

General Solutions of Electromagnetic Wave Equation Assume only x-component of the E-field: $\vec{E} = \hat{x} E_x$ $\nabla \cdot \varepsilon_o \ \vec{E} = 0 \implies \frac{\partial E_x}{\partial x} = 0 \longrightarrow \left\{ \begin{array}{c} \text{The x-component cannot} \\ \text{have x-dependence} \end{array} \right\}$ So assume: $\vec{E} = \hat{x} E_x(z, t)$ And plug it into the wave equation: $\nabla^2 \vec{E} = \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2}$ To obtain: $\frac{\partial^2 E_x(z,t)}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 E_x(z,t)}{\partial t^2}$ Solution is: $E_x(z,t) = g(z \pm c t)$ Any function g whose dependence on co-ordinate z and time t is in the form of $(z \pm c t)$ will satisfy the above equation Example: $E_x(z,t) = E_o \exp(-\alpha | z - c t|)$

ECE 303 - Fall 2007 - Farhan Rana - Cornell University

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

ECE 303 – Fall 2007 – Farhan Rana – Cornell Universit

7

Power and Energy Density of Plane Waves E-field and H-field for a plane wave solution in 3D: $\vec{H}(\vec{r},t) = \left(\hat{k} \times \hat{n}\right) \frac{E_o}{n} \cos\left(\omega t - \vec{k} \cdot \vec{r}\right)$ $\vec{E}(\vec{r},t) = \hat{n} E_{o} \cos(\omega t - \vec{k}.\vec{r})$ Electric field energy density = $W_e(\vec{r},t) = \frac{1}{2}\varepsilon_o \vec{E}(\vec{r},t) \cdot \vec{E}(\vec{r},t) = \frac{1}{2}\varepsilon_o E_o^2 \cos^2(\omega t - \vec{k} \cdot \vec{r})$ Magnetic field energy density = $W_m(\vec{r},t) = \frac{1}{2}\mu_0 \vec{H}(\vec{r},t) \cdot \vec{H}(\vec{r},t) = \frac{1}{2}\mu_0 \frac{E_0^2}{\eta_0^2} \cos^2(\omega t - \vec{k} \cdot \vec{r})$ Notice that: $W_e(\vec{r},t) = W_m(\vec{r},t)$ Ε С $\left|\vec{S}(\vec{r},t)\right| = c\left(W_e(\vec{r},t) + W_m(\vec{r},t)\right)$ z The electric and magnetic energy densities are moving at the speed c and this constitutes \sqrt{y} the power of an electromagnetic plane wave

ECE 303 – Fall 2007 – Farhan Rana – Cornell University

ECE 303 – Fall 2007 – Farhan Rana – Cornell University