Lecture 4

Electric Potential

In this lecture you will learn:

- Electric Scalar Potential
- Laplace's and Poisson's Equation
- Potential of Some Simple Charge Distributions

Conservative or Irrotational Fields

Irrotational or Conservative Fields:
Vector fields $\overrightarrow{\boldsymbol{F}}$ for which $\nabla \times \overrightarrow{\boldsymbol{F}}=0$ are called "irrotational" or "conservative" fields

- This implies that the line integral of $\overrightarrow{\boldsymbol{F}}$ around any closed loop is zero

Equations of Electrostatics:
Recall the equations of electrostatics from a previous lecture:
$\nabla \cdot \varepsilon_{o} \vec{E}=\rho$
$\nabla \times \vec{E}=0$
\Rightarrow In electrostatics or electroquasistatics, the E-field is conservative or irrotational
(But this is not true in electrodynamics)

ECE 303 - Fall 2006 - Farhan Rana - Cornell University

Conservative or Irrotational Fields

More on Irrotational or Conservative Fields:

- If the line integral of $\overrightarrow{\boldsymbol{F}}$ around any closed loop is zero

.... then the line integral of \vec{F} between any two points is independent of any specific Path (i.e. the line integral is the same for all possible paths between the two points)

$$
\begin{aligned}
& \oint \vec{F} \cdot d \vec{s}=0 \\
& \Rightarrow\left(\int_{\vec{r}_{1}}^{\vec{r}_{2}} \vec{F} \cdot d \vec{s}\right)_{\text {path } A}+\left(\int_{\vec{r}_{2}}^{\vec{r}_{1}} \vec{F} \cdot d \vec{s}\right)_{\text {path } B}=0 \\
& \Rightarrow\left(\int_{\vec{r}_{1}}^{\vec{r}_{2}} \vec{F} \cdot d \vec{s}\right)_{\text {path } A}-\left(\int_{\vec{r}_{1}}^{\vec{r}_{2}} \vec{F} \cdot d \vec{s}\right)_{\text {path } B}=0 \\
& \Rightarrow\left(\int_{\vec{r}_{1}} \vec{F} \cdot d \vec{s}\right)_{\text {path } A}=\left(\begin{array}{l}
\vec{r}_{2} \\
\vec{r}_{1} \\
\vec{F}
\end{array} \cdot d \vec{s}\right)_{\text {path } B}
\end{aligned}
$$

The Electric Scalar Potential - I

The scalar potential:
Any conservative field can always be written (up to a constant) as the gradient of some scalar quantity. This holds because the curl of a gradient is always zero.

If $\overrightarrow{\boldsymbol{F}}=\nabla \boldsymbol{\varphi}$
Then $\nabla \times(\vec{F})=\nabla \times(\nabla \varphi)=0$

For the conservative E-field one writes: $\quad \vec{E}=-\nabla \phi$ (The -ve sign is just a convention)

Where ϕ is the scalar electric potential

The scalar potential is defined only up to a constant
If the scalar potential $\phi(\vec{r})$ gives a certain electric field then the scalar potential $\phi(\vec{r})+\boldsymbol{c}$ will also give the same electric field (where \boldsymbol{c} is a constant)

The absolute value of potential in a problem is generally fixed by some physical reasoning that essentially fixes the value of the constant \boldsymbol{C}

The Electric Scalar Potential - II

We know that:

$$
\vec{E}=-\nabla \phi
$$

This immediately suggests that:

- The line integral of E-field between any two points is the difference of the potentials at those points

$$
\int_{\vec{r}_{1}}^{\vec{r}_{2}} \vec{E} \cdot d \vec{s}=\int_{\vec{r}_{1}}^{\vec{r}_{2}}(-\nabla \phi) \cdot d \vec{s}=\phi\left(\vec{r}_{1}\right)-\phi\left(\vec{r}_{2}\right)
$$

