The University has asked that every course-related document be marked as copyrighted:
Copyright 2016 Peter C. Doerschuk

ECE 2200 and ENGRD 2220

Signals and Systems
Spring 2016
Preliminary Exam 1 Solution

1. (a) $g(t)$ will "blow up" twice, once at $t=-a$ and once at $t=a$.
(b)

$$
\begin{equation*}
\delta\left(t^{2}-a^{2}\right)=\frac{1}{2|a|}[\delta(t+a)+\delta(t-a)] \tag{25}
\end{equation*}
$$

since then if you multiply both sides of Eq. 25 by a smooth function $f(t)$ and integrate from $-\infty$ to $+\infty$ you will get the same answer, which is Eq. 24 .
2. (a) The period is 4 .
(b) It is not possible to draw a second signal for Figures 2-5. For Figures 6-9, second signals that are lower frequency cosines are shown in Figures 10-13.
(c) From these plots, it appears that you need $T_{s}<\frac{1}{2} T$ in order to not have aliasing, where T is the period of the original signal and T_{s} is the sampling interval.

Figure 10: $T_{s}=0.51 T$

Figure 11: $T_{s}=0.55 T$

Figure 12: $T_{s}=0.6 T$

Figure 13: $T_{s}=0.75 T$
3. (a) i. Please write $x_{2}(t)$ as a function of $x_{1}(t) . x_{2}(t)=2 x_{1}(t)$.
ii. Is it correct to write that $x_{3}(t)=x_{1}(t / 2)$? No, the pulse is stretched by a factor of 2 but the period remains the same.
iii. Please write $x_{4}(t)$ as a function of $x_{1}(t) . x_{4}(t)=x_{1}(t-\tau / 2)$.
iv. Please write $x_{5}(t)$ as a function of $x_{3}(t)$ and $x_{1}(t) . x_{5}(t)=x_{3}(t)+x_{1}(t-\tau / 2)$.
v. Please write $x_{5}(t)$ as a function of $x_{1}(t) . \quad x_{5}(t)=x_{1}(t+\tau / 2)+2 x_{1}(t-\tau / 2)$ or $x_{5}(t)=$ $x_{1}(t-\tau / 2)+x_{1}(t / 2)$.
(b) Please consider the following plots of Fourier series coefficients. Which plot corresponds to which signal $x_{1}(t), x_{2}(t), \ldots, x_{5}(t)$?

$$
\begin{align*}
& c_{n}^{(1)}=\frac{1}{T} \int_{T} x_{1}(t) \exp (-j(2 \pi / T) n t) \mathrm{d} t \tag{26}\\
& =\frac{1}{T} \int_{-T / 2}^{+T / 2} x_{1}(t) \exp (-j(2 \pi / T) n t) \mathrm{d} t \tag{27}\\
& =\frac{1}{T} \int_{-\tau / 2}^{+\tau / 2} A \exp (-j(2 \pi / T) n t) \mathrm{d} t \tag{28}\\
& = \begin{cases}\frac{1}{T} \int_{-\tau / 2}^{+\tau / 2} A \exp (-j(2 \pi / T) n t) \mathrm{d} t & n \neq 0 \\
\frac{1}{T} \int_{-\tau / 2}^{+\tau / 2} A \mathrm{~d} t & n=0\end{cases} \tag{29}\\
& = \begin{cases}\left.\frac{A}{T} \frac{1}{-j(2 \pi / T) n} \exp (-j(2 \pi / T) n t)\right|_{-\tau / 2} ^{+\tau / 2} & n \neq 0 \\
\frac{A \tau}{T} & n=0\end{cases} \tag{30}\\
& = \begin{cases}\frac{A}{T} \frac{1}{-j(2 \pi / T) n}[\exp (-j(2 \pi / T) n \tau / 2)-\exp (j(2 \pi / T) n \tau / 2)] & n \neq 0 \\
\frac{A \tau}{T} & n=0\end{cases} \tag{31}\\
& = \begin{cases}\frac{A}{T} \frac{1}{-j(2 \pi / T) n}[-2 j \sin ((2 \pi / T) n \tau / 2)] & n \neq 0 \\
\frac{A \tau}{T} & n=0\end{cases} \tag{32}\\
& = \begin{cases}\frac{A}{T} \frac{1}{(\pi / T) n}[\sin ((\pi / T) n \tau)] & n \neq 0 \\
\frac{A \tau}{T} & n=0\end{cases} \tag{33}\\
& = \begin{cases}\frac{A \tau}{T} \frac{1}{\pi(\tau / T) n}[\sin (\pi(\tau / T) n)] & n \neq 0 \\
\frac{A \tau}{T} & n=0\end{cases} \tag{34}\\
& \operatorname{sinc}(z)=\sin (\pi z) /(\pi z) \\
& = \begin{cases}\frac{A \tau}{T} \operatorname{sinc}((\tau / T) n) & n \neq 0 \\
\frac{A \tau}{T} & n=0\end{cases} \tag{35}\\
& \operatorname{sinc}(0)=1 \\
& =\frac{A \tau}{T} \operatorname{sinc}((\tau / T) n) \tag{36}\\
& c_{n}^{(2)}=2 c_{n}^{(1)} \tag{37}\\
& c_{n}^{(3)}=\left.c_{n}^{(1)}\right|_{\tau \rightarrow 2 \tau} \tag{38}\\
& =\frac{2 A \tau}{T} \operatorname{sinc}((2 \tau / T) n) \tag{39}\\
& c_{n}^{(4)}=\left.\exp (-j(2 \pi / T) n \xi)\right|_{\xi=\tau / 2} c_{n}^{(1)} \tag{40}\\
& c_{n}^{(5)}=\left.\exp (-j(2 \pi / T) n \xi)\right|_{\xi=-\tau / 2} c_{n}^{(1)}+\left.2 \exp (-j(2 \pi / T) n \xi)\right|_{\xi=\tau / 2} c_{n}^{(1)} . \tag{41}
\end{align*}
$$

The key part of the software is
$n=[-10: 10]$;

A=0.5;

```
T=1;
tau=0.25;
c1=(A*tau/T).*sinc( (tau/T).*n );
c2=2*c1;
c3=(2*A*tau/T).*sinc( (2*tau/T).*n );
c4=exp(-i*(2*pi/T)*(tau/2).*n).*c1;
c5=exp( j*(2*pi/T)*(tau/2).*n).*c1 + 2*exp(-j*(2*pi/T)*(tau/2).*n).*c1;
```

The answers are

$$
\begin{array}{ll}
x_{1}(t) & \mathrm{A} \\
x_{2}(t) & \mathrm{C} \\
x_{3}(t) & \mathrm{B} \\
x_{4}(t) & \mathrm{E} \\
x_{5}(t) & \mathrm{D}
\end{array}
$$

