Lecture 9

Magnetoquasistatics

In this lecture you will learn:

» Basic Equations of Magnetoquasistatics

» The Vector Potential
* The Vector Poisson’s Equation

* The Biot-Savart Law

* Magnetic Field of Some Simple Current Carrying Elements

» The Magnetic Current Dipole
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Equations of Magnetoquasistatics

Equations of Electroquasistatics

V.g, E =p(F,t)
VxE =0

- - d¢E
VxH=J+"2—
8 at

« Electric fields are produced by only
electric charges

» Once the electric field is determined,
the magnetic field can be found by the
last equation above

Equations of Magnetoquasistatics

V.u,H=0

VxH =J(Ft)

ngz_M
ot

» Magnetic fields are produced by only
electric currents

» Once the magnetic field is determined,
the electric field can be found by the last
equation above

» Currents in magnetoquasistatics are
solenoidal (i.e. with zero divergence)

v.J(Ft)=v. (vxH)=0

In magnetoquasistatics the source of the magnetic field is electrical current
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Ampere’s Law for Magnetoquasistatics

electric current
density -
7

S~

B |—--',‘ ”””” - A closed contour

\ V]

Ampere’s Law: The line integral of magnetic field over a closed contour is equal
to the total current flowing through that contour

Right Hand Rule: The positive directions for the surface
normal vector and of the contour are related by the right b 3
hand rule _— /
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Magnetic Field of an Infinite Line-Current

Consider an infinitely long line-current carrying a total current | in the +z-direction,
as shown below

Use ampere’s law on the closed contour shown  line current y
by the dashed line: -t dS
s *
§I:|.d§=jj'j.dé \ ! .
\ rv
= (2zr)Hy(r)=1
I
= H¢(r)= Working in the cylindrical

2xt coordinates

Magnetic field is entirely in the ¢3 direction and
falls off as ~1/r from the line-current
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Magnetic Field of a Solenoid

H \
Consider a solenoid with N turns per unit
length and carrying a current |
Assumptions:
* The magnetic field inside the solenoid is
uniform and strong
* There is a fringing field outside the solenoid
which is very weak and may be neglected

L §H.ds=]J.da

= LH, =(LN)!I

JUTERER Y

= H, =NI
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/ The Vector Potential - |
A Vector Identity:

For any vector F the divergence of the curl is always zero:

V.(Vxlf)=0

The Vector Potential:

In magnetoquasistatics the divergence of the B-field is always zero:
V.(B)=V.(4 H)=0
So one may represent the B-field as the curl of another vector:
B= Ho H=VxA

A is called the vector potential
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The Vector Potential - Il

In electroquasistatics we had: VxE =0

Therefore we could represent the E-field by the scalar potential: E = V¢

In magnetoquasistatics we have: v _(é): V-(ﬂo |:|)= 0
Therefore we can represent the B-field by the vector potential:

Bop H=VxA

A vector field can be specified (up to a constant) by specifying its curl and its
divergence

Our definition of the vector potential A is not yet unique —we have only
specified its curl

For simplicity we fix the divergence of the vector potential A to be zero:

V.A=0
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Differential Equation for The Vector Potential

Start from Ampere’s law in differential form: VxH=J

Use: g H=VxA

To get: Vx(VxA):poj

A Vector Identity:  V x (V x |f)= \v (V ) |f)_ V2E

Use: V.A=0

V(V.A)-V2A =4, J }

= [V?A= —U,J The differential equation for the
vector potential (also called the
Vector Poisson’s Equation)

This is in fact 3 different equations (one for each component of A )

V2A, = -y Iy V2A, =y V2A, = - 3,
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The Superposition Principle for The Vector Potential

* Suppose for the current distribution jl(F) we have found the vector
potential A;(F)

* Suppose for some other current distribution jZ(F) we have also found the vector
potential AZ(F)

¢ Then the vector potgntial (Al(F)+ AZ(F)) is the solution for the current
distribution (Jl(F)+ JZ(F))

Proof:
VIA(F)=—p3i(F) + VA =-p3,(7) =

V(A7) + Ay (7)) = = (3.(F)+ T, (F))
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Recall the Superposition Integral for the Potential

In the most general scenario, one has to solve the Poisson equation:
r
V2 ¢(r) P( )

We know that the solution for a point charge
sitting at the origin:
#(r)=

47: &I

To find the potential at any point one can sum up the contributions from
different portions of a charge distribution treating each as a point charge

¢(r)=mﬂdv- } dv'=dx'dy' dz'

Ame, -1

A formal solution of the vector differential equation is the vector superposition
integral:

VA=, ] | el A= o=t

—
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J(r)
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The Biot-Savart Law - |

Start from the superposition integral for the vector potential:

AC)- 1 2o 20
Now find the magnetic field:
b= VxA
Ho
j (r ) A vector ldentity
H(r) VX|:m (= dV'i| } Vx(¢7|5)=¢)(Vx |5)+(V¢))xlE

Recall that: V(}) = —%
v

A=, V(F—lF']Xj(FI) av-

V[ 1 )z_(f rl)z_nr"—)F
AE) - 2O gy, S

A ‘* *- +—— Biot-Savart Law
n,

#_7 1S @ unit vector directed from point r' on the current source
to the observation point r
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The Biot-Savart Law - Il

Biot-Savart Law:

A= 2Ot gy .

