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ECE 2200 and ENGRD 2220
Signals and Systems

Spring 2016
Problem Set 2

Due Friday February 19, 2016 at 5:00PM.
Location to turn in: “ECE 2200” box on Phillips Hall 2nd floor

1. Signal Processing First P-3.1. DSP First (2nd edition) P-3.2. A signal is composed of sinusoids is
given by the equation

x(t) = 10 cos(800πt+ π/4) + 7 cos(1200πt− π/3)− 3 cos(1600πt). (1)

(a) Sketch the spectrum of this signal, indicating the complex amplitude of each frequency component.
Make separate plots for real/imaginary or magnitude/phase of the complex amplitudes at each
frequency.

(b) Is x(t) periodic? If so, what is the period?

(c) Now consider a new signal defined as y(t) = x(t) + 5 cos(1000πt + π/2). How is the spectrum
changed? Is y(t) periodic? If so, what is the period?

2. Signal Processing First P-3.2. DSP First (2nd edition) P-3.1. A signal x(t) has the two-sided spectrum
representation shown in Fig. P-3.1.
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Figure P-3.1

(a) Write an equation for x(t) as a sum of cosines.

(b) Is x(t) a periodic signal? If so, determine its fundamental period and its fundamental frequency.

(c) Explain why negative frequencies are needed in the spectrum.

3. Signal Processing First P-3.17. DSP First (2nd edition) P-3.21. Small changes by Doerschuk. A chirp
signal is one that sweeps in frequency from ω1 = 2πf1 to ω2 = 2πf2 as time goes from t = 0 to t = T2.
The general formula for a chirp is

x(t) = A cos(αt2 + βt+ φ) = A cos(ψ(t)) (2)

where
ψ(t) = αt2 + βt+ φ (3)

and the units of β are inverse seconds and the units of α are inverse seconds squared. The derivative
of ψ(t) with respect to t is the instantaneous frequency (in rad/s), which is also the frequency heard if
the frequencies are in the audible range.

(a) For the chirp in Eq. 2, determine formulas for the beginning (t = 0) instantaneous frequency
(ωinst

1 ) and the ending (t = T2) instantaneous frequency (ωinst
2 ) in terms of α, β, and T2.
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(b) For the chirp signal

x(t) = ℜ
{

ej(40t
2+27t+13

}

(4)

derive a formula for the instantaneous frequency versus time.

(c) Make a plot of the instantaneous frequency (in Hz) versus time over 0 ≤ t ≤ 1s for the signal
defined in Eq. 4.

4. Signal Processing First P-3.19. DSP First (2nd edition) P-3.26 but with different numbers. The plots
in Fig. P-3.19 show waveforms on the left and spectra on the right. Match the waveform letter with its
corresponding spectrum number. In each case, write the formula for the signal as a sum of sinusoids.
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Figure P-3.19
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5. Complex exponentials have many advantages over sines and cosines. The complex exponential form of
the Fourier series is

x(t) =
+∞
∑

n=−∞

cn exp

(

j
2π

T
nt

)

(5)

cn =
1

T

∫

T

x(t) exp

(

−j 2π
T
nt

)

dt. (6)

If x(·) takes only real values, then Eq. 5 is an unusual equation since it describes a real number [x(t)
for a particular value of t] by a sum of complex numbers [cn exp

(

j 2πT nt
)

for the same particular value
of t]. This requires that the cn have a particular property, which is the subject of this problem.

(a) One way to derive this property is to do the following calculation:

i. Take the complex conjugate of Eq. 5 to get

x∗(t) =

[

+∞
∑

n=−∞

cn exp

(

j
2π

T
nt

)

]∗

. (7)

ii. Use the fact that x(·) is real to get

x(t) =

[

+∞
∑

n=−∞

cn exp

(

j
2π

T
nt

)

]∗

. (8)

iii. Use (z1 + z2)
∗ = z∗1 + z∗2 to get

x(t) =

+∞
∑

n=−∞

[

cn exp

(

j
2π

T
nt

)]∗

. (9)

iv. Use (z1z2)
∗ = z∗1z

∗
2 to get

x(t) =

+∞
∑

n=−∞

c∗n

[

exp

(

j
2π

T
nt

)]∗

. (10)

v. Use [exp(jθ)]∗ = exp(−jθ) to get

x(t) =

+∞
∑

n=−∞

c∗n exp

(

−j 2π
T
nt

)

. (11)

vi. Change dummy summation index from n to m where m = −n to get

x(t) =

+∞
∑

m=−∞

c∗−m exp

(

j
2π

T
mt

)

. (12)

By comparing Eqs. 5 and 12, describe the constraint that the Fourier series coefficients cn
must satisfy if x(·) is to be real valued.

(b) Does cn = ρ|n| where ρ ∈ IR and |ρ| < 1 satisfy the constraint?

(c) For each of the sets of cn described in Table 1, does the cn represent a real valued signal?

6. A signal x(·) is defined to be “even” if x(t) − x(−t) for all values of t. This is the only so-called
“space group symmetry” when the independent variable, here denoted by t, is a real number. When
the independent variable is a vector of 2 or of 3 real numbers then there are many space groups (230
for the case of vectors with three components) and these symmetries are very important in the atomic
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n cn
0 2
1 3+6j
2 1.5+2.5j
-1 3-6j
-2 1.5-2.5j

n cn
0 2+7j
1 3+6j
2 1.5+2.5j
-1 3-6j
-2 1.5-2.5j

n cn
0 2
1 3+6j
2 1.5+2.5j
-1 3+6j
-2 1.5+2.5j

(a) (b) (c)
n cn
0 2+7j
1 3+6j
2 1.5+2.5j
-1 3+6j
-2 1.5+2.5j

n cn
0 2
1 3
2 1.5
-1 3
-2 1.5

(d) (e)

Table 1: Sets of Fourier series coefficients. Coefficients not listed have value zero.

structure of materials. The usual signal/image processing terminology is to refer to these as 1-D, 2-D,
or 3-D signals.

Suppose x(·) is even. The complex exponential form of the Fourier series is

x(t) =

+∞
∑

n=−∞

cn exp

(

j
2π

T
nt

)

(13)

cn =
1

T

∫

T

x(t) exp

(

−j 2π
T
nt

)

dt. (14)

The fact that x(·) is even requires that the cn have a particular property, which is the subject of this
problem.

(a) One way to derive this property is to do the following calculation:

i. Replace t by −t in Eq. 13 gives

x(−t) =
+∞
∑

n=−∞

cn exp

(

j
2π

T
n(−t)

)

. (15)

ii. Use the fact that x(·) is even to get

x(t) =

+∞
∑

n=−∞

cn exp

(

j
2π

T
n(−t)

)

. (16)

iii. Change dummy summation index from n to m where m = −n to get

x(t) =
+∞
∑

m=−∞

c−m exp

(

j
2π

T
(−m)(−t)

)

. (17)

iv. By comparing Eqs. 13 and 17, describe the constraint that the Fourier series coefficients cn
must satisfy if x(·) is to be even.

(b) For the examples of cn given in Problem 5, do the cn belong to a signal that is even?

7. (a) By combining the results of Problems 5 and 6, what are the constraints on the cn if a signal is
both real valued and even?

(b) For the examples of cn given in Problem 5, do the cn belong to a signal that is both real valued
and even?
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