ECE 303-Homewark \#10 Solutions.
(By Farhan Rava).
10.1
a) - d) see attacued plots.
10.2
a) - c) see attached plots.
10.3

a)

$$
R_{\text {th }}=Z_{0}=50 \Omega .
$$

$\operatorname{Vtn}(t)=0$ for $0 \leq t \leq 2 \frac{\ell}{V}$. this is because there was no $V=(2, t)$ on the line before the switch was opened.
b) -e) See attached plots.

1016
a) $\omega_{m=2}\left(T E_{2}\right)=\omega_{m=2}\left(T m_{2}\right)=\frac{1}{\sqrt{\mu_{0} \varepsilon}} \frac{2 \pi}{d}=\frac{c}{2} \cdot \frac{2 \pi}{5 \times 10^{-3}}=1.89 \times 10^{11} \mathrm{rad} / \mathrm{sec}$ $=30 \mathrm{GHz}_{2}$.
b) See attached plot.
c) See attached plot.
10.5
a) Same figure as in 10.4 (a) except that $V t h(t)=+2 \mathrm{~V}$ for $0<t<2 \ell / v$. This is because $\mathrm{V} _(\mathrm{z}, \mathrm{t})$ was +1 V before the switch was opened woud reflect as +1 V from the open end of the transmission line.
b) - e) See attached plots.

Problem and Part Number: 10.1(a)
Problem and Part Number: 10.1(b)

Problem and Part Number: 10.1(c)
Problem and Part Number: 10.1(d)

Problem and Part Number: 10.2(c)
Problem and Part Number:

Problem and Part Number: 10.4(e)
Problem and Part Number: 10.4(b)

Problem and Part Number: 10.5(c) Problem and Part Number: 10.5(d)

Problem and Part Number: 10.5(e) Problem and Part Number: 10.5(b)

