

Electrical Conductivity

Electrical Conductivity

When E-field is present inside a material, it forces the charges inside the material to move causing an electric current

The current density \vec{j} (units: Amps/m²) is related to the E-field by the relation:

$$\tilde{J}(\tilde{r}) = \sigma \tilde{E}(\tilde{r})$$

where σ is the material conductivity (units: 1/(Ω -m) or S/m). Don't confuse the conductivity σ with sheet charge density σ (both have the same symbol)

10 ^{- 15} 2X10 ^{- 4}
2X10 ⁻⁴
3X10-4
4X10 ⁷
3X10 ⁷
5X10 ⁷
6X10 ⁷

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

<section-header><section-header><text><text><text><text><equation-block><text>

ECE 303 - Fall 2005 - Farhan Rana - Cornell University

ECE 303 - Fall 2005 - Farhan Rana - Cornell University

Not So Perfect Metals – Dielectric Relaxation Time

How long does it take for the induced charges to screen out electric fields from within conducting materials ?

Equations of electroquasistatics are:

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

