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Lecture 2

Maxwell’s Equations in Free Space

In this lecture you will learn:

• Co-ordinate Systems and Course Notations

• Maxwell’s Equations in Differential and Integral Forms

• Electrostatics and Magnetostatics

• Electroquasistatics and Magnetoquasistatics
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Co-ordinate Systems and Vectors

Cartesian Coordinate System

zAyAxAA zyx ˆˆˆ ++=
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kAjAiAA zyx
ˆˆˆ ++=

r

zzyyxx iAiAiAA ˆˆˆ ++=
r

All mean exactly the same thing …
just a different notation for the unit 
vectors

The first one will be used in this 
course
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Vectors in Cartesian Coordinate System



2

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

Co-ordinate Systems and Vectors

Cylindrical Coordinate System
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Vectors in Cylindrical Coordinate System

Both mean exactly the same thing …
just a different notation for the unit 
vectors

The first one will be used in this 
course
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Co-ordinate Systems and Vectors

Spherical Coordinate System

θφ θφ ˆˆˆ AArAA r ++=
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Vectors in Spherical Coordinate System

oθ

Both mean exactly the same thing …
just a different notation for the unit 
vectors

The first one will be used in this 
course
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Vector Fields

In layman terms, a vector field implies a vector associated with every point is 
space:

Examples:

Electric Field:

Magnetic Field:

( ) ( )trEtzyxE ,or,,, rrr

( ) ( )trHtzyxH ,or,,, rrr
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Maxwell’s Equations in Free Space
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Gauss’ Law

Faraday’s Law

Ampere’s Law

Integral Form Differential Form

Lorentz Force Law

( )HvEqF o
rrrr

µ×+=
Lorentz Law describes the effect of 
electromagnetic fields upon charges
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Physical Quantities, Values, and SI Units

E
r

Electric Field                                     Volts/m

Magnetic Field                                  Amps/m

Permittivity of Free Space               8.85x10-12 Farads/m

Permeability of Free Space             4πx10-7 Henry/m

Electronic Unit of Charge                1.6x10-19 Coulombs

Volume Charge Density                   Coulombs/m3

Current Density                                Amps/m2

Electric Flux Density                        Coulombs/m2

Magnetic Flux Density                     Tesla

Quantity
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Gauss’ Law – Integral Form

dVadDdVadEo ∫∫∫=∫∫∫∫∫=∫∫ ρρε
rrrr

.or. 

What is this law saying ……??

( )zyx ,,ρ

A closed surface of 
arbitrary shape 
surrounding a 
charge distribution

Gauss’ Law: The total electric flux coming out of a closed surface is equal to the 
total charge enclosed by that closed surface (irrespective of the shape of the 
closed surface)
Points to Note: This law establishes charges as the “sources” or “sinks” of the 
electric field (i.e. charges produce or terminate electric field lines). 

If the total flux through a closed surface is positive, then the total charge enclosed 
is positive. If the total flux is negative, then the total charge enclosed is negative

Carl F. Gauss
(1777-1855)

D
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Gauss’ Law – Differential Form

dVAadA ∫∫∫ ∇=∫∫
rrr

.. 

Divergence Theorem:

For any vector field:

The flux of a vector through a closed surface is equal to the integral of the 
divergence of the vector taken over the volume enclosed by that closed 
surface 

Using the Divergence Theorem with Gauss’ Law in Integral Form:
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Gauss’ Law for the Magnetic Field – Integral Form

0.or0. =∫∫=∫∫ adBadHo
rrrr

µ

What is this law saying ……?? A closed surface of 
arbitrary shape

Gauss’ Law for the Magnetic Fields: The total magnetic flux coming out of a 
closed surface is always zero. 

Points to Note: This law implies that there are no such things as “magnetic 
charges” that can emanate or terminate magnetic field lines.

If magnetic field is non-zero, then the flux into any closed surface must equal the 
flux out of it - so that the net flux coming out is zero. 

B
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Gauss’ Law – Differential Form

dVAadA ∫∫∫ ∇=∫∫
rrr

.. 

Divergence Theorem:

For any vector field:

The flux of a vector through a closed surface is equal to the 
integral of the divergence of the vector taken over the volume 
enclosed by that closed surface 

Using the Divergence Theorem with Gauss’ Law for the Magnetic Field in 
Integral form:
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Faraday’s Law – Integral Form

adB
t

sdEadH
t

sdE o
rrrrrrrr

..or.. ∫∫∂
∂−=∫∫∫∂

∂−=∫ µ

What is this law saying ……??

A closed contour

Faraday’s Law: The line integral of electric field over a closed contour is equal to 
–ve of the time rate of change of the total magnetic flux that goes through any 
arbitrary surface that is bounded by the closed contour

Points to Note: This law says that time changing magnetic fields can also generate 
electric fields

The positive directions for the surface normal vector 
and of the contour are related by the right hand rule 

Michael Faraday
(1791-1867)

B
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Faraday’s Law – Differential Form

( )∫∫ ×∇=∫ adAsdA rrr . .