- The line integral of E-field around a closed loop is zero

$$
\oint \vec{E} \cdot d \vec{s}=\oint(-\nabla \phi) \cdot d \vec{s}=0
$$

The Electric Scalar Potential of a Point Charge

Assumption: The scalar potential is assumed to have a value equal to zero at infinity far away from any charges
\qquad
Point Charge Potential

$d \vec{s}$

$$
\vec{E}=\frac{q}{4 \pi \varepsilon_{o} r^{2}} \hat{r}
$$

Do a line integral from infinity to the point \vec{r} where the potential needs to be determined

$$
\begin{array}{rlrl}
\int_{\vec{r}}^{\infty} \vec{E} \cdot d \vec{s}=\int_{\vec{r}}^{\infty}(-\nabla \phi) \cdot d \vec{s}=\phi(\vec{r})-\phi(\infty)=\phi(\vec{r}) \Rightarrow & \Rightarrow(\vec{r})=\int_{\vec{r}}^{\infty} \vec{E} \cdot d \vec{s} \\
\phi(\vec{r}) & =\int_{\vec{r}}^{\infty} \vec{E} \cdot d \vec{s}=\int_{r}^{\infty} \frac{q}{4 \pi \varepsilon_{0} r^{2}} d r \\
& =\frac{q}{4 \pi \varepsilon_{0} r} & \\
& & \\
& & \\
& & \\
\end{array}
$$

Electric Scalar Potential and Electric Potential Energy

The electric scalar potential is the potential energy of a unit positive charge in an electric field

- Electric force on a charge of q Coulombs $=q \vec{E} \quad$ (Lorentz Law)
$\left\{\begin{array}{l}\text { Potential energy of a charge } q \text { at } \\ \text { any point in an electric field }\end{array}\right\}=\left\{\begin{array}{l}\text { Work done by the field in moving the } \\ \text { charge } q \text { from that point to infinity }\end{array}\right\}$

Work done $=\int_{\vec{r}}^{\infty} \vec{F} \cdot d \vec{s}=\int_{\vec{r}}^{\infty} q \vec{E} \cdot d \overrightarrow{\mathbf{s}}=\boldsymbol{q}[\phi(\vec{r})-\phi(\infty)]=\boldsymbol{q} \phi(\vec{r})$
Work done on unit charge $=\frac{q \varphi(\vec{r})}{q}=\varphi(\vec{r})$
\Rightarrow P.E. of unit charge $=\varphi(\vec{r}) \quad d \vec{s}$
$d \vec{s} \quad \ldots$.
\vec{r}
$\Rightarrow \quad$ Potential energy of a charge of q Coulombs in electric field $=\boldsymbol{q} \phi(\vec{r})$

ECE 303 - Fall 2006 - Farhan Ran - Cornell University

Poisson's and Laplace's Equation

- It is not always easy to directly use Gauss' Law and solve for the electric fields
- Need an equation for the electric potential

Start from: $\nabla . \varepsilon_{o} \vec{E}=\rho$
Use: $\vec{E}=-\nabla \phi$
To get: $\nabla \cdot \varepsilon_{o}(-\nabla \phi)=\rho$

$$
\Rightarrow \nabla^{2} \phi=-\frac{\rho}{\varepsilon_{0}} \longrightarrow \quad \text { Poisson's Equation }
$$

If the volume charge density is zero then Poisson's equation becomes:

\qquad

Poisson's or Laplace's equation can be solved to give the electric scalar potential for charge distributions

Potential of a Uniformly Charged Spherical Shell - I

Use the spherical coordinate system
σ Coulombs/m²

For $\mathrm{a} \leq r \leq \infty$
Assume a solution:

$$
\nabla^{2} \phi=0
$$

$$
\left.\Rightarrow \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi}{\partial r}\right)=0 \quad\right\} \quad \phi(\vec{r})=\frac{A}{r}+F
$$

F must be 0 so that the potential is 0
at $r=\infty$
For $0 \leq r \leq a$:

$$
\left.\begin{array}{l}
\nabla^{2} \phi=0 \\
\Rightarrow \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi}{\partial r}\right)=0
\end{array}\right\} \begin{aligned}
& \text { Assume solution: } \\
& \phi(\vec{r})=\frac{B}{r}+D
\end{aligned}
$$

