Lecture 9

Magnetoquasistatics

In this lecture you will learn:

- Basic Equations of Magnetoquasistatics
- The Vector Potential
- The Vector Poisson's Equation
- The Biot-Savart Law
- Magnetic Field of Some Simple Current Carrying Elements
- The Magnetic Current Dipole

Equations of Magnetoquasistatics

Equations of Electroquasistatics

$$
\begin{gathered}
\nabla \cdot \varepsilon_{o} \vec{E}=\rho(\vec{r}, t) \\
\nabla \times \vec{E}=0 \\
\nabla \times \vec{H}=\overrightarrow{\boldsymbol{J}}+\frac{\partial \varepsilon_{0} \vec{E}}{\partial t}
\end{gathered}
$$

- Electric fields are produced by only electric charges
- Once the electric field is determined, the magnetic field can be found by the last equation above

Equations of Magnetoquasistatics

$$
\begin{aligned}
& \nabla \cdot \mu_{o} \overrightarrow{\boldsymbol{H}}=\mathbf{0} \\
& \nabla \times \overrightarrow{\boldsymbol{H}}=\overrightarrow{\boldsymbol{J}}(\vec{r}, \boldsymbol{t}) \\
& \nabla \times \overrightarrow{\boldsymbol{E}}=-\frac{\partial \mu_{o} \overrightarrow{\boldsymbol{H}}}{\partial \boldsymbol{t}}
\end{aligned}
$$

- Magnetic fields are produced by only electric currents
- Once the magnetic field is determined, the electric field can be found by the last equation above
- Currents in magnetoquasistatics are solenoidal (i.e. with zero divergence)

$$
\nabla \cdot \vec{J}(\vec{r}, t)=\nabla \cdot(\nabla \times \vec{H})=\mathbf{0}
$$

In magnetoquasistatics the source of the magnetic field is electrical current

Ampere's Law for Magnetoquasistatics

$$
\begin{array}{|l|l}
\wp \vec{H} \cdot d \overrightarrow{\mathbf{s}}=\iint \vec{J} . d \vec{a} & \nabla \times \vec{H}=\vec{j}
\end{array}
$$

Ampere's Law: The line integral of magnetic field over a closed contour is equal to the total current flowing through that contour

Right Hand Rule: The positive directions for the surface normal vector and of the contour are related by the right hand rule

ECE 303 - Fall 2007 - Farhan Rana - Cornell University

Magnetic Field of an Infinite Line-Current

Consider an infinitely long line-current carrying a total current l in the +z-direction, as shown below

Use ampere's law on the closed contour shown by the dashed line:

$$
\begin{array}{ll}
\oint \vec{H} \cdot d \vec{s}=\iint \vec{j} \cdot d \vec{a} \\
\Rightarrow \quad(2 \pi r) H_{\phi}(r)=I \\
\Rightarrow \quad H_{\phi}(r)=\frac{I}{2 \pi r}
\end{array}
$$

Working in the cylindrical coordinates

Magnetic field is entirely in the $\hat{\phi}$ direction and falls off as $\sim 1 / r$ from the line-current

The Vector Potential - I

A Vector Identity:
For any vector $\overrightarrow{\boldsymbol{F}}$ the divergence of the curl is always zero:

$$
\nabla \cdot(\nabla \times \overrightarrow{\boldsymbol{F}})=\mathbf{0}
$$

The Vector Potential:
In magnetoquasistatics the divergence of the B-field is always zero:

$$
\nabla \cdot(\vec{B})=\nabla \cdot\left(\mu_{o} \overrightarrow{\boldsymbol{H}}\right)=0
$$

So one may represent the B-field as the curl of another vector:

$$
\overrightarrow{\boldsymbol{B}}=\mu_{o} \overrightarrow{\boldsymbol{H}}=\nabla \times \overrightarrow{\boldsymbol{A}}
$$

\vec{A} is called the vector potential

$$
\Rightarrow \quad \nabla \cdot \vec{B}=\nabla \cdot \mu_{0} \overrightarrow{\boldsymbol{H}}=\nabla \cdot(\nabla \times \overrightarrow{\boldsymbol{A}})=0
$$

The Vector Potential - II

In electroquasistatics we had: $\quad \nabla \times \vec{E}=\mathbf{0}$
Therefore we could represent the E-field by the scalar potential: $\vec{E}=-\nabla \phi$
In magnetoquasistatics we have: $\quad \nabla \cdot(\overrightarrow{\boldsymbol{B}})=\nabla \cdot\left(\mu_{o} \overrightarrow{\boldsymbol{H}}\right)=\mathbf{0}$
Therefore we can represent the B -field by the vector potential:

$$
\overrightarrow{\boldsymbol{B}}=\mu_{\mathrm{o}} \overrightarrow{\boldsymbol{H}}=\nabla \times \overrightarrow{\boldsymbol{A}}
$$

