The University has asked that every course-related document be marked as copyrighted:
Copyright 2016 Peter C. Doerschuk

ECE 2200 and ENGRD 2220
Signals and Systems
Spring 2016
Preliminary Exam 1
Thursday February 25, 2016
11:40AM-12:55PM
Phillips Hall Room 101
No calculator!
Only the provided formula sheet!
Work alone!

1. $(20=10+10$ pts. $)$ Expressions involving Dirac δ functions are defined by what they do under an integral sign. We have the expression

$$
\begin{equation*}
\delta(a t)=\frac{1}{|a|} \delta(t) . \tag{18}
\end{equation*}
$$

(a) Consider the function $g(t)=\delta\left(t^{2}-a^{2}\right)$ where a is a non-zero real number and $-\infty<t<+\infty$. How many times does $g(t)$ "blow up" and what are the values of t where the "blow ups" occur?
(b) Consider the follwing integral where a is a non-zero real number and $f(t)$ is a smooth function:

$$
\begin{align*}
& \int_{-\infty}^{+\infty} \delta\left(t^{2}-a^{2}\right) f(t) \mathrm{d} t \\
&= \int_{-\infty}^{0} \delta\left(t^{2}-a^{2}\right) f(t) \mathrm{d} t+\int_{0}^{+\infty} \delta\left(t^{2}-a^{2}\right) f(t) \mathrm{d} t \tag{19}\\
&= t^{\prime}=-t \\
&= \int_{0}^{\infty} \delta\left(t^{\prime 2}-a^{2}\right) f\left(-t^{\prime}\right) \mathrm{d} t^{\prime}+\int_{0}^{\infty} \delta\left(t^{2}-a^{2}\right) f(t) \mathrm{d} t \tag{20}\\
&= \int_{0}^{\infty} \delta\left(t^{2}-a^{2}\right)[f(-t)+f(t)] \mathrm{d} t \tag{21}\\
& \lambda=t^{2}-a^{2} \Longrightarrow t= \pm \sqrt{\lambda+a^{2}} \\
& \frac{\mathrm{~d} \lambda}{\mathrm{~d} t}=2 t \Longrightarrow \mathrm{~d} t=\frac{\mathrm{d} \lambda}{2 t}=\frac{\mathrm{d} \lambda}{ \pm 2 \sqrt{\lambda+a^{2}}} \\
&= \int_{-a^{2}}^{\infty} \delta(\lambda)\left[f\left(-\sqrt{\lambda+a^{2}}\right)+f\left(\sqrt{\lambda+a^{2}}\right)\right] \frac{\mathrm{d} \lambda}{2 \sqrt{\lambda+a^{2}}} \\
&= {\left[f\left(-\sqrt{a^{2}}\right)+f\left(\sqrt{a^{2}}\right)\right] \frac{1}{2 \sqrt{a^{2}}} } \tag{22}\\
&= \frac{1}{2|a|}[f(-|a|)+f(|a|)] . \tag{23}
\end{align*}
$$

Please give a formula analogous to Eq. 18 where the right hand side of the formula is $\delta\left(t^{2}-a^{2}\right)$ and the left hand side has δ functions whose arguments are not more complicated than $t-t_{0}$ for some time t_{0} where t_{0} might be positive or negative.
2. ($40=4+8 \times 4+4 \mathrm{pts}$.) Please consider Figures $1-9$. Figure 1 shows the cosine signal $x(t)$ and Figures 2-9 show the signal $x(t)$ and the times and values of samples of $x(t)$ at various different sampling intervals T_{s}.
(a) What is the period of $x(t)$?
(b) We hope that the samples (times and values) will be a description of a unique signal. In other words, no two signals share the same samples (times and values). "Aliasing" means, however, that there is a second signal that has the same samples (times and values). It is always possible to "connect the dots" with a second signal but we are only interested in cases where you can "connect the dots" with a second sinusoid at a lower frequency. When possible, please draw such a second signal on Figures 2-9. It may be easiest to first try to draw a second signal on Figure 9.
(c) Hopefully you were successful sometimes and unsuccessful other times in drawing a second signal in Problem 2b. What does your success and failure tell you about the range of sampling intervals T_{s} which do not allow aliasing? You have basically discovered the Nyquist Sampling Theorem!

Figure 1: Original signal.

Figure 2: $T_{s}=0.25 T$

Figure 3: $T_{s}=0.4 T$

Figure 4: $T_{s}=0.45 T$

Figure 5: $T_{s}=0.49 T$

Figure 6: $T_{s}=0.51 T$

Figure 7: $T_{s}=0.55 T$

Figure 8: $T_{s}=0.6 T$

Figure 9: $T_{s}=0.75 T$
3. $(40=5 \times 2+5 \times 6$ pts.) Please consider the following periodic time signals (fundamental period is $T)$.

(a) i. Please write $x_{2}(t)$ as a function of $x_{1}(t)$.
ii. Is it correct to write that $x_{3}(t)=x_{1}(t / 2)$?
iii. Please write $x_{4}(t)$ as a function of $x_{1}(t)$.
iv. Please write $x_{5}(t)$ as a function of $x_{3}(t)$ and $x_{1}(t)$.
v. Please write $x_{5}(t)$ as a function of $x_{1}(t)$.
(b) Please consider the following plots of Fourier series coefficients. Which plot corresponds to which signal $x_{1}(t), x_{2}(t), \ldots, x_{5}(t)$?

Option A

Option B

Option C

Option D The Fourier series coefficients are complex and both the magnitude and phase and the real and imaginary parts are shown.

Option E The Fourier series coefficients are complex and both the magnitude and phase and the real and imaginary parts are shown.

