Lecture 4

Electric Potential

In this lecture you will learn:

* Electric Scalar Potential
 Laplace’s and Poisson’s Equation

* Potential of Some Simple Charge Distributions

e
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Conservative or Irrotational Fields

Irrotational or Conservative Fields:

Vector fields F for which V x F = 0 are called “irrotational” or “conservative” fields

* This implies that the line integral of F around any closed loop is zero

fF.ds=0

Equations of Electrostatics:
Recall the equations of electrostatics from a previous lecture:

V.e,E=p
VxE=0
= In electrostatics or electroquasistatics, the E-field is conservative or irrotational

(But this is not true in electrodynamics)

—
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Conservative or Irrotational Fields
More on Irrotational or Conservative Fields:

« If the line integral of F around any closed loop is zero .....

§F.ds=0

.... then the line integral of F between any two points is independent of any specific
Path (i.e. the line integral is the same for all possible paths between the two points)

§F.ds=0
P A
th A = | [F.ds +| [F.ds =0
pa r n pathA \12 path B
B_ B_
2 hB = | [F.ds —-| [F.ds =0
pa n pathA \' path B
P )
= | JF.ds =| [F.ds
r path A r path B
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The Electric Scalar Potential -1

The scalar potential:

Any conservative field can always be written (up to a constant) as the gradient
of some scalar quantity. This holds because the curl of a gradient is always

zero. If F=vop
Then Vx(F'): Vx(Vp)=0

For the conservative E-field one writes: E = -V¢
(The —ve sign is just a convention)

Where ¢ is the scalar electric potential

The scalar potential is defined only up to a constant

If the scalar potential ¢(F) gives a certain electric field then the scalar
potential ¢(l')+ € will also give the same electric field (where C is a constant)

The absolute value of potential in a problem is generally fixed by some
physical reasoning that essentially fixes the value of the constant C
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The Electric Scalar Potential - Il
We know that:

E=-v¢

This immediately suggests that:

* The line integral of E-field between any two points is the difference of
the potentials at those points

. . r
[E.ds = [(-vg).ds - 4(r)-4(r) f

¢ The line integral of E-field around a closed loop is zero

fE.ds=§(-Vg¢).ds=0

/
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infinity far away from any charges

The Electric Scalar Potential of a Point Charge
Assumption: The scalar potential is assumed to have a value equal to zero at

Point Charge Potential ‘ di

q ‘ 4re, r

~

Do a line integral from infinity to the point ¥ where the potential needs to be
determined

Nie—38

0
E.ds= "i’(_w).dg = 4(F)-ge)=¢(F) = | 4(F)= ‘zé.dg

9F)=, 7

Are, r
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Electric Scalar Potential and Electric Potential Energy

The electric scalar potential is the potential energy of a unit positive charge
in an electric field

* Electric force on a charge of g Coulombs = qE (Lorentz Law)

Potential energy of a charge q at =J Work done by the field in moving the
any point in an electric field charge q from that point to infinity

Work done = ch'.d§ = cqu.d§ = q[#(F) - #(«0)] = q4(F)

Work done on unit charge = %(r) =o(F)

.

= P.E. of unit charge = ¢(F) ds

-~

= | Potential energy of a charge of g Coulombs in electric field = Q¢(F)
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Poisson’s and Laplace’s Equation

* It is not always easy to directly use Gauss’ Law and solve for the electric fields
* Need an equation for the electric potential

Start from: V. ¢, E=p

Toget: V.g, (-Vg)=p

= | V2 $= —f ———— Poisson’s Equation
o

If the volume charge density is zero then Poisson’s equation becomes:

VZg=0 ———— Laplace’s Equation

Poisson’s or Laplace’s equation can be solved to give the electric scalar
potential for charge distributions
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Potential of a Uniformly Charged Spherical Shell - |

o Coulombs/m?

D

Use the spherical coordinate system

For asr S«
Assume a solution:

Vig=0
10 ( ,0¢ N A
——|r"F=1=0 F)=—+F
r? 6r( ar) #7) r
F must be 0 so that the potential is 0
at r=
For 0sr <a:
Vig=0 .
10 [ri’ 6¢)_0 Assume solution:
— = =
r<or or ¢(F)=$+D

Potential must not become infinite
at r=0 so B mustbe 0

ECE 303 - Fall 2006 — Farhan Rana — Cornell University

Potential of a Uniformly Charged Spherical Shell - I
For 0<sr <a For asr s« %
r)=D . A
) #r)=4
o—"
E(r)—_%f=o E(r)=-%-4

or r?

Boundary conditions

We need two additional boundary conditions to determine the two unknown
coefficients A and D

(1) At r = a the potential is continuous (i.e. it is the same just inside and just
outside the charged sphere)
A
D=—
a
(2) At r= a the electric field is NOT continuous. The jump in the component of
the field normal to the shell (i.e. the radial component) is related to the
surface charge density

80 (Er‘out - Er‘in)z o
A
= & (?—°J=O'
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Surface Charge Density Boundary Condition

Suppose we know the surface normal electric
field on just one side of a charge plane with a
surface charge density o

Question: What is the surface normal field on
the other side of the charge plane?