A vector field can be specified (up to a constant) by specifying its curl and its divergence

Our definition of the vector potential \vec{A} is not yet unique - we have only specified its curl

For simplicity we fix the divergence of the vector potential \vec{A} to be zero:

$$
\nabla \cdot \vec{A}=0
$$

Differential Equation for The Vector Potential

Start from Ampere's law in differential form: $\quad \nabla \times \overrightarrow{\boldsymbol{H}}=\overrightarrow{\boldsymbol{J}}$
Use: $\mu_{o} \overrightarrow{\boldsymbol{H}}=\nabla \times \overrightarrow{\boldsymbol{A}}$

To get: $\quad \nabla \times(\nabla \times \overrightarrow{\boldsymbol{A}})=\mu_{o} \overrightarrow{\boldsymbol{J}}$

$$
\text { A Vector Identity: } \quad \nabla \times(\nabla \times \vec{F})=\nabla(\nabla \cdot \vec{F})-\nabla^{2} \vec{F}
$$

$$
\left.\nabla(\nabla \cdot \vec{A})-\nabla^{2} \vec{A}=\mu_{o} \vec{J} \quad\right\} \longrightarrow \text { Use: } \nabla \cdot \vec{A}=0
$$

$$
\Rightarrow \nabla^{2} \overrightarrow{\boldsymbol{A}}=-\mu_{o} \overrightarrow{\boldsymbol{J}}
$$

\rightarrow The differential equation for the vector potential (also called the Vector Poisson's Equation)
This is in fact 3 different equations (one for each component of \vec{A})
$\nabla^{2} A_{x}=-\mu_{o} J_{x}$

$$
\nabla^{2} A_{y}=-\mu_{o} J_{y}
$$

$$
\nabla^{2} A_{z}=-\mu_{o} J_{z}
$$

The Superposition Principle for The Vector Potential

- Suppose for the current distribution $\vec{J}_{1}(\vec{r})$ we have found the vector potential $\vec{A}_{1}(\vec{r})$
- Suppose for some other current distribution $\vec{J}_{2}(\vec{r})$ we have also found the vector potential $\vec{A}_{2}(\vec{r})$
- Then the vector potential $\left(\vec{A}_{1}(\vec{r})+\vec{A}_{2}(\vec{r})\right)$ is the solution for the current distribution $\left(\vec{J}_{1}(\vec{r})+\vec{J}_{2}(\vec{r})\right)$

Proof:

$$
\begin{aligned}
& \nabla^{2} \vec{A}_{1}(\vec{r})=-\mu_{o} \vec{J}_{1}(\vec{r})+\nabla^{2} \vec{A}_{2}(\vec{r})=-\mu_{o} \vec{J}_{2}(\vec{r})= \\
& \nabla^{2}\left(\vec{A}_{1}(\vec{r})+\vec{A}_{2}(\vec{r})\right)=-\mu_{o}\left(\vec{J}_{1}(\vec{r})+\vec{J}_{2}(\vec{r})\right)
\end{aligned}
$$

Recall the Superposition Integral for the Potential

In the most general scenario, one has to solve the Poisson equation:

$$
\nabla^{2} \phi(\vec{r})=-\frac{\rho(\vec{r})}{\varepsilon_{o}}
$$

To find the potential at any point one can sum up the contributions from different portions of a charge distribution treating each as a point charge

$$
\left.\phi(\vec{r})=\iiint \frac{\rho\left(\vec{r}^{\prime}\right)}{4 \pi \varepsilon_{0}\left|\vec{r}-\vec{r}^{\prime}\right|} d V^{\prime} \quad\right\} \quad d V^{\prime}=d x^{\prime} d y^{\prime} d z^{\prime}
$$

A formal solution of the vector differential equation is the vector superposition integral:

$$
\begin{array}{|l|l}
\nabla^{2} \vec{A}=-\mu_{o} \vec{J} & \vec{A}(\vec{r})=\iiint \frac{\mu_{0} \vec{J}\left(\vec{r}^{\prime}\right)}{4 \pi\left|\vec{r}-\vec{r}^{\prime}\right|} d V^{\prime}
\end{array}
$$

The Biot-Savart Law - I

Start from the superposition integral for the vector potential:

$$
\vec{A}(\vec{r})=\iiint \frac{\mu_{o} \vec{J}\left(\vec{r}^{\prime}\right)}{4 \pi\left|\vec{r}-\vec{r}^{\prime}\right|} d V^{\prime}
$$