Potential must not become infinite at $r=0$ so B must be 0

Potential of a Uniformly Charged Spherical Shell - II

For $0 \leq r \leq a$	
$\phi(\vec{r})=D$	For $\mathrm{a} \leq r \leq \infty$
$\phi(\vec{r})=\frac{A}{r}$	
$E_{r}(r)=-\frac{\partial \phi}{\partial r}=0$	$E_{r}(r)=-\frac{\partial \phi}{\partial r}=\frac{A}{r^{2}}$

Boundary conditions
We need two additional boundary conditions to determine the two unknown coefficients A and D
(1) At $r=a$ the potential is continuous (i.e. it is the same just inside and just outside the charged sphere)

$$
D=\frac{A}{a}
$$

(2) At $r=a$ the electric field is NOT continuous. The jump in the component of the field normal to the shell (i.e. the radial component) is related to the surface charge density

$$
\begin{aligned}
& \varepsilon_{0}\left(\left.E_{r}\right|_{\text {out }}-\left.E_{r}\right|_{\text {in }}\right)=\sigma \\
& \Rightarrow \varepsilon_{0}\left(\frac{A}{a^{2}}-0\right)=\sigma
\end{aligned}
$$

Surface Charge Density Boundary Condition

Suppose we know the surface normal electric field on just one side of a charge plane with a surface charge density σ

Question: What is the surface normal field on the other side of the charge plane?

Solution:

- Draw a Gaussian surface in the form of a cylinder of area A piercing the charge plane
- Total flux coming out of the surface $=\varepsilon_{0}\left(E_{2}-E_{1}\right) A$
- Total charge enclosed by the surface $=\sigma A$
- By Gauss' Law: $\quad \varepsilon_{o}\left(E_{2}-E_{1}\right) A=\sigma A$

$$
\Rightarrow \varepsilon_{0}\left(E_{2}-E_{1}\right)=\sigma
$$

$\varepsilon_{o}\left(E_{2}-E_{1}\right)=\sigma$
This an extremely important result that relates surface normal electric fields on the two sides of a charge plane with surface charge density σ

ECE 303 - Fall 2006 - Farhan Rana - Cornell University

Potential of a Uniformly Charged Spherical Shell - III

$$
\begin{aligned}
& \text { For } 0 \leq r \leq a \\
& \phi(\vec{r})=\frac{\left(4 \pi \sigma a^{2}\right)}{4 \pi \varepsilon_{o} a}
\end{aligned}
$$

$$
\text { For } \mathrm{a} \leq r \leq \infty
$$

$$
\phi(\vec{r})=\frac{\left(4 \pi \sigma a^{2}\right)}{4 \pi \varepsilon_{0} r}
$$

Sketch of the Potential:

Potential of a Uniformly Charged Sphere a la Poisson and Laplace

In spherical co-ordinates potential can only be a function of r (not of θ or ϕ)

$$
\text { For } \mathrm{a} \leq r \leq \infty: \quad \rho \text { Coulombs } / \mathrm{m}^{3}
$$

$$
\begin{aligned}
& \left.\quad \begin{array}{l}
\nabla^{2} \phi=0 \\
\Rightarrow \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi}{\partial r}\right)=0
\end{array}\right\} \begin{array}{l}
\text { Assume a solution: } \\
\phi(\vec{r})=\frac{A}{r}+F \\
F \text { must be } 0 \text { so that the } \\
\text { potential is } 0 \text { at } r=\infty
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla^{2} \phi=-\frac{\rho}{\varepsilon_{0}} \\
& \left.\Rightarrow \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi}{\partial r}\right)=-\frac{\rho}{\varepsilon_{0}}\right\}_{\substack{\text { homogenous } \\
\text { parts }}}^{\text {Assume solution: }} \underset{\substack{\text { particular } \\
\text { solution }}}{\phi(\vec{r})=\frac{B}{r}+D+C r^{2}}
\end{aligned}
$$

