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Lecture 7

Polarization

In this lecture you will learn:

• Material Polarization

• Mathematics of Polarization

• Dielectric Permittivity

• Conductors Vs Dielectrics

• Appendix
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Charge Dipoles and Dipole Moments

Consider a charge dipole:

d
r

q−

q+

Dipole moment of the charge dipole is a vector         such that:p
r

dqp
rr

=
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Conductors in Electric Fields – A Review
• Consider the problem when a conductive 
plate was placed inside an electric field

• Conductors have “free charges” that are able 
to move around (mostly these “free charges”
are electrons that are not attached to any 
particular atom)

• Under the influence of external E-field these 
free charges move to completely screen out
the E-field from within the conducting material

+ve nucleus+

-ve sea of free 
electrons

Conductors
Sea of Free Electrons 

+ + +

+ + +

+ + +

+ + +
σ
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Dielectrics in Electric Fields - Polarization

Many materials do not have “free electrons” that can move around, but have 
electrons bound to atoms, as shown below
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Dielectric in an E-field

In the presence of an E-field, the electron cloud in each atom distorts 
ALMOST INSTANTANEOUSLY so that each atom looks like a charge dipole

Dielectric
E



3

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Dielectrics in Electric Fields – Polarization Vector

The polarization vector           is a vector such that:P
r

+- = dipole moment of each dipole
d
r

dQp
rr

=

dNQ
pNP
v

rr

=

=

   

Where N is the number of charge dipoles per unit 
volume in the material

The units of         are:  Coumlombs/m2P
r

The polarization vector       characterizes the 
polarization density of the medium under the 
influence of the electric field

P
r

+Q-Q

E
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Dielectrics in Electric Fields – Electrical Susceptibility
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Naturally, one would expect the polarization of the material to be proportional to 
the strength of the electric field:

EP
EP

eo
rr

rr

χε=⇒

∝

The constant of proportionality  χe is called the electrical susceptibility of the 
material

E
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Material Polarization and Surface Charge Densities
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• The stuff inside the box in on the average charge neutral (same number of 
positive and negative charges)

• There is a net negative surface charge density on the left facet of the material 
as a result of material polarization

• There is a net positive surface charge density on the right facet of the material 
as a result of material polarization

Pp −=σ

E

Pp +=σ

xPP ˆ=
r

x
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Material Polarization and Surface Charge Densities
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xPP ˆ=
r

d

Area = A

Total interface negative charge due to dipoles in the volume Ad =  - Q N A d

If we divide the total interface charge by the area A we get the interface 
charge per unit area which would be the surface charge density σp

PNQd
A

QNAd
p −=−=−=⇒ σ

How much charge is 
in this volume??
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Material Polarization and Volume Charge Densities

More generally, one can write a volume polarization volume charge 
density due to material polarization as:

Pp
r

.−∇=ρ

In 1D situations: 

( )
x

Px x
p ∂

∂
−=ρ

(A formal proof is given in the Appendix)

There will be a net non-zero volume charge density inside a material if the 
material polarization is varying in space
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Material Polarization and Charge Densities

Pp −=σ Pp +=σ

xPP ˆ=
r

E

x

x=0 x=L

( ) ( )LxPxP
x

Px
p −+−=

∂
∂

−= δδρ

xP

x0 L

P

x0 L

x
Px

p ∂
∂

−=ρ

( )xPδ−

( )LxP −δ

Pp
r

.−∇=ρ
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Mathematics of Polarization – The “D” Field

Gauss’ Law states:

Pp
r

.−∇=ρ

ρε =∇ Eo
r

.

But charge densities could be of two types: 

1) Paired charge density ρp (due to material polarization)
2) Unpaired charge density ρu (due to everything else – the usual stuff)

So:

( ) uo

upuo

PE

PE

ρε

ρρρε

=+∇⇒

∇−=+=∇
rr

rr

.

.. Using:

If one defines the D-field inside materials as:

PED o
rrr

+= ε

Then inside materials Gauss’ Law becomes:

uD ρ=∇
r

.
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Mathematics of Polarization – Dielectric Permittivity

If one defines the D-field as:

PED o
rrr

+= ε Then: uD ρ=∇
r

.

Note that: ( )EEEPED eoeooo
rrrrrr

χεχεεε +=+=+= 1

If one defines the dielectric permittivity of a material as:

( )eo χεε += 1

then one can write the D-field inside materials as:

ED
rr

ε=

Inside materials the D-field obeys the Gauss’ Law:

uED ρε =∇=∇
rr

..
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Mathematics of Polarization – Polarization Current Density

So far we have looked at the current density due to the motion of free unpaired 
charges:

EJu
rr

σ=

The motion of paired charges also results in 
a current density:

( )
t

E
t
PJ eo

p ∂
∂

=
∂
∂

=
rr

r χε

pJ
r

is called the polarization current density

Ampere’s Law is correctly given by: ( )
t
EJJH o

pu ∂
∂

++=×∇
r

rrr ε

Which can also be written as: ( )
t
EJH u ∂

∂
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r
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Mathematics of Polarization – Modified Maxwell’s Equations

One can forget all about material polarization, and polarization charge densities, 
and polarization current densities, as long as one uses the dielectric permittivity ε
instead of the free space permittivity εo

Putting it all together ….

