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Lecture 5

Electrical Conduction and Perfect Metals in Electroquasistatics

In this lecture you will learn:

• Some More on Electric Field Boundary Conditions

• Electrical Conduction in Materials

• The Concept of Perfect Metals

• Electroquasistatics Problems with Perfect Metals

• Method of Images
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Electric Field Boundary Conditions
σ

1E 2E

( ) σε =− 12 EEo

(1) The discontinuity of the normal component of the E-
field at an interface is related to the surface charge density 
at the interface

( ) 012 =− EE

(1) The parallel component of the E-field at an interface is 
always continuous at the interface σ

1E 2E

**For formal proofs see the Appendix at the end of these lecture notes**
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Electrical Conductivity

Electrical Conductivity

When E-field is present inside a material, it forces the charges inside the 
material to move causing an electric current

The current density        (units: Amps/m2) is related to the E-field by the 
relation:

( ) ( )rErJ
rrrr

σ=

J
r

where σ is the material conductivity (units: 1/(Ω-m) or S/m). Don’t confuse the 
conductivity σ with sheet charge density σ (both have the same symbol)

Material ( )S/mσ

Rubber
Water
Alcohol
Gold
Aluminum
Copper
Silver

10- 15

2X10- 4

3X10- 4

4X107

3X107

5X107

6X107

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Perfect Metals - I

A perfect metal has infinite conductivity (i.e. σ = ∞)

Of course, no real metal has infinite conductivity. However, some metals 
like Silver, Copper, and Gold have high enough conductivity that they may 
be considered “perfect metals” for simplicity in many calculations

A perfect metal cannot have any E-field inside it

The current density and E-field are related by:

An infinite conductivity implies that for any non-zero E-field one would get 
an infinite current density – and this is physically impossible. The only way 
such a catastrophe is avoided is if there is never an E-field inside a perfect 
metal. 

(More on this later …)

( ) ( )rErJ
rrrr

σ=
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Perfect Metals - II

Perfect metals are always “equipotential” (i.e. the electric potential 
inside a perfect metal has the same value everywhere)

perfect metal

1r
r 2r

r

The potential difference between any two points is given as:

⇒ If the E-field is zero inside a perfect metal then the potential difference 
between any two points inside a perfect metal must also be zero

( ) ( ) ∫=−
2

1

.21

r

r
sdErr

r

r

rrrr
φφ
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Perfect Metals - III
At the surface of a perfect metal the component of E-field parallel to the 
surface must be zero (in other words, there cannot be a component of E-
field at the surface of a perfect metal that is parallel to the surface)

perfect metal
E
r

The argument goes in two steps:

If there were a non-zero parallel component of E-field just outside the metal there 
must be an equal parallel component of E-field just inside the perfect metal (using 
the boundary condition that the components of E-field parallel to any interface are 
equal on both sides of the interface)

But since there cannot be E-field inside a perfect metal, there must not be a 
parallel component of E-field just outside a perfect metal  
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Parallel Plates – Potentials and Fields
Consider a problem with two perfect metal parallel plates as shown below

V
+ -

d

φ = V φ = 0
area = A

x0

Need to find the potential           between 
the plates

( )xφ

Assume the separation d between the 
plates is much smaller than the size of 
the plates so the plates could be 
assumed infinite in size

Need to solve:

02

2
2 =

∂
∂

=∇
x

φφ

With the two boundary conditions:

Vdx =⎟
⎠
⎞

⎜
⎝
⎛ −=

2
φ 0

2
=⎟

⎠
⎞

⎜
⎝
⎛ +=

dxφ

( ) ( ) ( )
d
V

x
xxE

d
xVx x =

∂
∂

−=⇒⎟
⎠
⎞

⎜
⎝
⎛ −=

φφ
2
1

Assume a solution: ( ) BxAx +=φ and use the boundary conditions to get: 
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Parallel Plates – Surface Charge Densities

V
+ -

φ = V φ = 0
area = A ( )

( ) ( )
d
V

x
xxE

d
xVx

x =
∂

∂
−=

⎟
⎠
⎞

⎜
⎝
⎛ −=

φ

φ
2
1

Surface Charge Densities on Metal Plates 

Use the boundary condition:

The electric field must originate on 
positive charges on the surface of the 
left plate and must terminate on negative 
charges on the surface of the right plate

On the left plate assume charge density σL:
• The field inside the metal is zero
• The field just outside the metal is V/d d

V
d
V

oLLo εσσε =⇒=⎟
⎠
⎞

⎜
⎝
⎛ − 0

On the right plate assume charge density σR:
• The field just outside the metal is V/d
• The field inside the metal is zero d

V
d
V

oRRo εσσε −=⇒=⎟
⎠
⎞

⎜
⎝
⎛ −0

+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-

( ) σε =− 12 EEo
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Potential Differences and Voltage Sources

A common mistake:

∞

• The potential on the left plate is V Volts

• Does it mean that the potential difference 
between infinity and the left plate is V Volts ?