—3)

nF —r

to the observation point r

is a unit vector directed from point r' on the current source
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Biot-Savart Law for Line-Currentsy

Need to find a formula that gives the total
magnetic field at a point due to a current R
carrying wire as a superposition of magnetic ds

field contributions from all the small pieces | o
SRR
/ /

of the wire
line-current

carrying a current |

Start from the Biot-Savart law:

()= mJ(r)_"“i,;f av:

Integrate over the

IIIJ(r )x fig- F da' ds'= J.Hl(r')xnr«-_,r« ds' __, Ccross-section area
4zl - arli - of the wire to get
the total current

I J.ds xns —>r carried by the wire
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Magnetic Field of a Finite Line—Cvrrent

Consider a line-current of length L with ~ . P
current | in the +x-direction. ng'—’}" Iy
Find the magnetic field at the point P on :.", X >
the y-axis (as shown) -L/2 dx’ I L/2 X
Use the Biot-Savart law: z
- | .dS xfg_,- . SN - '
H(O-y:0)=af‘_7j2_" ds'= X dx' ds'xng._,f=z\/%
X' 4y
I =x"24y?
S W2y dxt L L/2
~an 2. 2¥2 ‘o 2 2
-L/2 (x' +y )3 y \/y +(L/2)
- .
As L >, H(O,y,0)—> 2 2y recover the previous result
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Magnetic Field of a Current Loop — Near Field

.

Consider a line-current in the form of a
circular loop of radius a and carrying a
current I, as shown in the figure

ds'

Find the magnetic field at the point P in
the center of the loop

Use the Biot-Savart law:

Q <
(7)) / h >
™~

H(ooo)—'joIS "”S;’ ds'=¢' adg’ !
F -8 =a?
2z
_p Lfadd_; 1
Az v a 2a
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Magnetic Field of a Current Loop — Far Field (Magnetic Dipole)

Consider a line-current in the form of a
circular loop of radius a and carrying a
current I, as shown in the figure (r >> a)

ZA

Find the magnetic field at the point P far
far away from the loop

'P(r,6,4=0)

A small current loop such as this is a
magnetic dipole I

}a

s=adg F—— F=cos(p)y -sin@)x —

Use the superposition integral for the A-field:

J(r) dv'=

|-

A(r.0.4=0)= [ Lo ) avi— ol

IF=s'|~r —asin(g)cos(4')

Integrate over the
cross-section of
the wire

Be careful — tricky
integral — the unit
vector is changing
directions within
the integral
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Magnetic Field of a Current Loop — Far Field (Magnetic Dipole)

%JG) AR 'P(r.6,4=0)
A(r,0,4=0)= ﬂ]  F- dv'= 4ﬂf‘~_§- 74 v
Mol 2 [cos(g)y ~ sm(¢)x]ad¢' 0o/ / y
4z 4 r—-asin(@)cos(g) ‘
o 1\za®)sin(6) . A frgdy \ ¢
el -
|
More generally:
w!lra’)sin(o) ’
A(r.0,¢)~ 1n 2
And:
H(r.6.4)= "
Ho
2
~ ﬂ"l(ﬂas)[z cos()F +sin(6)d]
A po 1
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Electric and Magnetic Dipoles and Dipole Moments
z

E(F]>>d)=
qd

Amey 1
Electric dipole moment:

-V 4(r)

~

3 (2cos(6)F +sin(6)d )

p=qd

H(F| >> a)=VXA

M[z cos(e)l' + s|n(0)0]
Ax gy v

Magnetic dipole moment:

m = I\ra®)h
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Magnetic Flux and Vector Potential Line Integral

The magnetic flux A through a surface is the surface integral of the B-field

through the surface
A=[[B.da
=t [[H .da

Since:

We get:
A=[[B.da
=[j(vxA).da
_ §A ds Stoke’s Theorem

B-field
7

A closed contour

The magnetic flux through a surface is equal to the line-integral of the vector
potential along a closed contour bounding that surface

ECE 303 - Fall 2007 — Farhan Rana — Cornell University

—
ECE 303 — Fall 2007 — Farhan Rana — Cornell University

10