Now find the magnetic field:

$$
\begin{gathered}
\overrightarrow{\boldsymbol{H}}=\frac{\nabla \times \overrightarrow{\boldsymbol{A}}}{\mu_{\mathrm{o}}} \\
\overrightarrow{\boldsymbol{H}}(\overrightarrow{\boldsymbol{r}})=\nabla \times\left[\iiint \frac{\vec{j}\left(\vec{r}^{\prime}\right)}{4 \pi\left|\overrightarrow{\boldsymbol{r}}-\vec{r}^{\prime}\right|} d V^{\prime}\right] \quad \\
\overrightarrow{\boldsymbol{H}}(\overrightarrow{\boldsymbol{r}})=\iiint \frac{1}{4 \pi} \nabla\left(\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right) \times \overrightarrow{\boldsymbol{J}}\left(\vec{r}^{\prime}\right) d V^{\prime} \\
\left.\vec{H}(\vec{r})=\iiint \frac{\overrightarrow{\boldsymbol{J}}\left(\vec{r}^{\prime}\right) \times \hat{n}_{\vec{r}^{\prime} \rightarrow \vec{r}}}{4 \pi\left|\overrightarrow{\boldsymbol{r}}-\vec{r}^{\prime}\right|^{2}} d V^{\prime} \quad \begin{array}{l}
\text { A vector Identity: } \\
\nabla \times(\varphi \overrightarrow{\boldsymbol{F}})=\varphi(\nabla \times \overrightarrow{\boldsymbol{F}})+(\nabla \varphi) \times \overrightarrow{\boldsymbol{F}}
\end{array}\right\} \begin{array}{l}
\text { Recall that: } \nabla\left(\frac{\mathbf{1}}{\boldsymbol{r}}\right)=-\frac{\hat{\boldsymbol{r}}}{\mid \overrightarrow{\boldsymbol{r}}^{2}} \\
\nabla\left(\frac{1}{\left|\overrightarrow{\boldsymbol{r}}-\vec{r}^{\prime}\right|}\right)=-\frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}=-\frac{n_{\vec{r}^{\prime} \rightarrow \vec{r}}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{2}} \\
\text { Biot-Savart Law }
\end{array}
\end{gathered}
$$

$\hat{n}_{\vec{r}^{\prime} \rightarrow \vec{r}}$ is a unit vector directed from point \vec{r}^{\prime} on the current source to the observation point \vec{r}

Biot-Savart Law for Line-Currents

Need to find a formula that gives the total magnetic field at a point due to a current carrying wire as a superposition of magnetic field contributions from all the small pieces of the wire

Start from the Biot-Savart law:

$$
\begin{aligned}
\vec{H}(\vec{r}) & =\iiint \frac{\vec{j}\left(\vec{r}^{\prime}\right) \times \hat{n}_{\vec{r}^{\prime} \rightarrow \vec{r}}}{4 \pi\left|\vec{r}-\vec{r}^{\prime}\right|^{2}} d V^{\prime} \\
& =\iiint \frac{\vec{j}\left(\vec{r}^{\prime}\right) \times \hat{n}_{\vec{r}^{\prime} \rightarrow \vec{r}}}{4 \pi\left|\vec{r}-\vec{r}^{\prime}\right|^{2}} d a^{\prime} d s^{\prime}=\iiint \frac{\vec{l}\left(\vec{r}^{\prime}\right) \times \hat{n}_{\vec{r}^{\prime} \rightarrow \vec{r}}}{4 \pi\left|\vec{r}-\vec{r}^{\prime}\right|^{2}} d s^{\prime} \longrightarrow \begin{array}{l}
\text { Integrate over the } \\
\text { cross-section area } \\
\text { of the wire to get } \\
\text { the total current } \\
\text { carried by the wire }
\end{array}
\end{aligned}
$$

Magnetic Field of a Current Loop - Near Field

Consider a line-current in the form of a circular loop of radius a and carrying a current I, as shown in the figure

Find the magnetic field at the point P in the center of the loop

Use the Biot-Savart law:
$\vec{H}(0,0,0)=\frac{I}{4 \pi} \int \frac{d \vec{s}^{\prime} \times \hat{n}_{\vec{s}^{\prime} \rightarrow \vec{r}}}{\left|\vec{r}-\vec{s}^{\prime}\right|^{2}}$

$$
\left\{\begin{array}{l}
\boldsymbol{d} \overrightarrow{\mathbf{s}}^{\prime}=\hat{\phi}^{\prime} \text { a } d \phi^{\prime} \\
\left|\vec{r}-\vec{s}^{\prime}\right|^{2}=a^{2}
\end{array}\right.
$$

