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Lecture 9

Magnetoquasistatics

In this lecture you will learn:

• Basic Equations of Magnetoquasistatics

• The Vector Potential

• The Vector Poisson’s Equation

• The Biot-Savart Law

• Magnetic Field of Some Simple Current Carrying Elements

• The Magnetic Current Dipole

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Equations of Magnetoquasistatics
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Equations of Electroquasistatics Equations of Magnetoquasistatics

• Electric fields are produced by only
electric charges

• Once the electric field is determined, 
the magnetic field can be found by the 
last equation above

• Magnetic fields are produced by only
electric currents

• Once the magnetic field is determined, 
the electric field can be found by the last 
equation above

• Currents in magnetoquasistatics are 
solenoidal (i.e. with zero divergence)
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In magnetoquasistatics the source of the magnetic field is electrical current 
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Ampere’s Law for Magnetoquasistatics
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A closed contour

Ampere’s Law: The line integral of magnetic field over a closed contour is equal 
to the total current flowing through that contour

Right Hand Rule: The positive directions for the surface 
normal vector and of the contour are related by the right 
hand rule 
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Magnetic Field of an Infinite Line-Current

Consider an infinitely long line-current carrying a total current I in the +z-direction, 
as shown below

x

yline currentUse ampere’s law on the closed contour shown 
by the dashed line:
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Magnetic field is entirely in  the        direction and 
falls off as ~1/r from the line-current 

φ̂

Working in the cylindrical 
coordinates
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Magnetic Field of a Solenoid

Consider a solenoid with N turns per unit 
length and carrying a current I

• The magnetic field inside the solenoid is 
uniform and strong

• There is a fringing field outside the solenoid 
which is very weak and may be neglected

Assumptions:
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The Vector Potential - I
A Vector Identity:

For any vector        the divergence of the curl is always zero:F
r

( ) 0. =×∇∇ F
r

The Vector Potential:

In magnetoquasistatics the divergence of the B-field is always zero:
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So one may represent the B-field as the curl of another vector:
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is called the vector potentialA
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The Vector Potential - II

0. =∇ A
r

In electroquasistatics we had: 0=×∇ E
r

Therefore we could represent the E-field by the scalar potential: φ−∇=E
r

In magnetoquasistatics we have:

Therefore we can represent the B-field by the vector potential:
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A vector field can be specified (up to a constant) by specifying its curl and its 
divergence

Our definition of the vector potential       is not yet unique – we have only 
specified its curl

For simplicity we fix the divergence of the vector potential    to be zero:
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Differential Equation for The Vector Potential
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The differential equation for the 
vector potential (also called the 
Vector Poisson’s Equation)

Use: 0. =∇ A
r

This is in fact 3 different equations (one for each component of )A
r
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The Superposition Principle for The Vector Potential
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• Suppose for the current distribution            we have found the vector 
potential     
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• Suppose for some other current distribution            we have also found the vector 
potential     
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• Then the vector potential                             is the solution for the current 
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Recall the Superposition Integral for the Potential

In the most general scenario, one has to solve the Poisson equation:
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We know that the solution for a point charge 
sitting at the origin:
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To find the potential at any point one can sum up the contributions from 
different portions of a charge distribution treating each as a point charge
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A formal solution of the vector differential equation is the vector superposition 
integral:
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The Biot-Savart Law - I

Start from the superposition integral for the vector potential:
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Now find the magnetic field:

o

AH
µ

r
r ×∇

=

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
∫∫∫

−
×∇= '

'4
' dV

rr
rJrH rr

rr
rr

π

( ) ( ) ''
'

1
4

1 dVrJ
rr

rH
rr

rr
rr

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∇∫∫∫=
π

( ) ( ) '
'4

ˆ'
2

' dV
rr

nrJrH rr∫∫∫
−

×
= →

rr

rr
rr rr

π

A vector Identity:

( ) ( ) ( ) FFF
rrr

×∇+×∇=×∇ ϕϕϕ

2
ˆ1

r
r

r r−=⎟
⎠
⎞

⎜
⎝
⎛∇Recall that:

Biot-Savart Law

r
rn rr

r

r
rr

point    nobservatio  the  to
  sourcecurrent   the on 'point   from directed vectorunit    a  is  ˆ '→

( )
2

'
3 ''
'

'
1

rr
n

rr
rr

rr
rr
rrrr

rr

rr
rr

−
−=

−

−
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

∇ →

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

( ) ( ) '
'4

ˆ'
2

' dV
rr

nrJrH rr∫∫∫
−

×
= →

rr

rr
rr rr

π

Biot-Savart Law: 

r
rn rr

r

r
rr

point    nobservatio  the  to
  sourcecurrent   the on 'point   from directed vectorunit    a  is  ˆ '→

The Biot-Savart Law - II

r
r

'r
r

'rr
rr

−

( )'rJ
rr

rrn rr
→'ˆ

P



7

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Biot-Savart Law for Line-Currents
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Need to find a formula that gives the total 
magnetic field at a point due to a current 
carrying wire as a superposition of magnetic 
field contributions from all the small pieces 
of the wire 

line-current 
carrying a current IStart from the Biot-Savart law:

Integrate over the 
cross-section area 
of the wire to get 
the total current 
carried by the wire
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Magnetic Field of a Finite Line-Current
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Consider a line-current of length L with 
current I in the +x-direction. 

Find the magnetic field at the point P on 
the y-axis (as shown)
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Magnetic Field of a Current Loop – Near Field

Consider a line-current in the form of a 
circular loop of radius a and carrying a 
current I, as shown in the figure

Find the magnetic field at the point P in 
the center of the loop
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Use the Biot-Savart law:
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Magnetic Field of a Current Loop – Far Field (Magnetic Dipole)

Consider a line-current in the form of a 
circular loop of radius a and carrying a 
current I, as shown in the figure (r >> a)

Find the magnetic field at the point P  far 
far away from the loop
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A small current loop such as this is a 
magnetic dipole

Use the superposition integral for the A-field:
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Integrate over the 
cross-section of 
the wire
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Be careful – tricky 
integral – the unit 
vector is changing 
directions within 
the integral

( ) ( )
∫ −

=∫∫∫ −
==

'4
'

'4
'0,,

'

sr
sdIdV

sr
rJrA oo rr

r

rr

rr
r

π
µ

π
µφθ



9

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

x

y

a 'sd
r

z

I

θ

r

'φ

( ) ( )

( ) ( )[ ]
( ) ( )

( ) ( ) y
r

aI

ar
daxyI

sr
sdIdV

sr
rJrA

o

o

oo

ˆsin
4

'cossin
'ˆ'sinˆ'cos

4

'4
'

'4
'0,,

2

2

2

0

'

θ
π
πµ

φθ
φφφ

π
µ

π
µ

π
µφθ

π

≈

∫ −
−

≈

∫ −
=∫∫∫ −

== rr

r

rr

rr
r

More generally:
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Magnetic Field of a Current Loop – Far Field (Magnetic Dipole)
( )0,, =φθrP
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z
Electric and Magnetic Dipoles and Dipole Moments
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Electric dipole moment: Magnetic dipole moment:
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Magnetic Flux and Vector Potential Line Integral

The magnetic flux λ through a surface is the surface integral of the B-field 
through the surface
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We get:

B-field

The magnetic flux through a surface is equal to the line-integral of the vector 
potential along a closed contour bounding that surface
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A closed contourStoke’s Theorem
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