Answer: 

Be careful in the presence of voltage sources 

The voltage source only implies that the potential difference between the left and 
right plates is V Volts

The voltage source DOES NOT imply that the potential difference between the left 
plate and infinity is V Volts.

V
+ -

+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-
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Potential Differences and Voltage Sources
The actual situation looks 
like as shown here

V
+ -

+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-

V
+ -

+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-

+

+

+

-

+

-

-

-

V
+ -

+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-

V
+ -

+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-

+

+

+

-

+

-

-

-

( )xφ xplot of potential along this line

2V+

2V−

Our previous analysis 
was accurate as long 
as absolute potentials 
w.r.t. infinity are not 
sought
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Concentric Cylinders - I
Consider a problem with two perfect metal concentric cylinders, as shown below:

V=φ

0=φ

x

y

b
a

• Need to find the potential φ (r )  between the 
cylinders (for a ≤ r ≤ b)

• The cylinders are infinite in the z-directions

• The outer cylinder is at a potential of V Volts

• The inner cylinder is at 0 Volts

Need to solve:

( )bra ≤≤
=∇ 02 φ

With the two boundary conditions:

( ) Vbr ==φ ( ) 0== arφ

V+ -
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Concentric Cylinders - II
V=φ

0=φ

x

y

b
a

01

02

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

⇒

=∇

r
r

rr
φ

φ

By symmetry, potential φ(r) cannot have any 
angular dependence

For a ≤ r ≤ b, assume a 
solution:

( ) ( ) DrBr += lnφ

Working in cylindrical 
co-ordinates

The two unknowns, B and D, are determined by the two boundary 
conditions: ( ) Vbr ==φ ( ) 0== arφ

The final answer is:

( ) ( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛

−=
∂

∂
−=⇒

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=

a
br

V
r
rrE

a
b
a
r

Vr r
lnln

ln
φφ
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Concentric Cylinders - III
V=φ

0=φ

Working in cylindrical 
co-ordinates

( ) ( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛

−=
∂

∂
−=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=

a
br

V
r
rrE

a
b
a
r

Vr r
lnln

ln
φφ

Surface Charge Densities

On the outer cylinder (σout)
• The field inside the metal is zero

• The field just outside the metal is ( )abb
V

ln
On the inner cylinder (σin)
• The field just outside the metal is

• The field inside the metal is zero

The electric field must originate on positive charges on  the 
inner surface of the outer cylinder and must terminate on 
negative charges on the outer surface of the inner cylinder

( )aba
V

ln

( )

( )abb
V

abb
V

oout

outo

ln

0
ln

εσ

σε

=⇒

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

( )

( )aba
V

aba
V

oin

ino

ln

ln
0

εσ

σε

−=⇒

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

+

+
+

+

+

+

+

-
--

- --
--
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Charges Near Perfect Metals

Suppose one puts a 
point charge near a 
perfect metal …….

Clearly, there is something wrong in the picture above ……

The E-field from the charge is going into the metal – but perfect metals 
cannot have E-fields inside them!! 

A perfect metal 
infinite ground 
plane

q+

d
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What actually happens is 
as shown …….

q+

Charges Near Perfect Metals

_ _ _ _ _ _ _
dInduced surface 

charge

A perfect metal 
infinite ground 
plane

• Negative charges, under the influence of the E-field from the point charge, 
rush to the surface

• These negative charges (called the induced charges) terminate the E-field so 
that there is no E-field inside the metal (i.e. the induced charge screens the 
external field)

• The resulting field outside the metal has no component parallel to the 
surface of the metal

• There is negative surface charge density on the metal surface

• The resulting outside field is due to both the point charge and the induced 
surface charge density on the metal
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q+

Image Charges in Perfect Metals

q−

d

d

• The field outside the metal can be found by imagining a fictitious point charge 
of the same magnitude as the outside point charge but of opposite sign sitting 
inside the perfect metal at an equal distance below the interface

• This fictitious charge is called the image charge

• The field outside the metal can be determined as a superposition of the fields 
form the actual charge and the image charge

• Now you can see that the field outside resembles that of a charge dipole

So how does one calculate 
the field outside the perfect 
metal …..??

