefficients not listed have value zero.
structure of materials. The usual signal/image processing terminology is to refer to these as 1-D, 2-D, or 3-D signals.
Suppose $x(\cdot)$ is even. The complex exponential form of the Fourier series is

$$
\begin{align*}
x(t) & =\sum_{n=-\infty}^{+\infty} c_{n} \exp \left(j \frac{2 \pi}{T} n t\right)  \tag{13}\\
c_{n} & =\frac{1}{T} \int_{T} x(t) \exp \left(-j \frac{2 \pi}{T} n t\right) \mathrm{d} t \tag{14}
\end{align*}
$$

The fact that $x(\cdot)$ is even requires that the $c_{n}$ have a particular property, which is the subject of this problem.
(a) One way to derive this property is to do the following calculation:
i. Replace $t$ by $-t$ in Eq. 13 gives

$$
\begin{equation*}
x(-t)=\sum_{n=-\infty}^{+\infty} c_{n} \exp \left(j \frac{2 \pi}{T} n(-t)\right) \tag{15}
\end{equation*}
$$

ii. Use the fact that $x(\cdot)$ is even to get

$$
\begin{equation*}
x(t)=\sum_{n=-\infty}^{+\infty} c_{n} \exp \left(j \frac{2 \pi}{T} n(-t)\right) \tag{16}
\end{equation*}
$$

iii. Change dummy summation index from $n$ to $m$ where $m=-n$ to get

$$
\begin{equation*}
x(t)=\sum_{m=-\infty}^{+\infty} c_{-m} \exp \left(j \frac{2 \pi}{T}(-m)(-t)\right) \tag{17}
\end{equation*}
$$

iv. By comparing Eqs. 13 and 17, describe the constraint that the Fourier series coefficients $c_{n}$ must satisfy if $x(\cdot)$ is to be even.
(b) For the examples of $c_{n}$ given in Problem 5, do the $c_{n}$ belong to a signal that is even?
7. (a) By combining the results of Problems 5 and 6 , what are the constraints on the $c_{n}$ if a signal is both real valued and even?
(b) For the examples of $c_{n}$ given in Problem 5, do the $c_{n}$ belong to a signal that is both real valued and even?