Stokes Theorem:

For any vector field:

The line integral of a vector over a closed contour is 
equal to the surface integral of the curl of that vector 
over any arbitrary surface that is bounded by the 
closed contour

Using the Stokes Theorem with Farady’s Law in Integral Form:
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Ampere’s Law – Integral Form

∫∫∂
∂+∫∫=∫∫∫∂

∂+∫∫=∫ adD
t

adJsdHadE
t

adJsdH o
rrrrrrrrrrrr

...or... ε

What is this law saying ……??

Ampere’s Law: The line integral of magnetic field over a closed contour is equal 
to the total current plus the time rate of change of the total electric flux that goes 
through any arbitrary surface that is bounded by the closed contour

Points to Note: This law says that electrical currents and time 
changing electric fields can generate magnetic fields. Since there 
are no magnetic charges, this is the only known way to generate 
magnetic fields

The positive directions for the surface normal vector 
and of the contour are related by the right hand rule

electric flux density

electric current 
density

A. M. Ampere
(1775-1836)

DJ
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Ampere’s Law – Differential Form

( )∫∫ ×∇=∫ adAsdA rrr . .

Stokes Theorem:

For any vector field:

The line integral of a vector over a closed contour is 
equal to the surface integral of the curl of that vector 
over any arbitrary surface that is bounded by the 
closed contour

Using the Stokes Theorem with Ampere’s Law in Integral Form:
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Maxwell’s Equations and Light – Coupling of E and H Fields
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Time varying electric and magnetic fields are coupled  - this coupling is 
responsible for the propagation of electromagnetic waves

Electromagnetic Wave Equation in Free Space:

Assume:                           and take the curl of the Faraday’s Law on both sides: 0== J
r

ρ
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Maxwell’s Equations and Light

( ) 2

2

2
1 

t
E

c
E

∂
∂

−=×∇×∇
r

r
Equation for a wave traveling 
at the speed c:

m/s1031 8×≈=
oo

c
µε

In 1865 Maxwell wrote:

“This velocity is so nearly that of light, that it seems we have strong 
reason to conclude that light itself is an electromagnetic disturbance in 
the form of waves propagated through the electromagnetic field 
according to electromagnetic laws”
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Electrostatics and Magnetostatics

Suppose we restrict ourselves to time-independent situations (i.e. nothing is 
varying with time – everything is stationary)

We get two sets of equations for electric and magnetic fields that are completely 
independent and uncoupled:

( ) ( )rrEo
rrr

ρε =∇.

( ) 0 =×∇ rE
rr

( ) 0. =∇ rHo
rr

µ

( ) JrH
rrr

=×∇ 

Equations of Electrostatics Equations of Magnetostatics

• Electric fields are produced by 
only electric charges

• In electrostatics problems one 
needs to determine electric field 
given some charge distribution

• Magnetic fields are produced by 
only electric currents

• In magnetostatics problems 
one needs to determine magnetic 
field given some current 
distribution
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Electroquasistatics and Magnetoquasistatics - I
• The restriction to completely time-independent situations is too limiting and often 
unnecessary

• What if things are changing in time but “slowly” ……..(how slowly is “slowly” ?)

• Allowing for slow time variations, one often uses the equations of 
electroquasistatics and magnetoquasistatics

( ) ( )trtrEo ,,. rrr
ρε =∇

( ) 0, =×∇ trE
rr

( ) 0,. =∇ trHo
rr

µ

( ) ( )trJtrH ,, 
rrrr

=×∇

Equations of Electroquasistatics Equations of Magnetoquasistatics

• Electric fields are produced by 
only electric charges

• Once the electric field is 
determined, the magnetic field can 
be found by the last equation

• Magnetic fields are produced by 
only electric currents

• Once the magnetic field is 
determined, the electric field can be 
found by the last equation
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Electroquasistatics and Magnetoquasistatics - II

Question from the last slide: How slowly is “slowly” ?

• Electromagnetic waves and signals move at the speed c (speed of light)

Answer: Time variations are considered slow if the time scales over which things 
are changing are much longer compared to the time taken by light to cover 
distances equal to  the length scales of the problem

An amplifier chip operating 
from 100 MHz to 10 GHz

3 cm

Example:
• Time scale of the problem = 1/(100 MHz) = 10 ns
• Length scale of the problem = 3 cm
• Time taken by light to travel 3 cm = 0.1 ns 

Since 10 ns >> 0.1 ns, quasistatics is a valid 
means of analysis at 100 MHz

• Time scale of the problem = 1/(10 GHz) = 0.1 ns
• Length scale of the problem = 3 cm
• Time taken by light to travel 3 cm = 0.1 ns

Quasistatics is not a valid means of analysis at 
10 GHz

100 MHz Operation

10 GHz Operation
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Electroquasistatics and Magnetoquasistatics - III

Question (contd..): How slowly is “slowly” ?

Electromagnetic wave frequency f and wavelength λ are related to the speed 
of the wave c by the relation:

cf =λ

Let:            L = length scale of the problem

T = time scale of the problem ≈ 1/f

Condition for quasitatic analysis to be valid:

L

L
f
c

LcT
c
LT

>>⇒

>>⇒

>>⇒

>>

λ
Quasistatic analysis is valid if the wavelength of electromagnetic wave at the 
frequency of interest is much longer than the length scales involved in the problem
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