The University has asked that every course-related document be marked as copyrighted: Copyright 2016 Peter C. Doerschuk

> ECE 2200 and ENGRD 2220 Signals and Systems Spring 2016 Problem Set 2 Due Friday February 19, 2016 at 5:00PM. Location to turn in: "ECE 2200" box on Phillips Hall 2nd floor

1. Signal Processing First P-3.1. DSP First (2nd edition) P-3.2. A signal is composed of sinusoids is given by the equation

$$x(t) = 10\cos(800\pi t + \pi/4) + 7\cos(1200\pi t - \pi/3) - 3\cos(1600\pi t).$$
 (1)

- (a) Sketch the spectrum of this signal, indicating the complex amplitude of each frequency component. Make separate plots for real/imaginary or magnitude/phase of the complex amplitudes at each frequency.
- (b) Is x(t) periodic? If so, what is the period?
- (c) Now consider a new signal defined as $y(t) = x(t) + 5\cos(1000\pi t + \pi/2)$. How is the spectrum changed? Is y(t) periodic? If so, what is the period?
- 2. Signal Processing First P-3.2. DSP First (2nd edition) P-3.1. A signal x(t) has the two-sided spectrum representation shown in Fig. P-3.1.

- (a) Write an equation for x(t) as a sum of cosines.
- (b) Is x(t) a periodic signal? If so, determine its fundamental period and its fundamental frequency.
- (c) Explain why negative frequencies are needed in the spectrum.
- 3. Signal Processing First P-3.17. DSP First (2nd edition) P-3.21. Small changes by Doerschuk. A chirp signal is one that sweeps in frequency from $\omega_1 = 2\pi f_1$ to $\omega_2 = 2\pi f_2$ as time goes from t = 0 to $t = T_2$. The general formula for a chirp is

$$x(t) = A\cos(\alpha t^2 + \beta t + \phi) = A\cos(\psi(t))$$
(2)

where

$$\psi(t) = \alpha t^2 + \beta t + \phi \tag{3}$$

and the units of β are inverse seconds and the units of α are inverse seconds squared. The derivative of $\psi(t)$ with respect to t is the *instantaneous frequency* (in rad/s), which is also the frequency heard if the frequencies are in the audible range.

(a) For the chirp in Eq. 2, determine formulas for the beginning (t = 0) instantaneous frequency (ω_1^{inst}) and the ending $(t = T_2)$ instantaneous frequency (ω_2^{inst}) in terms of α , β , and T_2 .

(b) For the chirp signal

$$x(t) = \Re\left\{e^{j(40t^2 + 27t + 13)}\right\}$$
(4)

derive a formula for the instantaneous frequency versus time.

- (c) Make a plot of the instantaneous frequency (in Hz) versus time over $0 \le t \le 1$ s for the signal defined in Eq. 4.
- 4. Signal Processing First P-3.19. DSP First (2nd edition) P-3.26 but with different numbers. The plots in Fig. P-3.19 show waveforms on the left and spectra on the right. Match the waveform letter with its corresponding spectrum number. In each case, write the formula for the signal as a sum of sinusoids.

5. Complex exponentials have many advantages over sines and cosines. The complex exponential form of the Fourier series is

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n \exp\left(j\frac{2\pi}{T}nt\right)$$
(5)

$$c_n = \frac{1}{T} \int_T x(t) \exp\left(-j\frac{2\pi}{T}nt\right) dt.$$
(6)

If $x(\cdot)$ takes only real values, then Eq. 5 is an unusual equation since it describes a real number [x(t) for a particular value of t] by a sum of complex numbers $[c_n \exp(j\frac{2\pi}{T}nt)]$ for the same particular value of t]. This requires that the c_n have a particular property, which is the subject of this problem.