$=\hat{z} \frac{I}{4 \pi} \int_{0}^{2 \pi} \frac{a d \phi^{\prime}}{a^{2}}=\hat{z} \frac{I}{2 a}$

Magnetic Field of a Current Loop - Far Field (Magnetic Dipole)

Consider a line-current in the form of a circular loop of radius a and carrying a current I, as shown in the figure ($r \gg a$)

Find the magnetic field at the point P far far away from the loop

A small current loop such as this is a magnetic dipole

Use the superposition integral for the A-field:

$$
\begin{aligned}
& \left.\vec{A}(r, \theta, \phi=0)=\iiint \frac{\mu_{0} \vec{J}\left(\vec{r}^{\prime}\right)}{4 \pi\left|\vec{r}-\vec{s}^{\prime}\right|} d V^{\prime}=\frac{\mu_{0} I}{4 \pi} \int \frac{d \vec{s}^{\prime}}{\left|\vec{r}-\vec{s}^{\prime}\right|}\right\} \longrightarrow \begin{array}{l}
\text { Integrate over the } \\
\text { cross-section of } \\
\text { the wire }
\end{array} \\
& \left.d \vec{s}^{\prime}=\hat{\phi}^{\prime} \operatorname{ad} d \phi^{\prime}\right\} \longrightarrow \hat{\phi}^{\prime}=\cos \left(\phi^{\prime}\right) \hat{y}-\sin \left(\phi^{\prime}\right) \hat{x} \longrightarrow \begin{array}{l}
\text { Be careful - tricky } \\
\text { integral - the unit } \\
\text { vector is changing } \\
\text { directions within } \\
\text { the integral }
\end{array} \\
& \left|\vec{r}-\vec{s}^{\prime}\right| \approx r-a \sin (\theta) \cos \left(\phi^{\prime}\right)
\end{aligned}
$$

Magnetic Field of a Current Loop - Far Field (Magnetic Dipole)

$$
\begin{aligned}
& \vec{A}(r, \theta, \phi=0)=\iiint \frac{\mu_{0} \vec{J}\left(\vec{r}^{\prime}\right)}{4 \pi\left|\vec{r}-\vec{s}^{\prime}\right|} d V^{\prime}=\frac{\mu_{0} I}{4 \pi} \int \frac{d \vec{s}^{\prime}}{\left|\vec{r}-\vec{s}^{\prime}\right|} \\
& \quad \approx \frac{\mu_{0} I}{4 \pi} \int_{0}^{2 \pi} \frac{\left[\cos \left(\phi^{\prime}\right) \hat{y}-\sin \left(\phi^{\prime}\right) \hat{x}\right] a d \phi^{\prime}}{r-a \sin (\theta) \cos \left(\phi^{\prime}\right)} \\
& \quad \approx \frac{\mu_{0} I\left(\pi a^{2}\right)}{4 \pi} \frac{\sin (\theta)}{r^{2}} \hat{y}
\end{aligned}
$$

More generally:
$\vec{A}(r, \theta, \phi) \approx \frac{\mu_{o} I\left(\pi a^{2}\right)}{4 \pi} \frac{\sin (\theta)}{r^{2}} \hat{\phi}$
And:

$$
\begin{aligned}
\overrightarrow{\boldsymbol{H}}(r, \theta, \phi) & =\frac{\nabla \times \overrightarrow{\boldsymbol{A}}}{\mu_{0}} \\
& \approx \frac{\mu_{0} I\left(\pi a^{2}\right)}{4 \pi \mu_{0} r^{3}}[2 \cos (\theta) \hat{r}+\sin (\theta) \hat{\theta}]
\end{aligned}
$$

Magnetic Flux and Vector Potential Line Integral

The magnetic flux λ through a surface is the surface integral of the B-field through the surface

$$
\begin{aligned}
\lambda & =\iint \overrightarrow{\boldsymbol{B}} \cdot d \vec{a} \\
& =\mu_{o} \iint \overrightarrow{\boldsymbol{H}} \cdot d \vec{a} \vec{a}
\end{aligned}
$$

Since:

$$
\overrightarrow{\boldsymbol{B}}=\mu_{o} \overrightarrow{\boldsymbol{H}}=\nabla \times \overrightarrow{\boldsymbol{A}}
$$

We get:

$$
\begin{aligned}
\lambda & =\iint \vec{B} \cdot d \overrightarrow{\mathbf{a}} \\
& =\iint(\nabla \times \overrightarrow{\boldsymbol{A}}) \cdot d \vec{a} \\
& =\oint \overrightarrow{\boldsymbol{A}} \cdot d \overrightarrow{\mathbf{s}}
\end{aligned}
$$

The magnetic flux through a surface is equal to the line-integral of the vector potential along a closed contour bounding that surface

