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School of Electrical and Computer Engineering, Cornell University 
 

ECE 303: Electromagnetic Fields and Waves 
 

Fall 2007 
 

Homework 8      Due on Oct. 19, 2007 by 5:00 PM 
 
 

Reading Assignments: 
i) Review the lecture notes. 
ii) Review sections 4.1-4.3, 5.1-5.2, 5.4, 6.1, 6.3-6.4, paperback book Electromagnetic Waves. These 
sections also include the material to be covered in the next two weeks of the class.   
 
Special Note: Graders have been instructed to take off points (as much as 50%) if proper units are not 
included in your numerical answers. You must specify the correct units with your numerical answers.  
 
Problem 8.1: (Impedance transformations in microwave circuits)  
 
Consider the following transmission line circuit: 
 

 
 
The circuit is operating at a frequency of 1.0 GHz. At the load end of the circuit there is a 70 Ω resistor in 
series with a 9.55 nH = 9.55x10-9 H inductor. The length of the transmission line is such that:  

λ
16
21

=l  

where λ  is the wavelength of waves in the transmission line at a frequency of 1.0 GHz.  
 
a) Find the load reflection coefficient ΓL (give a numerical value).   
 
b) Find the impedance Z(z = -ℓ) looking into the transmission line at z =-ℓ  so that the following 
equivalent circuit can be used for analysis: 

  
 
Give a numerical value for your answer.  
 
c) Find the time-average power dissipated in the impedance Z(z = -ℓ) in the above circuit (give a 
numerical value).    

Zo = 50 Ω 

Zs 
50 Ω 

70 Ω 

9.55 nH 
V+ 

V- 
Vs(t ) 

Vs(t ) = 5 cos(ω t )  

Zs 
50 Ω Z(z =-ℓ) Vs(t ) 

z = - ℓ z = 0 
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d) Find the voltage V+ of the forward going voltage wave in the transmission line circuit (give a 
numerical value).  
 
e) Find the voltage V- of the backward going voltage wave in the transmission line circuit (give a 
numerical value).  
 
f) Find the net time-average power traveling in the +z-direction in the transmission line circuit (give a 
numerical value). Compare your answer with your answer in part (c) and explain what you learned by this 
comparison.  
     
g) Now find the Thevenin equivalent of the “source+transmission line” so that the following equivalent 
circuit can be used for analysis:  

 
You need to find the impedance Zth and the voltage phasor Vth (give numerical answers for each of 
these).  
 
h) Using your circuit of part (g) find the time-average power dissipated in the 70 Ω load resistor (give a 
numerical value). Compare your answer to your answers in parts (c) and (f) and explain what you learned 
by this comparison.  
 
Problem 8.2: (Energy flow and power in transmission lines)  
 
Consider a co-axial transmission line whose cross-section is shown below: 

 
Suppose a voltage-current wave given by: 
( ) zjkeVzV −

+=   

( ) zjk

o
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Z
V
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is traveling in the co-axial line. In the lecture notes you were told that the time-average power is related to 
the Poynting vector through the relation: 

( ) ( ) ( )[ ] [ ]*Re
2
1ˆ.Re

2
1ˆ., ++=∫∫=∫∫= IVdydxzrSdydxztrStPz
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In this problem you are going to prove the last equality of the above relation for a co-axial line.  
 
a) Find the expression for the impedance oZ  of the co-axial line in terms of the dimensions specified in 
the figure above. You can write down the answer using lecture notes – no need to compute from first 
principles.  
 
b) If the voltage wave is given by ( ) zjkeVzV −

+= , find an expression for the position dependent electric 
field vector phasor associated with the wave in the annular region between the two conductors.  
 
Hint: You can assume that a positive value of the voltage implies that the center conductor is at a higher 
potential. ( ) ?=rE

rr
 

 
c) If the current wave is given by ( ) zjkeIzI −

+=  find an expression for the magnetic field vector phasor 
associated with the wave in the annular region between the two conductors.  
 
Hint: You can assume that a positive value of the current implies that the current in the center conductor 
is in the +z-direction. ( ) ?=rH

rr
 

 
d) Using your results from parts (b) and (c), find the complex Poynting vector ( )rS

rr
 in the annular region 

between the two conductors. Which way is the power flowing? 
 
e) Integrate the complex Poynting vector ( )rS

rr
 obtained in part (d) above over the cross-sectional area of 

the annular region between the two conductors and show that: 
 

( )[ ] [ ]*Re
2
1ˆ.Re

2
1

++=∫∫ IVdydxzrS
rr

 

 
Problem 8.3: (Lossy Transmission Lines)  
 
Perfect metals and dielectrics are generally not available in this world to make transmission lines. 
Consequently, real transmission lines are lossy (i.e. a wave propagating in a transmission line looses 
power as it propagates). One contributing factor towards this loss is the I2R dissipation in the imperfect 
metals of the transmission line. Any real metal will have some finite resistance and current flow will 
result in power dissipation. In this problem you will consider a more realistic model of a transmission 
line.  
 