A perfect metal 
infinite ground 
plane
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Method of Images

d

d

+

_
ρ

+

_

• The same principle works for any arbitrary charge distribution that is placed 
near a perfect metal

• The image charge is the mirror image of the charge distribution outside the 
metal but has the opposite polarity

• The field outside the metal can be determined as a superposition of the fields 
form the actual charge and the image charge

A perfect metal 
infinite ground 
planeimage charge

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Not So Perfect Metals

How long does it take 
to go from this ……

q+

d

to this ……
q+

_ _ _ _ _ _ _
d

A metal infinite 
ground plane

A metal infinite 
ground plane
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Not So Perfect Metals – Dielectric Relaxation Time

t
EJH

E
E

o

o

∂
∂

+=×∇

=×∇

=∇

r
rr

r

r

ε

ρε

 

0
.

How long does it take for the induced charges to screen out electric fields from 
within conducting materials ?

0

Equations of electroquasistatics are:

EJ
rr

σ=

So the last equation becomes:

t
EE o

∂
∂

+=
r

r εσ0

Or: ( ) ( ) 0,,
=+

∂
∂

d

trE
t

trE
τ

rrrr

σ
ετ o

d ==  time relaxation  dielectric  

Solution: ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

d

trEtrE
τ

exp0,, rrrr
Any initial E-field in a conductor 
decays exponentially on a time 
scale set by τd

For a perfect metal  τd = 0 s
For water τd = 0.05 µs

Conductors behave like perfect metals on time scales longer than their dielectric 
relaxation times in the sense that they are able to screen out electric fields
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Finite Metal Conductors and Charge Neutrality

V
+ -

φ = V φ = 0
area = A +

+
+
+
+
+
+
+

-
-
-
-
-
-
-
-

• Consider the problem with two 
perfect metal parallel plates and a 
voltage source

• Now insert an extra perfect metal 
plate in between the two metal plates

V
+ -

φ = V φ = 0
area = A +

+
+
+
+
+
+
+

-
-
-
-
-
-
-
-

+
+
+
+
+
+
+
+

-
-
-
-
-
-
-
-

• Charges will develop on the surface 
of the inserted metal plate that will 
screen out the electric field from the 
inserted plate

• The net charge on  the inserted 
plate must be zero since the inserted 
plate was charge neutral to begin 
with. 
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V=φ
+

+

+
+

+

+

+

+

- --
- --

--

Equipotential Surfaces

Surfaces that have the same value of the potential are called equipotential surfaces

Example: Three equipotential surfaces 
In the form of planes shown by the 
dashed lines for the parallel plate 
problem

V
+ -

φ = V φ = 0
area = A +

+
+
+
+
+
+
+

-
-
-
-
-
-
-
-

Example: Three equipotential surfaces 
in the form of cylindrical shells shown 
by the dashed lines for the concentric 
cylinder problem

V+ -

0=φ

Equipotential surfaces are always normal to the direction of E-field at every point
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Appendix: Electric Field Boundary Conditions
σ

1E 2E
ρε =∇ Eo

r
.

Start from Gauss’ Law:

For 1D problems:

( ) ( )x
x

xExo ρε
=

∂
∂

For a surface charge density at x = xo : ( ) ( )oxxx −= δσρ

( ) ( )o
xo xx

x
xE

−=
∂

∂ δσε

Integrate the above equation from a little behind xo to a little in front of xo

ox

( ) ( ) ( ) ( )[ ] σεδσε
=∆−−∆+⇒∫ −=∫

∂
∂ ∆+

∆−

∆+

∆−
xxExxExx

x
xE

oxoxo

xx

xx
o

xx

xx

xo
o

o

o

o

Take the limit that ∆x goes to zero

( ) ( )[ ]
( ) σε

σε
=−⇒

=∆−−∆+→∆

12

:0
EE

xxExxExLimit

o

oxoxo
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Appendix: Electric Field Boundary Conditions

1E
2E

Start from Faraday’s Law:

Integrate the above equation along the 
contour shown in the figure ox

adH
t

sdE o
rrrr

.. ∫∫
∂
∂

−=∫ µ

x∆2

L

( ) ( )( ) ( )
t

xHLxLxxExxE ozo
oyoy ∂

∂
∆−=∆−−∆+

µ2

Take the limit that ∆x goes to zero – the right hand side will 
go to zero

( ) ( )

12

:0

EE

xxExxExLimit oyoy

=⇒

∆−=∆+→∆

x
y