By substituting the solution in the Poisson equation find $C \longrightarrow C=-\frac{\rho}{6 \varepsilon_{0}}$

- Potential must not become infinite at $r=0$ so B must be 0

ECE 303 - Fall 2006 - Farhan Rana - Cornell University

Potential of a Uniformly Charged Sphere a la Poisson and Laplace

$$
\begin{array}{l|l}
\text { For } 0 \leq r \leq a & \text { For } a \leq r \leq \infty \\
\phi(\vec{r})=D-\frac{\rho}{6 \varepsilon_{0}} r^{2} & \phi(\vec{r})=\frac{\boldsymbol{A}}{r}
\end{array}
$$

Boundary conditions
We need two additional boundary conditions to determine the two unknown coefficients A and D
(1) At $r=a$ the potential is continuous (i.e. it is the same just inside and just outside the charged sphere)
$\left.\begin{array}{l}\text { (2) At } r=a \text { the radial electric field is continuous (i.e. it is the } \\ \text { same just inside and just outside the charged sphere) }\end{array}\right\} \longrightarrow E_{r}=-\frac{\partial \phi}{\partial r}$ same just inside and just outside the charged sphere)
(1) gives:
(2) gives:

$$
D-\frac{\rho}{6 \varepsilon_{0}} a^{2}=\frac{A}{a}
$$

$$
\Rightarrow \quad A=\frac{\rho}{3 \varepsilon_{0}} a^{3}
$$

$$
\frac{\rho}{3 \varepsilon_{0}} a=\frac{A}{a^{2}} \quad \Rightarrow \Rightarrow D=\frac{\rho}{2 \varepsilon_{0}} a^{2}
$$

Potential of a Uniformly Charged Sphere a la Poisson and Laplace

$$
\begin{array}{c|c}
\text { For } 0 \leq r \leq a & \text { For } a \leq r \leq \infty \\
\phi(\vec{r})=\frac{\rho}{2 \varepsilon_{0}}\left(a^{2}-\frac{r^{2}}{3}\right) & \phi(\vec{r})=\frac{\left(\rho \frac{4}{3} \pi a^{3}\right)}{4 \pi \varepsilon_{0} r}
\end{array}
$$

Sketch of the Potential:

ECE 303 - Fall 2006 - Farhan Rana - Cornell University

The Principle of Superposition for the Electric Potential

Poisson equation is LINEAR and allows for the superposition principle to hold

- Suppose for some charge density ρ_{1} one has found the potential ϕ_{1}
- Suppose for some other charge density ρ_{2} one has found the potential ϕ_{2}

The superposition principle says that the sum $\left(\phi_{1}+\phi_{2}\right)$ is the solution for the charge density $\left(\rho_{1}+\rho_{2}\right)$

A Simple Proof

$$
\nabla^{2} \phi_{1}=-\frac{\rho_{1}}{\varepsilon_{0}}+\nabla^{2} \phi_{2}=-\frac{\rho_{2}}{\varepsilon_{0}} \quad=\quad \nabla^{2}\left(\phi_{1}+\phi_{2}\right)=-\frac{\left(\rho_{1}+\rho_{2}\right)}{\varepsilon_{0}}
$$

Potential of a Charge Dipole

Consider Two Equal and Opposite Charges

We are interested in the potential at a distance r from the center of the pair in the plane of the charges, where $r \gg d$

Work in spherical co-ordinates

Potential contributions from the two charges can be added algebraically

$$
\begin{aligned}
\phi(\vec{r}) & =\frac{q}{4 \pi \varepsilon_{0} r_{+}}-\frac{q}{4 \pi \varepsilon_{0} r_{-}} \\
& =\frac{q}{4 \pi \varepsilon_{0}\left(r-\frac{d}{2} \cos (\theta)\right)}-\frac{q}{4 \pi \varepsilon_{0}\left(r+\frac{d}{2} \cos (\theta)\right)} \\
& \approx \frac{q d}{4 \pi \varepsilon_{0} r^{2}} \cos (\theta)
\end{aligned}
$$

