

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

	v	ector l	Fields
In layman terms, space:	a vector field im	nplies a	vector associated with every point is
Examples:			
Electric Field:	$\vec{E}(x,y,z,t)$	or	$\vec{E}(\vec{r},t)$
Magnetic Field:	$\bar{H}(x,y,z,t)$	or	$\bar{H}(\bar{r},t)$
	ECE 303 - Fall 2	007 – Farhan Ra	ana - Cornell University

	Physical Quantities, Values, and SI Units				
	Quantity	Value/Units			
Ē	Electric Field	Volts/m			
Ĥ	Magnetic Field	Amps/m			
E	• Permittivity of Free Space	8.85x10 ⁻¹² Farads/m			
μ_{0}	• Permeability of Free Spac	e 4πx10 ⁻⁷ Henry/m			
q	Electronic Unit of Charge	1.6x10 ⁻¹⁹ Coulombs			
ρ	Volume Charge Density	Coulombs/m ³			
Ĵ	Current Density	Amps/m ²			
$\vec{D} = \varepsilon$	e _o Ē Electric Flux Density	Coulombs/m ²			
$\vec{B} = \mu$	$H_o \vec{H}$ Magnetic Flux Density	Tesla			

Gauss' Law – Differential Form

Divergence Theorem:

For any vector field: $\oiint \vec{A} \cdot d\vec{a} = \oiint \nabla \cdot \vec{A} \, dV$

The flux of a vector through a closed surface is equal to the integral of the divergence of the vector taken over the volume enclosed by that closed surface

Using the Divergence Theorem with Gauss' Law in Integral Form:

Electrostatics and Magnetostatics Suppose we restrict ourselves to time-independent situations (i.e. nothing is varying with time – everything is stationary) We get two sets of equations for electric and magnetic fields that are completely independent and uncoupled: **Equations of Electrostatics Equations of Magnetostatics** $\nabla \cdot \varepsilon_0 \vec{E}(\vec{r}) = \rho(\vec{r})$ ∇ . $\mu_0 \vec{H}(\vec{r}) = 0$ $\nabla \times \vec{E}(\vec{r}) = 0$ $\nabla \times \vec{H}(\vec{r}) = \vec{J}$ • Electric fields are produced by Magnetic fields are produced by only electric charges only electric currents In electrostatics problems one In magnetostatics problems needs to determine electric field one needs to determine magnetic given some charge distribution field given some current distribution

The restriction to completely time-independent situations is too limiting and often
unnecessary

• What if things are changing in time but "slowly"(how slowly is "slowly" ?)

Allowing for slow time variations, one often uses the equations of electroquasistatics and magnetoquasistatics

Equations of Electroquasistatics

$$\nabla \cdot \varepsilon_{o} \ \vec{E}(\vec{r},t) = \rho(\vec{r},t)$$
$$\nabla \times \vec{E}(\vec{r},t) = \mathbf{0}$$
$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \varepsilon_{o} \vec{E}}{\partial t}$$

• Electric fields are produced by only electric charges

• Once the electric field is determined, the magnetic field can be found by the last equation **Equations of Magnetoquasistatics**

$$\nabla \cdot \mu_0 \vec{H}(\vec{r}, t) = \mathbf{0}$$
$$\nabla \times \vec{H}(\vec{r}, t) = \vec{J}(\vec{r}, t)$$
$$\nabla \times \vec{E} = -\frac{\partial \mu_0 \vec{H}}{\partial t}$$

 Magnetic fields are produced by only electric currents

• Once the magnetic field is determined, the electric field can be found by the last equation

ECE 303 - Fall 2007 - Farhan Rana - Cornell University

Electroquasistatics and Magnetoquasistatics - III

Question (contd..): How slowly is "slowly" ?

Electromagnetic wave frequency *f* and wavelength λ are related to the speed of the wave *c* by the relation: $f \lambda = c$

Let: *L* = length scale of the problem

 $T = \text{time scale of the problem} \approx 1/f$

Condition for quasitatic analysis to be valid:

$$T \gg \frac{L}{c}$$

$$\Rightarrow cT \gg L$$

$$\Rightarrow \frac{c}{f} \gg L$$

$$\Rightarrow \lambda \gg L$$

Quasistatic analysis is valid if the wavelength of electromagnetic wave at the frequency of interest is much longer than the length scales involved in the problem

ECE 303 - Fall 2007 - Farhan Rana - Cornell University