- (a) One way to derive this property is to do the following calculation:
 - i. Take the complex conjugate of Eq. 5 to get

$$x^*(t) = \left[\sum_{n=-\infty}^{+\infty} c_n \exp\left(j\frac{2\pi}{T}nt\right)\right]^*.$$
(7)

ii. Use the fact that $x(\cdot)$ is real to get

$$x(t) = \left[\sum_{n=-\infty}^{+\infty} c_n \exp\left(j\frac{2\pi}{T}nt\right)\right]^*.$$
(8)

iii. Use $(z_1 + z_2)^* = z_1^* + z_2^*$ to get

$$x(t) = \sum_{n=-\infty}^{+\infty} \left[c_n \exp\left(j\frac{2\pi}{T}nt\right) \right]^*.$$
(9)

iv. Use $(z_1 z_2)^* = z_1^* z_2^*$ to get

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n^* \left[\exp\left(j\frac{2\pi}{T}nt\right) \right]^*.$$
 (10)

v. Use $[\exp(j\theta)]^* = \exp(-j\theta)$ to get

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n^* \exp\left(-j\frac{2\pi}{T}nt\right).$$
(11)

vi. Change dummy summation index from n to m where m = -n to get

$$x(t) = \sum_{m=-\infty}^{+\infty} c_{-m}^* \exp\left(j\frac{2\pi}{T}mt\right).$$
(12)

By comparing Eqs. 5 and 12, describe the constraint that the Fourier series coefficients c_n must satisfy if $x(\cdot)$ is to be real valued.

- (b) Does $c_n = \rho^{|n|}$ where $\rho \in \mathbb{R}$ and $|\rho| < 1$ satisfy the constraint?
- (c) For each of the sets of c_n described in Table 1, does the c_n represent a real valued signal?
- 6. A signal $x(\cdot)$ is defined to be "even" if x(t) x(-t) for all values of t. This is the only so-called "space group symmetry" when the independent variable, here denoted by t, is a real number. When the independent variable is a vector of 2 or of 3 real numbers then there are many space groups (230 for the case of vectors with three components) and these symmetries are very important in the atomic

n	c_n	n	c_n	n	c_n
0	2	0 2	+7j	0	2
1	3 + 6j	1 3-	+6j	1	3+6j
2	$1.5 {+} 2.5 j$	2 1.5	+2.5j	2	1.5 + 2.5j
-1	3-6j	-1 3	-6j	-1	3+6j
-2	1.5-2.5j	-2 1.5	-2.5j	-2	1.5 + 2.5j
	(a)	(b)			(c)
n	c_n	n	c_n		
0	2+7j	0	2		
1	3+6j	1	3		
2	$1.5 {+} 2.5 j$	2	1.5		
-1	3+6j	-1	3		
-2	1.5 + 2.5j	-2	1.5		
	(d)	(e)			

Table 1: Sets of Fourier series coefficients. Coefficients not listed have value zero.

structure of materials. The usual signal/image processing terminology is to refer to these as 1-D, 2-D, or 3-D signals.

Suppose $x(\cdot)$ is even. The complex exponential form of the Fourier series is

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n \exp\left(j\frac{2\pi}{T}nt\right)$$
(13)

$$c_n = \frac{1}{T} \int_T x(t) \exp\left(-j\frac{2\pi}{T}nt\right) dt.$$
(14)

The fact that $x(\cdot)$ is even requires that the c_n have a particular property, which is the subject of this problem.

- (a) One way to derive this property is to do the following calculation:
 - i. Replace t by -t in Eq. 13 gives

$$x(-t) = \sum_{n=-\infty}^{+\infty} c_n \exp\left(j\frac{2\pi}{T}n(-t)\right).$$
(15)

ii. Use the fact that $x(\cdot)$ is even to get

$$x(t) = \sum_{n=-\infty}^{+\infty} c_n \exp\left(j\frac{2\pi}{T}n(-t)\right).$$
(16)

iii. Change dummy summation index from n to m where m = -n to get

$$x(t) = \sum_{m=-\infty}^{+\infty} c_{-m} \exp\left(j\frac{2\pi}{T}(-m)(-t)\right).$$
 (17)

- iv. By comparing Eqs. 13 and 17, describe the constraint that the Fourier series coefficients c_n must satisfy if $x(\cdot)$ is to be even.
- (b) For the examples of c_n given in Problem 5, do the c_n belong to a signal that is even?
- 7. (a) By combining the results of Problems 5 and 6, what are the constraints on the c_n if a signal is both real valued and even?
 - (b) For the examples of c_n given in Problem 5, do the c_n belong to a signal that is both real valued and even?