Rana - Cornell University

Potential of a Line Charge

Consider an infinite line charge coming out of the plane of slide

- The electric field, by symmetry, has only a radial component
- Draw a Gaussian surface in the form of a cylinder of radius r and Length L perpendicular to the slide

Work in cylindrical co-ordinates

Using Gauss' Law: $\quad \varepsilon_{0} E_{r}(2 \pi r L)=\lambda L$

$$
\Rightarrow \quad E_{r}=\frac{\lambda}{2 \pi \varepsilon_{0} r}
$$

But $E_{r}=-\nabla \phi=-\frac{\partial \phi}{\partial r} \quad \Rightarrow \quad \frac{\partial \phi(\vec{r})}{\partial r}=-\frac{\lambda}{2 \pi \varepsilon_{0} r}$
Upon integrating from r_{o} to r we get: $\phi(r)-\phi\left(r_{0}\right)=\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \left(\frac{r_{0}}{r}\right)$
Where r_{o} is a constant of integration and is some point where the potential is known
The problem is that this solution becomes infinite at $r=\infty$

ECE 303 - Fall 2006 - Farhan Rana - Cornell University

Potential of a Line Dipole

and opposite
Consider two infinite equal and opposite
line charges coming out of the plane of slide

Using superposition, the potential can be written as:

$$
\left.\begin{array}{rl}
\phi(\vec{r}) & =\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \left(\frac{r_{0}}{\boldsymbol{r}_{+}}\right)-\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \left(\frac{r_{\mathrm{o}}}{\boldsymbol{r}_{-}}\right) \\
& =\frac{\lambda}{2 \pi \varepsilon_{0}} \ln \left(\frac{\boldsymbol{r}_{-}}{\boldsymbol{r}_{+}}\right)
\end{array}\right\} \quad \begin{aligned}
& \text { The final answer does not } \\
& \text { depend on the parameter } r_{\mathrm{o}}
\end{aligned}
$$

Question: where is the zero of potential?
Points for which r_{+}equals r_{-}have zero potential. These points constitute the entire $y-z$ plane

The 3D Superposition Integral for the Potential In the most general scenario, one has to solve the Poisson equation:

$$
\nabla^{2} \phi(\vec{r})=-\frac{\rho(\vec{r})}{\varepsilon_{0}}
$$

We know that the solution for a point charge sitting at the origin:

$$
\phi(\vec{r})=\frac{q}{4 \pi \varepsilon_{0} r}
$$

To find the potential at any point one can sum up the contributions from different portions of a charge distribution treating each as a point charge

$$
\left.\phi(\vec{r})=\iiint \frac{\rho\left(\vec{r}^{\prime}\right)}{4 \pi \varepsilon_{0}\left|\vec{r}-\vec{r}^{\prime}\right|} d V^{\prime} \quad\right\} \quad d V^{\prime}=d x^{\prime} d y^{\prime} d z^{\prime}
$$

Check: For a point charge at the origin $\rho\left(\vec{r}^{\prime}\right)=q \delta^{3}\left(\vec{r}^{\prime}\right)=q \delta\left(x^{\prime}\right) \delta\left(y^{\prime}\right) \delta\left(z^{\prime}\right)$

$$
\phi(\vec{r})=\iiint \frac{\rho\left(\vec{r}^{\prime}\right)}{4 \pi \varepsilon_{0}\left|\vec{r}-\vec{r}^{\prime}\right|} d V^{\prime}=\iiint \frac{q \delta^{3}\left(\vec{r}^{\prime}\right)}{4 \pi \varepsilon_{0}\left|\vec{r}-\vec{r}^{\prime}\right|} d V^{\prime}=\frac{q}{4 \pi \varepsilon_{0}|\vec{r}|}=\frac{q}{4 \pi \varepsilon_{0} r}
$$