Solution:

* Draw a Gaussian surface in the form of a cylinder of area A
piercing the charge plane
* Total flux coming out of the surface = &, (E2 - E1)A

» Total charge enclosed by the surface = o A
By Gauss’ Law: ¢,(E, - E,)A=0A
= ¢(E,-E)=0

\ e (E —E )= o This an extremely important result that relates surface normal
o\2 ! electric fields on the two sides of a charge plane with surface
\ charge density o
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Potential of a Uniformly Charged Spherical Shell - 1lI \
For 0sr <a For asr s~

#7)= roa’) 47) - o a’) a-/‘

drée,a dre,r

Sketch of the Potential:

#(r)

~
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Potential of a Uniformly Charged Sphere a la Poisson and Laplace
In spherical co-ordinates potential can only be a function of r (notof 6 or ¢)

For asr s«: P Coulombs/m® _

v?2 ¢=0 Assume a solution:
%Q[F@)w #F)=2 4 F S
reor or r Work in spherical

F must be 0 so that the co-ordinates

For 0srsa: potentialis 0 at r=«

vig=-L
80

10(,200\__p
= rzar(r 6r)_ £, ¢(F)=E+D+Cr2

/"

Assume solution:

homogenous partic?ular
parts solution
P
By substituting the solution in the Poisson equation find C — C= _768
o

* Potential must not become infinite at r=0 so B must be 0
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Potential of a Uniformly Charged Sphere a la Poisson and Laplace

For 0sr <a For asr s«
— P 2 — A
=D-—"— =
#r)=D- g2 4(7)=~

Boundary conditions

We need two additional boundary conditions to determine the two unknown
coefficients A and D

(1) At r = a the potential is continuous (i.e. it is the same just
inside and just outside the charged sphere)

(2) At r= a the radial electric field is continuous (i.e. it is the } E = _%
same just inside and just outside the charged sphere) r or
(1) gives:
D- L 82 = A A= P a3
6 €y a 3 £,
=
(2) gives: P _2
L a= A b= 2 &o a
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Potential of a Uniformly Charged Sphere a la Poisson and Laplace

For 0<r <a For asr s« P
4 3]
2 —ra
¢(F)=z”(az-'3] ¢<f)=[p3
€0 dre,r

Sketch of the Potential:

#(r)
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The Principle of Superposition for the Electric Potential

Poisson equation is LINEAR and allows for the superposition principle to hold

« Suppose for some charge density ©; one has found the potential ¢

» Suppose for some other charge density 0, one has found the potential ¢,

The superposition prinr)iple says that the sum (¢1 + ¢2) is the solution for the
charge density {91+ 02

A Simple Proof

24 P +
VhET,, Ve V(s )= 000
80 80
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Potential of a Charge Dipole
Consider Two Equal and Opposite Charges

We are interested in the potential
at a distance r from the center of
the pair in the plane of the
charges, where r>> d

Work in spherical co-ordinates

r,=r- %cos(e)

r=r+ %cos(e)

Potential contributions from the
two charges can be added -q
algebraically
= q q
r)= -
#7) Areor, 4me,r_
_ q _ q
d d
Are, | r— 5 cos(9)| 4ze,|r+ 5 cos(6)
~ Lz cos(6)
Az e, r
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Field of a Charge Dipole

. qd
#F)~ 2% 5 cos(0)

€o

E=-V4(F)

~ Lg,(z cos(6)F +sin(9)d )
Are, r

€Y

Same result for the E-field was obtained
in the previous lecture by superposing
the individual E-fields (rather than the
potentials) of the two charges
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Potential of a Line Charge

Consider an infinite line charge coming y
out of the plane of slide

i >
« The electric field, by symmetry, has only a C°”'°m":;;?\‘

radial component P\ X
* Draw a Gaussian surface in the form of a cylinder of
radius r and Length L perpendicular to the slide Work in cylindrical

co-ordinates
Using Gauss’ Law:  &,E, (2zrL)=AL

A
2re, r

or or 2, r

=

r

Upon integrating from r, to r we get: ¢(r)—¢(r,)= 2 A In(%J
T &

Where r, is a constant of integration and is some point where the potential is
known

The problem is that this solution becomes infinite at r = «
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Potential of a Line Dipole

F.
Consider two infinite equal and opposite
line charges coming out of the plane of RS 4
slide Lo
+4 /—\ \\‘r_ -2
Coulombs/m ,/_\ Coulombs/m
P — X
d
Using superposition, the potential can be written as:
~ A r, A I,
#(F)= Inf ©|-_—"—Inl° i
2re, \r.) 2ze, \r The final answer does not
depend on the parameter r,
A =
2re, \r.

Question: where is the zero of potential?

Points for which r, equals r. have zero potential. These points constitute
the entire y-z plane
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The 3D Superposition Integral for the Potential
In the most general scenario, one has to solve the Poisson equation:

V2 §(F) = P(’)

We know that the solution for a point charge
sitting at the origin:
o(F)=

47[3 r

To find the potential at any point one can sum up the contributions from
different portions of a charge distribution treating each as a point charge

#(r)=11i 4”:;(?_?. av' } dv'=dx' dy' dz'

Check: For a point charge at the origin p(F") = q 6°(F") = q 8(x")8(y")5(z")

(r) m p(f) v-=m qé’3(r) dv'= q _ q

&o |F T Az, |F -1 dze, || dme,r
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