Consider the parallel plate transmission line shown below.  

 
The width of the metal plates is W (in the x-direction). The capacitance and inductance per unit length of 
the transmission line are C and L, respectively. Suppose the total combined resistance per unit length of 
the top and bottom plates is R.  
 
a) Show that when resistance is present the telegrapher’s equations become,  

doo µε  z  

y  
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Hint: Use the same methods as discussed in the lecture notes to derive the above equations.  
 
b) Convert the above equations into phasor notation, and then derive the complex wave equation 
for the voltage phasor V(z).  
 
c) Assume a propagating solution of the form ( ) zjkeVzV −

+= , plug it into  the wave equation you 
derived in part (b), and find the k-vs-ω dispersion relation for the lossy transmission line. Check that your 
result gives the correct k-vs-ω dispersion relation in the case when R=0.  
 
If you did everything correct to this point you will discover that the k-vector has real and imaginary parts 
and the imaginary part describes wave decay due to power loss in the signal propagating in the 
transmission line as a result of the I2R dissipation in the resistance associated with the metal plates.   
 
d) Find the characteristic impedance Zo of the transmission line. Hint: it will be complex.  
 
Problem 8.4: (Stub tuning in microwave circuits)  
 
Consider the following transmission line circuit shown in the figure below. All transmission lines have an 
impedance of 50 Ω. On the left is a transmission line carrying an input signal specified by the amplitude 
V+ of the forward going voltage wave on that transmission line. On the right is a load impedance of 25 Ω. 
The goal is to transfer all the input power to the 25 Ω load impedance. Since the load is not matched to 
the transmission line impedance of 50 Ω, if the load were to be directly connected to the input 
transmission line then some input power will get reflected back. So we use the circuit shown below.  

 
An open-circuit stub tuner is used to match the total impedance of the structure on the right (of the dashed 
line) to the 50 Ω impedance of the transmission line on the left carrying the input signal. You have at your 
disposal two design parameters - you can choose the lengths ℓ1 and ℓ2 of both the transmission lines. 

Zo = 50 Ω 
V+ 

z = - ℓ1 z = 0

25 Ω Zo = 50 Ω 

z = - ℓ2 

z = 0

Zo = 50 Ω 
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Assuming that the wavelength of the waves at the frequency of operation is λ in all the transmission lines, 
you need to specify the lengths ℓ1 and ℓ2 in terms of the wavelength λ such that the impedance of the 
structure to the right of the dashed line is exactly 50 Ω. You need to design using Smith Charts.  
 
Matlab work:  
Go to the course website and download the matlab file for the function “smith303.m”. The function 
“smith303” is called as follows: 
>> smith303(ZL, Zo)  
where ZL and Zo are the load and transmission line impedances, respectively. In response, smith303 does 
the following: 

i) draws a smith chart 
ii) points out the starting point (i.e. Γ(z=0) and Zn(z=0)) on the smith chart  
iii) draws the circle that shows the values of  Γ(z) and Zn(z) on the smith chart as ones moves 

back from the load on the transmission line.  
Solution strategy: 

i) First choose the smallest length ℓ1 such that the normalized admittance Yn(z=-ℓ1) has a real 
part of unity 

ii)  Then choose the smallest length ℓ2 such that the normalized admittance Yn(z=-ℓ2) has an 
imaginary part that exactly cancels the imaginary part of Yn(z=-ℓ1).  

 
a) Find the smallest length ℓ1 in terms of the wavelength λ such that Yn(z=-ℓ1) has a real part of unity. 
Use smith chart to calculate ℓ1 and include a printout of the smith chart showing your work with your 
answer sheet. Note that the normalized admittance is always diagonally opposite to the normalized 
impedance on a smith chart.   
 
b) Find the smallest length ℓ2 in terms of the wavelength λ such that Yn(z=-ℓ2) has an imaginary part that 
exactly cancels the imaginary part of Yn(z=-ℓ1). Use smith chart to calculate ℓ2 and include a printout of 
the smith chart showing your work with your answer sheet. Note that the normalized admittance is always 
diagonally opposite to the normalized impedance on a smith chart. 
 
c) Now suppose that instead of using an open-circuit stub you use a short circuit stub as shown in the 
figure below.  