Maxwell’s equations in dielectric materials take the form:

( )

( )
t
EJH

t
HE

H
E

u

o
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u

∂
∂

+=×∇

∂
∂
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=∇
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r
rr

r
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0.

.
Here the charge density 
ρu is the unpaired 
charge density

Here the current density is 
due to the unpaired charges

OR
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Dielectric Permittivity – Boundary Conditions - I

1E 2E

uEE σεε =− 1122

Gauss’ Law in the presence of dielectric material is:

or

2ε1ε

( ) ( ) uED ρε =∇=∇
rr

..

1D 2D

2ε1ε
A

Draw a Gaussian surface at the interface:

How to relate the electric fields on both sides of 
the dielectric interface ??

( )
u

u
DD

AADD
σ

σ
=−⇒

=−

12

12

pu σσ +

pu σσ +dVadD u∫∫∫∫∫ = ρ
rr

.or
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( ) 012 =− EE

The parallel component of the E-field at a material 
interface is always continuous at the interface (no 
change here)

1E 2E

2ε1ε

( ) ( ) AAEE puo σσε +=− 12

or

Draw a Gaussian surface at the interface:

pu σσ +

1E 2EGauss’ Law in the presence of dielectric material is 
also:

2ε1ε( ) puo E ρρε +=∇
r

.

How else can one relate the electric fields on both 
sides of the dielectric interface ??

Dielectric Permittivity – Boundary Conditions - II

A

( ) puo EE σσε +=− 12 pu σσ +
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Dielectrics Vs Conductors

V
+ -

φ = V φ = 0
+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-

+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-

Conductors:

Free unpaired charges move to completely 
screen the E-field on time scales longer than 
the dielectric relaxation time
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Dielectrics:

Paired charges originating due to material 
polarization partially screen the E-field 
almost instantaneously

01122 =− EE εε

( ) po EE σε =− 12

When σu = 0:

also:

The discontinuity of the normal component of the 
E-field is due to the paired charges at the interface 
(even when σu = 0)
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Conductors or Dielectrics

+ +ve nucleus+ +

+ + +

+ + +

+ + +

+ + +

+ + +

+

-ve electron 
cloud

Dielectrics
Tightly Bound Electrons 

+ve nucleus+

-ve sea of free 
electrons

Conductors
Sea of Free Electrons 

+ + +

+ + +

+ + +

+ + +

+ + +

+ + +

Some materials are conductors and some are dielectrics ………….

ε σ
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Conductors and Dielectrics

……. but many important materials are conductors as well as dielectrics

+ +ve nucleus+ +

+ + +

+ + +

+ + +

+ + +

+ + +

+

-ve electron 
cloud

Tightly bound core electrons and a 
sea of free electrons  

-ve sea of free 
electrons

• Most conductors like gold, copper, 
and silver, and semiconductors like 
Silicon, are both conductors and 
dielectrics

• They have a sea of free electrons 
that results in a finite value of 
conductivity and they also have 
tightly bound core electrons that 
result in a value for the dielectric 
permittivity

ε     σ

Dielectric relaxation time for these materials
σ
ετ == d
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Appendix: Polarization Charge Density - I

The expression relating the polarization charge density to the divergence of the 
polarization vector,

can be proved more formally as shown below:

Pp
r

.−∇=ρ

The potential of an isolated dipole sitting at the origin and pointing in the 
z-direction is:

d
r

q−

q+
θ ( ) ( )

2
cos

4 r
pr

o

θ
πε

φ
r

r
=

More generally, the potential of a dipole sitting at position r’ and pointing in an 
arbitrary direction is:

( ) ( )
3'

'.
4

1
rr

rrpr
o

rr

rrr
r

−

−
=

πε
φ

d
r

q−

q+

dqp
rr

=

dqp
rr

=
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Appendix: Polarization Charge Density - II

If a material has a polarization density vector   
then the potential due to all the dipoles can be found 
using superposition:

( )'rP
rr

( ) ( ) ( )

( )
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( ) '

'4
'.'      
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rrr
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rr

rrrr
r

πε

πε

πε

πε
φ

Now integrate by parts in 3D……….

This looks like the superposition 
integral for a volume charge 
density given by: 

( ) ( )'.' rPrp
rrr

−∇=ρ
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