

ECE 303 - Fall 2005 - Farhan Rana - Cornell University

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

Some Useful Characteristics of Antennas

Antenna Gain:

The gain $G(\theta, \phi)$ of an antenna is defined as the ratio of the power density (i.e. power per unit area) emitted radially outward in the (θ, ϕ) direction to the power density in the same direction radiated by an isotropic source that emits the same total power

$$G(\theta,\phi) = \frac{\langle \tilde{S}(\bar{r},t) \rangle \hat{r}}{P_{rad} / 4\pi r^2} \quad \Rightarrow \quad \int_{0}^{2\pi \pi} \int_{0}^{\pi} G(\theta,\phi) \sin(\theta) d\theta \, d\phi = 4\pi$$

Example: For a Hertzian dipole the gain is:

$$G(\theta,\phi) = \frac{\langle S(\bar{r},t) \rangle \cdot \hat{r}}{P_{rad} / 4\pi r^2} = \frac{3}{2} \sin^2(\theta)$$

Antenna Radiation Pattern:

The radiation pattern $p(\theta, \phi)$ of an antenna is defined as the ratio of the gain $G(\theta, \phi)$ to the maximum value of the gain

$$p(\theta,\phi) = \frac{G(\theta,\phi)}{G|_{\max}}$$

Example: For a Hertzian dipole the radiation pattern is:

$$p(\theta,\phi) = \frac{G(\theta,\phi)}{G|_{\max}} = \sin^2(\theta)$$

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

ECE 303 – Fall 2005 – Farhan Rana – Cornell University