 

Zo = 50 Ω 
V+ 

z = - ℓ1 z = 0

25 Ω Zo = 50 Ω 

z = - ℓ2 

z = 0

Zo = 50 Ω 
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Assuming that the length ℓ1 is the same as that calculated in part (a) above, find the smallest length ℓ2 in 
terms of the wavelength λ such that Yn(z=-ℓ2) has an imaginary part that exactly cancels the imaginary 
part of Yn(z=-ℓ1). Use smith chart to calculate ℓ2 and include a printout of the smith chart showing your 
work with your answer sheet. Note that the normalized admittance is always diagonally opposite to the 
normalized impedance on a smith chart. 
 
Problem 8.5: (Power splitting in microwave circuits)  
 
Power splitters are commonly used in integrated microwave circuits on a chip to split microwave power 
into two or more output directions. A schematic of a 1x2 microwave splitter is shown below.  
 
You need to figure out what fraction of the input power is reflected, and what fraction of the input power 
is transmitted into each of the output transmission lines. Before you can do that you need to find the 
amplitudes V-1 , V+2 , and V+3 of the voltage waves in terms of the input wave amplitude V+1.   
 

 
 
a) Looking to the right of the dashed line, the two output transmission lines can be represented as lumped 
impedances so the equivalent circuit becomes as shown below: 
 

  
Find the amplitude V-1 of the reflected wave in terms of the input wave amplitude V+1 and find the 
fraction of the input power that is reflected (give a numerical answer).  
 
b) Find the total voltage VT at the point z=0 in the figure above in terms of the input wave amplitude V+1.  
 

V+1 

Zo3=10 Ω 

V-1 

V+2 

V+3 

Zo1=10 Ω  Zo2 = 10 Ω  

V+1 
Zo1  

V-1 
Zo3  Zo2  

z = 0

+

-
VT 
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c) The total voltage VT  found in part (b) must also equal V+2 and V+3 since they are in parallel. Knowing 
this, find the fraction of the input power transmitted in the each of the two output transmission lines (give 
numerical answers). Do all your fractions (reflected and transmitted) add up to unity? They should.  
 
d) Suppose you could choose the impedances Z02 and Z03 of the output transmission lines to be whatever 
you wanted. Choose these values such that you simultaneously satisfy the following two conditions: 
 
i) No fraction of the input power is reflected   
ii) The output transmission line with impedance Z02 has twice as much power going into it as the 
transmission line with impedance Z03.  
 
Problem 8.6: (Plasma cut-off frequency)  
 
In the lectures you were told that if the frequency ω of an electromagnetic wave is less than the plasma 
frequency pω  then the wave is completely reflected at the surface of a plasma. In this problem, you will 
explore this further and see if the above statement holds in all cases. Consider an electromagnetic wave 
given by: 

zjk
i ieEx −ˆ  

incident normally from free-space on a plasma whose permittivity is given by the relation: 

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=
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2
1

ω

ω
εωε p

o  

In the previous homework you showed that when the frequency ω of the electromagnetic wave is less 

than the plasma frequency pω , the magnitude of the reflection coefficient 
i

r
E
E

=Γ  is unity.  

 
a) The frequency below which a wave is completely reflected (i.e. 1=Γ ) at the surface of a plasma is 

called the cut-off frequency cω . In the previous homework you essentially showed that the cut-ff 
frequency cω  is just the plasma frequency pω  provided the wave is incident normally on the plasma. 
Now suppose a TE-wave is incident at an angle of incidence iθ  as shown in the figure below.  

z = 0

oo µε  
( ) oµωε  

zkk i ˆ=
v

 
iE  

iH  

zkk i ˆ−=
v

 rH  

rE  
plasma 

z

x
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Find the cut-off frequency cω  as a function of the angle of incidence iθ  for the TE-Wave. Is the cut-off 
frequency cω  now larger or smaller than the plasma frequency pω ? Hint: think what is required to get 

1=Γ . Although this problem is not about total internal reflection, you may want to study carefully how 

Γ  becomes unity in the case of total internal reflection.   
 
b) Same as part (a) but now suppose a TM-wave is incident at an angle of incidence iθ . Find the cut-off 
frequency cω  as a function of the angle of incidence iθ  for the TM-wave. Is the cut-off frequency cω  
now larger or smaller than the plasma frequency pω ? 

 
 

z = 0

oo µε  
( ) oµωε  

plasma 

z

x

iE  

iH  
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